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ABSTRACT This article addresses the development and tuning of an energy management for a photovoltaic
(PV) battery storage system for the cost-optimized use of PV energy using reinforcement learning (RL).
An innovative energy management concept based on the Proximal Policy Optimization algorithm in
combination with recurrent Long Short-Term Memory neural networks is developed for data-based policy
learning, a concept that has been rarely addressed in the literature so far. As a reference system for the
simulation-based investigations, a PV battery storage system is modelled, parametrized and implemented
with an interface for the RL algorithm. To demonstrate the generalization capability of the learned energy
management, 98 training and 12 evaluation episodes, each with a length of one year, are generated
from an empirical dataset of global radiation and load power time series. To improve the convergence
speed and stability of the RL algorithm as well as the learned policy with regards to techno-economic
metrics, an extensive hyperparameter study is conducted by training 216 control policies with different
hyperparameter configurations. A simulation-based evaluation of the learned energy management against
conventional rule-based and model-predictive energy managements shows that the RL-based concept can
achieve slightly better results in terms of energy costs and the amount of energy fed into the grid than the
commonly used model-predictive method.

INDEX TERMS PV battery storage system (PVBSS), energy storage system (ESS), reinforcement learning
(RL), energy management (EM), proximal policy optimization (PPO), long short-term memory (LSTM),
optimal control, hyperparameter tuning.

I. INTRODUCTION
The increasing share of photovoltaic and wind power in the
energy mix of Germany due to the legally defined climate
protection targets of the federal government [1] is lead-
ing to an increasing demand for stationary battery storage
systems [2] to compensate for the volatility of renewable
electricity sources and thereby ensuring the stability of the
grid [2]. The reference expansion scenario of the Fraunhofer
Institute for Solar Energy Systems ISE predicts 104 GWh
of installed stationary battery storage capacity by 2030 in
Germany for this purpose [3]. Thereof, only 5.43 GWh have
been installed by December 2022 [4]. In addition to this
enormous expansion demand, falling manufacturing costs of
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battery storage technologies over the last decade have made
their deployment increasingly attractive from an economic
point of view [5], [6], [7]. In order to fulfill the techno-
economic objectives for the deployment of a battery storage
system, such as low operating costs or a short amortization
period, intelligent energy management (EM) concepts are
required that can take into account several opposing optimiza-
tion objectives simultaneously, for example, maximizing self-
sufficiency and maximizing energy fed into the grid at the
same time.

Reinforcement learning (RL) is a model-free method that
can be used to optimize a control policy, in this case the EM
of the PV battery storage system (PVBSS), by interacting
with this system and thereby receiving and optimizing a
reward [8], [9]. Generally, RL offers a number of advan-
tages over the widely used model-predictive control (MPC)
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FIGURE 1. AC-coupled PVBSS with input values (blue) and output values
(red) of the energy management modelled for the simulation-based
investigations. The energy management can be exchanged modularly in
the simulation-based investigations. The neural network of the RL-based
energy management is shown in simplified representation as one
example.

methods: A) In contrast to MPC methods, no explicit system
and forecast models need to be formulated. They can be
thought of as being part of the policy itself and are therefore
learned by the RL algorithm. B) The policy can be opti-
mized effectively over an infinite time horizon via discounted
rewards and a state value function, which is also learned
by RL algorithm. C) No restrictions need to be imposed on
the modelling of the environment, i.e. the PVBSS, or the
reward function as they are regarded as black-box functions.
D) Compared to MPC methods, less computational power is
needed during online operation, since the policy optimization
is carried out prior to the application and no real-time opti-
mization is needed. RL has been applied successfully to a
variety of control problems in robotics, navigation and power
systems [10], [11], which would have been very hard to solve
withMPC, due to the complexity of modelling the system and
solving the corresponding optimization problem in real-time.

In this paper, an RL-based EM concept using the Prox-
imal Policy Optimization (PPO) algorithm in combination
with Long Short-Term Memory (LSTM) networks for the
cost-optimal power allocation in a PVBSS (see Figure 1) is
developed. Its configuration and tuning is highlighted and
its performance is compared with a conventional priority-
based and a model-predictive EM concept. In section II, the
state of research and technology is considered and the con-
trol problem for the EM is formulated. Section III describes
the PVBSS with a PV system, a cumulative load, a battery
storage, a grid connection and the EM. As interface for
the RL algorithm the state, action and reward are defined.
Section IV details the developed EM concept based on the
PPO algorithm. An extensive simulation-based study on the
hyperparameter settings of the PPO algorithm is conducted
using the High Performance Computing cluster of TU Dres-
den. Section V evaluates the learned control policy against a
rule-based and a model-predictive EM concept. Section VI

summarizes the results of the investigations and provides an
outlook on further research questions in this area.

II. STATE OF THE ART AND PROBLEM DEFINITION
A. ENERGY MANAGEMENT FOR PV BATTERY STORAGE
SYSTEMS
Typical techno-economic objectives for the operation of
a PVBSS are to maximize the degree of self-sufficiency,
to minimize PV curtailment, to optimize the lifetime of
the battery storage or to maximize the overall system effi-
ciency [12]. The task of the EM is to allocate the power flow
in a PVBSS optimally with regard to one or many of these
criteria. A large number of rule-based and model-predictive
EM concepts can be found in the literature to address this
task [13]. Generally, an implemented EM receives a mea-
surement of the relevant system state variables as input and
outputs the setpoint values for an underlying control circuit,
i.e. the controller of the battery inverter, operating at a much
higher frequency than the EM itself.

Rule-based EM concepts calculate theses setpoint values,
i.e. the battery power setpoint or grid power setpoint, accord-
ing to simple logical or arithmetic operations, for example by
calculating the residual load or by triggering actions when
crossing a defined threshold of the battery state of charge
(SOC). These pre-defined rules are derived analytically ahead
of online operation. Forecasts and real-time optimization are
therefore not regarded. The advantage of this EM concept is
the low complexity of implementation and the low computing
requirements in online operation. The simple and commonly
used priority-based EM usually provides the best results with
regard to the degree of self-sufficiency of a PVBSS [12], [14].
However, rule-based EM concepts cannot be used for more
complex EM tasks, such as the multi-objective optimiza-
tion [15] discussed in this paper, or the management of hybrid
energy storage systems [16], since an analytical derivation of
an optimal control policy is not practical for these cases.

Model-predictive EM concepts optimize a trajectory of
setpoint values with regard to a defined objective function
over a time window projecting into the future. PV and load
forecasts as well as a model of the PVBSS need to be formu-
lated, in order to predict the system behavior. The forecasts
and optimization are periodically updated in order to correct
prediction errors.

A range of variations of the model-predictive EM con-
cept [13] with different optimization methods, such as linear
programming [17] or dynamic programming [12], [18], and
different forecasting methods [19] have been investigated
in the literature. Model-predictive EM concepts are widely
regarded as state of the art in this field. However, the explicit
modeling of the PVBSS and the forecast of the PV and load
power are challenges in the application of these methods.
Both increase the implementation complexity and represents
a systematic source of error due to deviations between the
forecast or optimization model and the actual system. More-
over, the real-time optimization required for this method
scales unfavorably for large and non-linear control problems.
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In this paper the priority-based EM concept (PRIO) serves
as a reference for evaluating the performance of the developed
RL-based EM concept as it is the simplest form of an EM
for a PVBSS and still widely used in real-world applications.
Further, a model-predictive energy management (MPC) [20]
is considered as second reference EM, because of its explicit
maximization of the energy fed into the grid andminimization
of the energy cost.

B. REINFORCEMENT LEARNING IN ENERGY STORAGE
APPLICATIONS
A third EM concept is based on the model-free RL method,
offering a range of advantages overMPCmethods. The EMof
the PVBSS is regarded as a Markov decision process (MDP),
defined by the tuple (S, A, Pa, Ra, γ ). Where S is the state
space, A is the action space and Pa (st+1 | st , at) : S × A ×

S → [0, 1] is the stochastic state transition function from
state st to st+1 when action at is executed.Ra (s, a) : S×A →
R is the reward function and γ is the discount factor.
In order to solve the MDP with RL, first, a trajectory τ =

(s0, a0, r0, . . . aT−1, rT−1, sT ) is generated by executing the
current policy at ∼ πθ (·|st , θ) of the RL agent in interaction
with the environment, i.e. setpoint values computed by the
EM are executed by the simulated PVBSS. The response of
the environment is given by the unknown reward distribution
rt ∼ Ra(·|st , at ) and state transition probability distribution
st+1 ∼ Pa (· | st , at). The general objective of a reinforce-
ment learning algorithm is to derive an optimal policy π∗ (st),
which maximizes the expected value of discounted rewards:

π∗ (st) = argmax
π

E

[
∞∑
k=0

γ kr t+k+1|π

]
(1)

To address this policy optimization problem, the EM concept
proposed in this paper uses the PPO algorithm, which shows
fast convergence and learns better policies than other RL
algorithms in a variety of continuous control problems [21],
[22]. In recent years various RL algorithms have been applied
to address the problem of optimal energy management in
battery storage systems. Kuznetsova et al. [23] and Chenxiao
Guan et al. [24] use Q-learning for the energy management of
a battery storage system in a residential home with renewable
power sources. Kim and Lim [25] apply the same algorithm
for optimal power scheduling in a smart energy building.
However, because the Q-learning algorithm only allows dis-
crete states and actions, a discretization must be performed
in each of these papers. As described in Ji et al. [26], the
discretization of actions can degrade the performance of the
EM and becomes unfeasible with higher dimensionality of
the action space. Therefore, [26] use the continuous PPO
algorithm for deriving a control policy for a micro grid man-
agement. However, in contrast to the investigations described
in this paper, the temporal resolution of the simulation in [26]
is much broader with one hour time intervals. Desportes
et al. [27] apply another continuous RL algorithm, the Deep
Deterministic Policy Gradient algorithm [28], for optimal

power allocation in hybrid storage systems. In addition to
the energy management of stationary battery storage systems,
RL algorithms are also applied for other energy storage appli-
cations, such as thermal energy storage systems [29], residen-
tial homes with demand side management [30] or determina-
tion of optimal power flows in electric vehicles [31], [32].

C. NEURAL NETWORKS, PARTIAL OBSERVABILITY, AND
OPTIMIZATION
In real-world EM applications, it is not feasible to capture
the state variables st of the PVBSS completely. Instead, the
policy has to derive relationships between incomplete obser-
vations ot ∈ �, ot ∼ O(·|st ), in this case themeasured PV and
load power as well as the SOC, and the underlying, hidden
state st , for example weather conditions or load scenarios.
The previously formulated MDP describing the EM of the
PVBSS can thus be extended to a partially observableMarkov
decision problem (POMDP) (S, A, Pa, Ra, γ,O, �). To esti-
mate the hidden state st , a set of n past observations o≤t =

(ot−n . . . ot−1, ot ) can be used as input for the policy at ∼

π (·|o≤t ) [33].
The PPO algorithm assumes a differentiable function for

the policy, parameterized by the vector θ. In the context of
POMDPs, recurrent neural networks, such as LSTM net-
works, have been established for this purpose [34], [35].
LSTM networks retain an inner state, which allows the con-
textualization of observations o≤t over several time steps and
allows a better estimation of the hidden state st . It has been
repeatedly shown that LSTM networks can represent highly
complex policies for POMDPs. [36], [37], [38], [39], [40].

In training, the policy network is first initialized with a
random parameter vector θ . Trajectories are then sampled by
executing actions at under the current stochastic policy πθ :

at ∼ πθ

(
· | o≤t , θ

)
(2)

The resulting state transitions (o≤t , at , rt , o≤t+1) are stored
for the subsequent optimization of the parameter vector θ

by the PPO algorithm. A second neural network is used to
estimate the state value function V (o≤t ), which is defined
as the expected sum of discounted rewards under the current
policy:

V
(
o≤t

)
= Eπ

[
∞∑
k=0

γ krt+k+1|o≤t

]
(3)

Based on the state value functionV (o≤t ) estimated by the sec-
ond neural network, the advantage values Ât are calculated.
They are defined as difference of the expected reward and the
discounted reward received under the current policy:

Ât = −V
(
o≤t

)
+ rt + γ rt+1

+ · · · + γ T−t+1rT−1 + γ T−tV
(
o≤T

)
(4)

In the course of training, the prediction error of the
state value function is minimized with regard to
the objective function LV (θ ):

LV (θ) =
(
Vθ

(
o≤t

)
− rt + γVθ

(
o≤t+1

))2 (5)
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The objective function for the parameter optimization of the
policy network is the PPO-specific surrogate function:

Lπ (θ) = Et

[
min (r (θ) , clip (r (θ) , 1 − ϵ, 1 + ϵ)) Ât

]
(6)

The derivation of this objective function is beyond the scope
of this paper and can be found in [21]. Practically, actions
resulting in a positive advantage are made more likely in
the stochastic distribution of the policy. The PPO-specific
objective function allows the collected state transitions to
be used for multiple consecutive parameter updates without
divergence of the optimization. This increases sample effi-
ciency and reduces training time.

The combined cost function L (θ) for the policy and
state value functions is obtained from weighted terms of
respective cost functions LV (θ ) and Lπ (θ ). Furthermore, a
weighted term for maximizing the entropy of the policy
H

(
πθ (·|o≤t , θ

)
) is introduced. This encourages explorative

behavior of the RL-agent and helps to prevent convergence
to a suboptimal policy:

L (θ) = −Lπ (θ) + βValueLV (θ) − βHH
(
πθ

(
· | o≤t , θ

))
(7)

III. MODELING
The simulated PVBSS consists of a PV system with an
inverter, accumulated loads and a battery storage with another
inverter. As shown in figure 1, the system components are
coupled via the AC grid of the residential building, which in
turn is connected to the general power grid. The modeling
parameters of the PVBSS can be found in appendix A.1.

The PVBSS is simulated in discrete time intervals of 1t =

1min. The length of the control interval is set to 1tControl =

15min, similar to other studies [41]. To simplify the imple-
mentation, 1tControl is always a multiple of the simulation
interval 1t . Therefore the modeling parameter nSPA = 15 is
introduced:

1tControl = nSPA1t (8)

The PVBSS is implemented in an object-oriented form in
the Python programming language. The components of the
PVBSS, such as the grid connection, the electrical load or the
PV system are abstracted by their own classes. In addition,
a wrapper class called Environment is implemented, which
contains functions for the execution of a simulation step and
the calculation of the state and reward. It serves as an interface
class between the simulated PVBSS and the RL algorithm.

A. PV SYSTEM, LOADS, AND GRID CONNECTION
In order to represent a wide range of realistic weather condi-
tions and load scenarios, the simulation of PVBSSs is usually
carried out based on historical data of the PV power, load
power and electricity prices [23], [24], [25]. Here, the PV sys-
tem is modeled by a measured time series of the global radia-
tion dataGt , which was recorded by the Chair ofMeteorology
of TU Dresden at the Tharandt weather station (see Figure 2).

This dataset covers the period from 2015 to 2019 with a tem-
poral resolution of ten minutes. The output power of the PV
generator is calculated by the surface area of the PV generator
APV and the efficiency coefficient ηPV , which simplifies
the module efficiency, shading and temperature-dependent
effects of the PV system. Therefore, the modeling of the PV
system only aims to represent the variance between different
seasons and weather conditions:

PPV ,t = GtAPV ηPV (9)

EPV ,t = PPV ,t1t (10)

The load power is modelled from a dataset fromHTWBerlin,
which contains measurements of 74 households over the
course of the year 2010 at a temporal resolution of one minute
(see Figure 2). The measurement series of the 74 households
are clustered by their annual total energy and variance using
the k-means algorithm. The cluster with a mean total energy
of 4,200 kWh including 22 households is selected as the load
power dataset.

FIGURE 2. Time series of PV power PPV and load power PLoad over a
period of seven days from a generated training episode.

A constant electricity price of pGD = 0.32 ekWh−1 and
a constant feed-in remuneration of pGF = 0.08 ekWh−1 are
assumed for the grid connection. Energy that is exchanged
with the distribution grid is measured by the meter EGD for
energy drawn from the grid and EGF for energy fed into the
grid. A feed-in limit of 50 % of the PV systems peak power
PGF,max = 2.5kW is implemented. Power flow exceeding
this limit in feed-in direction leads to the curtailment of the
PV system and its integral is virtually metered as ECL . This
feed-in limit is based on the 50 % limit of the German KfW
subsidy program for private PV systems [20], [42], which
has been suspended as of 2023 but is still useful to consider
because it reduces the load put onto the low voltage grid.

The time series data of the global radiation and load power
is split into segments of one year length, yielding five years
of global radiation data and 22 years of load power data, each
with a temporal resolution of 1t = 1min. By permuting
these time series, 110 episodes are generated. Of these, 12 are
randomly excluded from the set of training episodes and
retained as evaluation episodes.

B. ENERGY STORAGE
The EM provides the grid power setpoint for the PVBSS
PGrid,set,t . Throughout the control interval1tControl , the inter-
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nal controller of the battery storage adjusts its battery power
setpoint PBAC,set,t for charging and discharging according to
the current residual power between the PV and load power
PRes,t :

PBAC .set,t = PGrid,set,t − PRes,t (11)

The efficiency of the battery inverter as well as the losses in
the battery cells of the storage are represented by a constant,
combined efficiency ηBat , which is applied both when charg-
ing and discharging:

PBDC,set,t = ηBatPBAC,set,t (12)

PBDC,act,t = min
(
PBDC,set,t ,

(1 − SOCt)CBat
1t

)
(13)

PBAC,act,t =
PBDC,act,t

ηBat
(14)

Discharging the battery storage is similar to charging accord-
ing to the following calculation:

PBDC,set,t =
PBAC,set,t

ηBat
(15)

PBDC,act,t = max
(
PBDC,set,t ,

(−SOCt)CBat
1t

)
(16)

PBAC,act,t = PBDC,act,tηBat (17)

C. REINFORCEMENT LEARNING INTERFACE
The interaction of the RL agent with the simulated PVBSS
is described by three fundamental values: the state st – or in
terms of the POMDP formulation, the observation o≤t , the
action at and the reward rt . Kuznetsova et al. [23], Chenxiao
Guan et al. [24] and Kim and Lim [25] includes the values of
the load power PL , the PV power PPV and the battery state
of charge SOC in the state vector st , which is the input of
the RL agent. [24] include the current electricity price pGD
additionally. In all of these investigations, the action is the
battery power setpoint PBAC,set and the reward is a function
of the cost of energy drawn from the grid and energy fed into
the grid rt = f (EGD,t ,EGF,t ).

1) OBSERVATIONS
In the considered PVBSS, a single observation ot consists
of three values: the current state of charge of the storage in
percent SOCt , the cumulative energy consumption over the
last time interval EL,t and the energy generated by the PV
generator EPV ,t . A series of nTail previous observations is
concatenated as an observation matrix o≤t and returned to the
RL algorithm.

ot =

 SOCt
EL,t
EPV ,t

 (18)

o≤t =
[
ot−nTail · · · ot−1, ot

]
(19)

2) ACTIONS
The action vector at contains the setpoints for the environ-
ment, i.e. the grid power setpoint of the PVBSS PGrid,set,t .

During training actions are sampled from the stochastic pol-
icy π (o≤t ). The outputs of the policy are limited to the value
range at ∈ [−1, 1] for technical reasons. The actions at are
therefore interpreted as the grid power setpoint normalized by
the maximum charging or discharging power of the battery
inverter PBAC,max .

at =

[
PGrid,set,t

PBAC,max

]
(20)

3) REWARD
The rewards rt are calculated based on measurement values
of the PVBSS and are then return to the RL algorithm.
They are formulated as the revenue of the energy fed into
the grid, minus the cost of the energy drawn from the grid.
Therefore, the minimization of energy costs is defined as
objective for the policy optimization. Implicitly, this requires
the maximization of self-sufficiency and the minimization of
PV curtailment.

rt = EGF,tpGF,t − EGD,tpGD,t (21)

IV. REINFORCEMENT LEARNING BASED ENERGY
MANAGEMENT
A. NEURAL NETWORK TOPOLOGY
Asmentioned in section A.3 the hidden system state variables
st cannot be captured directly. Instead, a part of the neural
network topology, the state encoder, is used to extract features
from a matrix of past observations o≤t . The state encoder
is shared between the policy network and the state value
network and is represented by a LSTM network followed by
a dense layer (see Figure 3).

Linked to the state encoder, the policy also has a separate
part of the neural network for computing actions at . Similarly,
the state value function has a separate part for computing the
state values V (o≤t ). Both of these separate neural networks
consist of three dense layers. The output of the policy is
squashed by the tanh activation function to the value range
of at ∈ [−1, 1]. During inference, these output values are
directly used as action at . During training however, the output
values serve as the mean value for a parametrized truncated
normal distribution, which is needed for the exploration of
the state space S. Recent literature suggests that bounded
probability distributions are better suited for sampling actions
in RL than unbounded ones [43].

The neural networks of the policy and state value function
as well as the common state encoder are implemented in the
Python programming language using the Tensorflow library.

B. SIMULATION-BASED POLICY TRAINING
During training, actions at are sampled from the truncated
normal distribution of the current policy. Actions at are
passed to the simulation of the PVBSS and are scaled by
the value of the maximum power of the battery inverter
PBAC,max . A number of nSPA time steps are simulated, and
the relevant energy quantities EPV ,t , EL,t , EGD,t , EGF,t and
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FIGURE 3. Neural network topology of the policy and of the state value function with a shared LSTM and
a dense layer used as state encoder as well as separate dense layers for the state value function and the
policy.

FIGURE 4. Convergence behavior of the received reward, the energy
drawn from the grid EGD, the energy fed into the grid EGF and the PV
curtailment losses ECL over a year for a training period of 24 hours.

ECL,t are measured in the process. From the measured energy
quantities EPV ,t and EL,t as well as the state of charge of
the battery storage SOCt the next observation matrix o≤t+1
and the reward signal rt = f (EGD,t ,EGF,t ) is calculated.
The EM passes these two values back to the PPO algorithm,
which stores these state transitions (o≤t , at , rt , o≤t+1) for the
subsequent optimization of the neural network parameters.
After the optimization these state transitions are discarded
and new ones are collected under the optimized policy (see
Equation 6) [21].

Concurrent with the training, the current deterministic pol-
icy is evaluated. This allows tracking the state of progress
without the noise of stochastic exploration. As shown in
figure 4, over the course of the training, the following

improvements can be observed in the simulated PVBSS: the
average reward over the evaluation episodes T−1

·
∑T

t=0 rt
increases until convergence is achieved, indicating the policy
has improved with regard to the optimization objective of
minimizing the overall energy costs, as defined in the reward
function. The energy drawn from the distribution grid EGD
and the energy fed into the grid EGF decrease, suggesting
the degree of self-sufficiency has improved. Further, the PV
curtailment loss ECL has decreased.

C. HYPERPARAMETER STUDY
Variations around the default values of selected hyperparam-
eter of the generic PPO implementation [44] are investigated
to quantify and interpret their influence on the convergence
of the RL algorithm and the converged policy [45]. These
include the learning rate α, the discount factor γ, the gen-
eralized advantage estimate (GAE) factor λ , the entropy reg-
ularization βH and the learning rate halving. The variations
are selected in linear or logarithmic increments, based on
the valid range of values of the respective hyperparameter.
In total, 216 policies are trained in a full training run for all
permutations of the values α ∈ {3.3 ·10−5, 10−4, 3.3 ·10−4

},
γ ∈ {0.99, 0.995, 0.9975, 0.99875}, λ ∈ {0.7, 0.8, 0.9},
βH ∈ {10−2, 10−3, 10−4

} and learning rate halving enabled
Yes,No. These extensive computations are carried out on the
High Performance Computing cluster of TU Dresden.

The exponential moving average (EWMA) of the reward
with a decay of αEWMA = 0.005 is considered at different
stages of the training: at the beginning nIter = 6, 000, after
a few hours nIter = 25, 000 and at the end of the training
nIter = 60, 000. Larger values of the learning rate α cause
faster adaptation of the neural networks thus a faster progress
at the beginning of the training (nIter = 6, 000, nIter =

25, 000). At the end of the training (nIter = 60, 000) however,
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a wide scatter of the data points can be observed. This is
the case because the training can diverge at higher learning
rates. Therefore, a learning rate of α ≤ 10−4 is recommended
as a reference point for the energy management application
considered in this paper.

The entropy regularization βH provides a surprising result.
The highest value of βH = 0.01 provides the best results and
also shows the narrowest scatter of data points. Eight out of
ten of the best regulation policies had the value of βH = 0.01.
These results indicate that even greater values for the entropy
regularization βH > 0.01 should be investigated.

The examination of the discount factor γ shows that very
high values of γ ∈ {0.9975, 0.99875} have a negative impact
on the learning behavior and the final control policy. These
results are plausible as the discount factor implies an effective
horizon of future rewards considered for the policy optimiza-
tion. This is derived from the limit of the infinite series of
discount values:

∞∑
k=0

γ k =
1

1 − γ
(22)

For the value γ = 0.9975 this results in an effective horizon
of 400 time steps, for γ = 0.99875 of 800 time steps.
Such long planning horizons are not useful for the considered
energy management application and lead to an increase in the
variance of the discounted rewards. An effective horizon of
100 to 200 time steps, which corresponds to a discounting
factor of 0.99 ≤ γ ≤ 0.995, seems to be a reasonable choice
for the considered EM application.

The variation of the GAE factor λ has only a minor effect
on the training compared to the variation of other hyperpa-
rameters. The scatter along the y-axis is significantly larger
than the trend component at each stage of the training. There-
fore, the default value for the GAE factor of λ = 0.9 chosen
in [44] seems to be well suited for this problem.

Enabling learning rate halving decreases the learning rate
whenever the RL algorithm gets stuck in a local reward
maximum for more than 6000 iterations. This causes the
parameter updates of the optimization to become increasingly
smaller and forces the convergence of the algorithm. Espe-
cially towards the end of the training nIter = 60000 a much
narrower scatter can be observed, indicating a more reliable
performance of the PPO algorithm. For each of the ten best
training runs rate halving had been enabled.

V. ENERGY MANAGEMENT EVALUATION
The EWMA of the reward in each of the 216 training runs
(see A.3) is evaluated after the end of the training, i.e. after
48 hours of training time has elapsed. The five best policies
with regard to this value are used to simulate the episodes
of the evaluation dataset (see Appendix A.3). Policy selec-
tion after full knowledge of the evaluation results should
be avoided, because it is not a realistic assumption for the
online operation. The priority-based EM (PRIO) and the
model-predictive EM (MPC) are used as references for the
evaluation of the EMs learned by the RL algorithm (RL-∗).

FIGURE 5. EWMA values of the rewards after 6,000, 25,000 and 60,000
training iterations for variation of the studied hyperparameters α,βH, γ,λ

and learning rate halving.

As shown in figure 6, the RL-based EM, like the MPC-
based EM, shifts the charging of the battery storage towards
the end of the day and enables more energy being fed into
the grid below the feed-in limit. This observation shows
that the RL-based EM has learned a similar behavior to the
MPC-based EM by using historical data of PV power and
load power as input. In the MPC-based EM, this is achieved
by formulating forecast models and by performing real-time
optimization. Both add considerably to the complexity of the
implementation as well as the computational power required,
and are not needed for the RL-based EM. On the fourth day
of the trajectory shown in Figure 6, it can be seen that the
RL-based EM shifts the charging of the battery storage too
far, resulting in the storage not being fully charged.

The EMs are evaluated based on the degree of self-
sufficiency kSS , the share of curtailment losses kCL , the share
of PV energy fed into the grid kFI and the load-normalized
specific energy costs kSEC . These metrics are calculated from
the annual trajectories of the evaluation episodes simulated
under the respective EMs. Themetrics are calculated from the
accumulated energy quantities ∗E , which are the sum over the
one-minute time intervals of the PVBSS simulation:

E∗ =

∑
t

E∗,t (23)
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FIGURE 6. Trajectories of the residual power PRes, power of the grid
connection PGrid, the AC power of the battery inverter PBAC,act and the
state of charge for the PRIO, MPC and RL-36 energy managements over
four summer days from evaluation episode 0.

kSS =
EL − EGD

EL
(24)

kCL =
ECL
EPV

(25)

kFI =
EGF
EPV

(26)

kSEC =
pGDEGD − pGFEGF

EL
(27)

The most relevant metric for the comparison of the EMs are
the specific energy costs, since their minimization is set as
the optimization objective defined by the reward function.

Table 1 shows the results of the simulation-based evalua-
tion for an exemplary episode from the evaluation dataset for
the five best RL-based EMs selected from the hyperparameter
study (RL-∗) as well as the two EMs used as reference (PRIO,
MPC). The lowest specific energy costs kSEC in this evalua-
tion episode are achieved by RL-36 with 7.09 CentkWh−1.
Several RL-based EMs can be learned that result in similar
energy costs but that show different behaviors. For example,
RL-13 feeds more energy into the grid than RL-103, but
achieves a lower degree of self-sufficiency kSS . Therefore,
it can be concluded that despite learning an optimal strategy
in terms of the reward function, the behavior can vary sig-
nificantly. If a metric such as the degree of self-sufficiency
kSS shall be optimized explicitly, it must also be introduced
in the reward function. Further, RL-36 achieves the lowest PV
curtailment losses kCL and the highest energy fed into the grid
kFI . The highest degree of self-sufficiency kSS is achieved by
PRIO as expected.

The statistics of all 12 evaluation episodes shown in figure
7 provide further evidence that the RL-based EMs achieve
lower specific energy costs kSEC than PRIO and similar
energy costs to MPC. However, the degree of self-sufficiency
kSS and the share of energy fed into the grid kFI highlight the
different characteristics of the learned energy managements.

TABLE 1. Comparative metrics for the considered energy managements.

RL-103 shows the highest degree of self-sufficiency kSS
among the RL-based EMs in the distribution over all eval-
uation episodes but the lowest share of energy fed into the
grid kFI . RL-36 is the best EM with regard to the energy fed
into the grid kFI and the optimization objective of minimizing
energy costs defined in the reward function.

VI. SUMMARY AND OUTLOOK
In this paper, an RL-based energy management concept
using the Proximal Policy Optimization (PPO) algorithm was
developed for the data-based learning of energy manage-
ments for a PV battery storage system (PVBSS). To address
the partial observability of the PVBSS and the associated
partially observable Markov decision process (POMDP) for-
mulation of the energy management problem, Long Short-
Term Memory (LSTM) networks were utilized to encode
the systems state from a series of past observations. In an
extensive hyperparameter study, 216 different energy man-
agements were learned and the influences of selected hyper-
parameters on the convergence of the RL algorithm as well
as the quality of the RL-based energy managements were
analyzed.

Comparing the RL-based energy managements with the
selected reference EMs over 12 evaluation episodes, similar
or better energy costs were achieved compared to the state-
of-the-art model-predictive EM. The trajectory of the state of
charge of the RL-based EM is similar to that of the model-
predictive EM, in that it shifts the charging of the battery stor-
age towards the end of the day and thereby reduces curtail-
ment losses and increases the amount of energy fed into the
grid. This is achieved without the need for modeled forecasts
of the PV or load power and without real-time optimization.
Multiple EMs learned by the RL algorithm with different
hyperparameter settings have achieved a similar optimum in
terms of the energy costs. However, they showed different
weightings of self-consumed PV energy and energy fed into
the grid.

In future research, further optimization objectives shall be
considered in the reward function. This includes efficiency-
and aging-optimized operation of the battery storage as well
as the consideration of the costs of the peak power drawn from
the grid and time-variable energy prices. The PV system,
the inverter as well as the battery storage shall be modeled
by a more realistic loss behavior and semi-empirical battery
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FIGURE 7. Statistics of the degree of self-sufficiency kSS , the share of PV energy fed into the grid kFI and the specific
energy costs kSEC over twelve evaluation episodes (blue) and their mean value (orange).

aging models shall be included in the simulations. For this
purpose, efforts are currently being made to improve the
implementation and to reduce the computation time in order
to deal with the increased computational complexity.

To further improve the performance and robustness of the
RL approach, various neural network topologies are inves-
tigated, e.g. the number of dense layers, the number of
LSTM units and whether the state encoder is shared between
the policy and the state value function. Additional options,
such as the choice of the optimizer, the use of dropout and
weight regularization will also be explored. The application
of RL-based EMs for hybrid energy storage systems with
more than one degree of freedom is currently conceptualized.

GLOSSARY
GENERAL ABBREVIATIONS
EWMA Exponentially weighted moving average.
GAE Generalized advantage estimate.

LSTM Long Short-Term Memory.
MDP Markov decision process.
MPC Model-predictive control.
PV Photovoltaic.
RL Reinforcement learning.
POMDP Partially observable Markov decision process.
PPO Proximal Policy Optimization.
PRIO Priority-based energy management.
PVBSS PV battery storage system.
SOC State of charge

Symbols
A Action space.
APV PV module surface area.
Ât Advantage values.
at Action.
·act Actual value.
CBat Battery capacity.
EGD Energy drawn from the grid.
EGF Energy fed into the grid.
EL Energy consumed by the loads.
EPV Energy converted by the PV generator.
ECL Energy of PV curtailment.
ηBat Battery efficiency.

ηPV Effective PV efficiency.
f (·) Generic function.
Gt Global radiation.
H(·) Entropy of random distribution.
kSS Degree of self-sufficiency.
kSC Share of self-consumption.
kFI Share of energy fed into the grid.
kCL Curtailment losses.
kSEC Specific energy cost.
L(·) Loss function.
·max Maximum value.
nSPA Number of simulation steps per action.
nIter Number of training iterations.
O Observation space.
ot Observation.
o≤t Matrix of past observations.
Pa State transition distribution.

� Observation distribution.
pGD Electricity price.
pGF Feed-in remuneration.
PBAC Battery storage AC power.
PBDC Battery storage DC power.
PG Grid power.
PL Load power.
PPV PV generator power.
PRes Residual power.
π (·) Policy function.
Ra Reward distribution.
rt Reward.
r(·) Probability ratio.
S State space.
st State.
·set Setpoint.
1t Simulation time interval.
1tControl Control tine interval.
T Terminal time step.
θ Parameter vector of the neural network.
·t Value at time step t .
V (·) State value function.

HYPERPARAMETERS
see Appendix A.2
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APPENDIX
A. MODELING PARAMETERS

TABLE 2.

B. HYPERPARAMETERS

TABLE 3.

C. EVALUATION EPISODES

TABLE 4.
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