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ABSTRACT Machine learning technologies have been applied to improve the real-time performance of
small-signal stability assessment, while achieving a high accuracy requires numerous samples, and model
performance may degrade if not updated over time. Furthermore, single models tend to learn general features
without analyzing specific characteristics within the samples, which may lead to a high frequency of large
errors, particularly at operating points where the eigenvalue trajectories have sudden changes. Facing such
issues, this paper introduces the concept of reference points for accurate online tracking of the rightmost
eigenvalue, as the reference points information reflects the characteristics among its surrounding operating
points. The performance of this model is sensitive to reference points, so affinity propagation clustering is
employed to determine the number of reference points and generate corresponding groups, accommodating
diverse operating points characteristics. This paper generates data-driven networks for each group and
combines them into a multi-network for precise rightmost eigenvalue prediction. Case studies show that
the use of reference points improves accuracy by nearly 2% compared to methods without them, with even
greater improvements in mixed load type scenarios. To mitigate computational stress, this paper proposes an
adaptive partial update strategy based on the dynamic timewarping algorithm, avoiding the need to update all
networks within each sliding time window. Experimental results verify that the total running time is reduced
by more than 10%. Online tracking demonstrates that reference points help decrease the frequency of large
errors by 40%, especially at sudden change points of rightmost eigenvalue trajectories.

INDEX TERMS Adaptive partial update strategy, reference point, rightmost eigenvalue, online tracking,
small-signal stability.

I. INTRODUCTION
Small-signal stability (SSS) is the prerequisite of security
operation in the power system, especially as the interconnec-
tion of power grids and capacity growth continue to increase
[1], [2], hence real-time SSS assessment has become an
urgently requires. SSS is determined by the real part of right-
most eigenvalue (RE), which normally provides the essen-
tial information to improve the stability of power system.
Therefore, the rapid and accurate tracking of RE in the
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ever-changing grid is an important task for power system
security operation and control [3], [4], [5].

One classical approach to obtain RE is the eigenvalue anal-
ysis method, which calculates the whole eigenvalues or part
of eigenvalues with poorly damping ratio by the linearized
model of power system [6], [7], [8]. Although this method
offers high accuracy, it is very time-consuming due to the
typically large dimension of the linearized model. Moreover,
it requires the detailed dynamic model, which may not be
practical in fast time-varying grids. Another conventional
approach is to identify RE from the time domain waveform
of the power system, as provided by the phasor measurement
unit (PMU) [9], [10], [11]. In comparison with the eigenvalue
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analysis method, this approach significantly improves the
speed of RE identification. Whereas the measurement-based
method normally extracts the necessary information after the
disturbance has occurred, and the communication time delay
may further affect the real-time performance.

Data-driven methods offer the most real-time solutions for
SSS assessment, Table 1 compares the various methods dis-
cussed. Given the advantages and developments of machine
learning technology, it has become increasingly popular to
apply machine learning algorithms to address the SSS related
problems. Data-driven classification models are convenient
to predict stability labels [12], [13], while such approaches
may not provide the information on oscillation modes at
current OPs, such as frequency and damping. To obtain more
oscillation mode information, some studies have used data-
driven method to generate the linearized state matrix and
calculate the eigenvalues [14], [15]. However, such method
still suffers from the burden of computation. Therefore, some
literatures address the critical eigenvalues at different OPs by
arranging them to corresponding oscillation modes as output,
while such method assumes the eigenvalue positions do not
change abruptly, which is unrealistic in SSS problems due to
the strong nonlinearity [16], [17], [18]. To tackle this issue,
the researchers predicted the regions where the eigenvalues
are located instead of the particular values, to improve the
real-time performance of SSS assessment [19], while this
method may result in overlapping eigenvalue regions.

TABLE 1. The comparison of SSS assessment methods.

As both the RE and the minimum damping ratio (MDR)
directly determine the stability of the power system, several
researches have focused on improving their accuracy, includ-
ing the data-driven based model [20], [21]. Recent studies
have utilized deep learning algorithms in SSS assessment
[22], [23], while the accuracy performance of critical eigen-
values remains unsatisfactory. This paper concentrates on
enhancing the accuracy of data-driven RE prediction, which
is essential for the real-time SSS assessment, by introducing
the concept of reference point (RP). Adopting the affinity
propagation (AP) clustering to the proposed method, the
given samples are divided into different groups and the central
OP of each group is the RP. It is a flexible clustering method

that can accommodate the different characteristics of OPs that
can be reflected by each RP. Then, the particular networks in
each group are established and combined to form the multi-
network to reduce the error caused by the single network
due to average learning. The generalized regression neural
network (GRNN) is utilized as the network of the proposed
model due to its nonlinear mapping capability and learning
speed.

However, the behavior of the same power system may
change significantly over time, this paper designs an online
framework with the rolling update model to maintain the
accuracy of the data-driven model for tracking RE. Most of
existing online frameworks for SSS are measurement based
methods [11], [24], however, such methods still suffer from
high online computational burden as they normally require a
high refresh rate of the sliding time window. Considering that
the offline trained data-driven model naturally has extremely
high real-time performance in online computation, a regular
updating model is proposed in this paper. To alleviate the
burden of refreshing all the multi-network in each sliding
time window, this paper introduces an adaptive partial update
strategy that calculates the similarity of each group of RPs
in adjacent sliding time windows, by using dynamic time
warping (DTW) algorithm. The network of one RP in the
current sliding time window is able to directly adopt one of
the networks in the last sliding time window, if its OPs have
a high degree of similarity. Overall, the original contributions
of this paper are as follow:

• The concept of RP is introduced to improve the accuracy
of SSS RE estimation and to reduce the frequency of
large errors, especially at OPs where the RE has sudden
changes.

• An adaptive partial framework is designed to online
tracking of RE with less computational burden and total
running time.

The paper is organized as follows: the introduction of
RP and the model of data-driven SSS RE based on RP are
elaborated in Section II. In Section III, the online RE tracking
framework with an adaptive partial update strategy is consid-
ered. The experimental results to verify the performance of
the proposed paper are depicted in Section IV. Finally, the
conclusion and future works are remarked in Section V.

II. SMALL-SIGNAL STABILITY RIGHTMOST EIGENVALUE
TRACKING BASED ON REFERENCE POINTS
A. SMALL-SIGNAL STABILITY RIGHTMOST EIGENVALUE
The dynamic model of the power system can be represented
by the differential algebraic equations (DAEs) as (1):{

ẋ = f (x, y)
0 = g (x, y)

(1)

where x and y represent the state variable vector and algebraic
variable vector of power system, respectively. All equations
in bold italics indicate matrices or vectors in the proposed
paper.
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The SSS in the power system is conventional assessed
by Lyapunov linearization method, the stability of DAE is
consistent with the linearization model in the neighborhood
of (x0, y0) as (2):[

ẋ
0

]
=

[
∇x f ∇y f
∇xg ∇yg

] [
1x
1y

]
(x0,y0)

(2)

Therefore, the stability of (2) is able to be represented as
the statematrixA= ∇x f−∇y f (∇yg)−1

∇xg. The eigenvalues
of A are depicted as (3):{

λi = σi ± jωi

ξi = −σi/

√
σ 2
i + ω2

i

(3)

where σi and ωi represent the i-th real part and imaginary
part of eigenvalues, respectively. Each pair of complex eigen-
values corresponds an oscillatory mode. ξi represents the
i-th damping ratio of eigenvalues.

The eigenvalue with the maximum σi reflects the SSS of
this OP, which is called the rightmost eigenvalue (RE) λr in
the proposed paper: {

λr = σr ± jωr
σr = max(σi)

(4)

The RE of power system is a crucial index for determining
the stability, as instability occurs when the real part of RE
exceeds 0. In addition, the RE and its eigenvector are able
to provide the useful information to improve the stability in
the control of SSS. Therefore, the accurate tracking RE has
become an increasing demand for real-time SSS problems.
Researchers have explored the use of machine learning tech-
nologies to establish the mapping relationship between the
state or algebraic variables of power system and the eigenval-
ues. Although some machine learning approaches can handle
linear or weakly nonlinear models, accurately estimating RE
in strongly nonlinear power system remains a challenge when
relying on those technologies alone.

B. REFERENCE POINTS
1) THE DESCRIPTION OF REFERENCE POINTS
To address such issues, the proposed paper introduces the
concept of RPs to help track RE accurately. An OP is able
to represented by a set of variables X as shown in (5):

X = [x1, x2, . . . , xn] (5)

where xn is able to be represented the variables in the given
power system, such as the power of generators, the parame-
ters of excitation system, load level.

In order to demonstrate the concept of RP more clearly,
X with high dimension is abstracted into a two-dimensional
coordinate system in Fig.1, all the OPs locate in the range of
variables.

In data-driven model, the connection of similar samples is
clearly stronger than other samples, so the overall accuracy
of multi-network containing different groups of similar OPs
is better than the single rough network using all the samples.

Inspired by this, our paper divides the OPs within the possible
operating range into several groups, such as zone A in Fig. 1,
based on their similarities. Moreover, information from one
OP is able to contribute to the stability assessment of its
surrounding OPs. Therefore, our paper selects the central OP
in each group as the RP, as the yellow OP in the Fig. 1. The
new OP is able to be judged by the RP whether it belongs
to the corresponding group. Obviously, the number of RPs
affects the accuracy of multi-network.

FIGURE 1. The diagram of reference points.

Whereas OPs are difficult and unnecessary to represent
using the entire set of state variables due to the large
dimensionality resulting from increased power system inter-
connection. The generator parameters are critical to the SSS
problems, so the proposed paper selects the output of gen-
erators to represent the OPs. Furthermore, similar generator
outputs may express different power system operation behav-
ior at different time. Therefore, the generator outputs Pg with
time labels t are represented to the OPs, (5) can be changed
into (6).

X = [Pg, t] (6)

2) THE WAY TO DETERMINE THE REFERENCE POINTS
The determination of RPs is evidently crucial for the effec-
tiveness of the proposed model. The number of RPs is equal
to the number of multi-network. If the number of RPs is too
small, the accuracy of the model may not be satisfactory.
In fact, if only one RP is selected, the proposed model would
become the data-driven model without RPs. However, select-
ing too many RPs is also inappropriate. With a fixed total
sample size, a larger number of RPs will result in fewer OPs
in each group, thus insufficient training samples may lead to
greater error of network. Moreover, increasing the number of
trained networks results in a proportional increase in network
training parameters and computation costs, which reducing
the real-time performance of RE prediction. Additionally, the
number and location of RPs in different sliding time windows
may vary due to the different characteristics of the data.

Therefore, the proposed online framework with stream-
ing data requires an effective clustering method to pick up
the RPs from its surrounding OPs. The classical clustering
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methods are unsuitable as they normally require determine
the number of clusters in advance. Since the number of RPs
in the proposed updating model may vary due to different
samples, it is inflexible and inaccurate to fix the number
of clusters in advance. AP clustering, as one of the supe-
rior graph clustering methods, is selected as the proposed
method to determine the RP, since the number of clusters
is adaptive. AP clustering selects the center of clusters by
exchanging messages between different points in the itera-
tive process [25]. In addition, this approach is advantageous
as the center of the cluster (RP) do not need to be newly
generated OPs.

TABLE 2. Determination of reference points using AP clustering.

The process of RP determination using AP clustering is
demonstrated in Table 2. The first step is to calculate the
similarity between OPs. Each OP can generate a topology
with pairwise connections, as shown in the upper-right corner
of Fig. 2, n is the node number of the topology. Then based on
the topology, the similarity matrix can be extracted to express
the distance of eachOP. The similaritymatrix is demonstrated
on the left of Fig. 2, the darker the color block, the closer the
two OPs are.

FIGURE 2. The diagram of AP clustering parameters.

The negative Euclidean distance is used to measure the
similarity in AP clustering, while it is useless for the data
with inconsistent scales between dimensions, just like the
OP in (6). The numerical dimensions of generator outputs
and time labels are obviously different. Therefore, standard-
ized Euclidean distance is adopted to measure the similarity

s (i, k) of point i and k:

X∗
= (X − µ)/δ

s(i, k) = −

√√√√ 2∑
n=1

(x∗
in − x∗

kn)
2/δn (7)

where X∗, µ and δ represent the standardized value, mean
value and standard deviation of OPs, respectively.

The AP clustering first considers all the OPs as the candi-
date exemplar (cluster centers), then initializes the matrices
of responsibilities r(j, k) and availabilities a(i, k) at step 2 in
the Table 2. r(j, k) represents the degree to which point k is
suitable to be the cluster center of point j, a(i, k) represents
the suitability of point i to select point k as its cluster center.
The final centers are determined according to the addition of
these two parameters.

In the iterative process of AP clustering in Table 2, the
(l + 1)-th iteration of responsibilities rl+1(j, k) and availabil-
ities al+1(i, k) are given in (8) and (9):

rl+1(j, k) =

{
s(j, k) − maxi̸=k [al(j, i) + rl(j, i)], j ̸= k

s(j, k) − maxi̸=k [s(j, i)], j = k

(8)

al+1(i, k) =



min[0, rl+1(k, k)

+

∑
j̸=i,k

max[rl+1(j, k), 0]], i ̸= k∑
j̸=k

max[rl+1(j, k), 0]], i = k

(9)

A damping factor η ∈ (0, 1) is introduced to update the
rl+1(j, k) and al+1(i, k) as shown in (10):{

rl+1(j, k) = ηrl(j, k) + (1 − η)rl+1(j, k)
al+1(i, k) = ηal(i, k) + (1 − η)al+1(i, k)

(10)

AP clustering is terminated if the maximum number of
iterations is greater than a threshold lm or the r(j, k) and
a(i, k) are not changed during the iteration process. Although
AP clustering has a higher computational complexity than
classical clustering methods, such disadvantage is able to be
ignored when dealing with a small sample set. In addition, AP
clustering is not sensitive to the initial samples and produces
smaller error in cluster result than other clustering method
like K-means. The length of sliding time window is short in
the proposed online framework and requires high accuracy in
determining RPs, so the proposed paper adopts AP clustering
is reasonable and effective.

C. THE PROPOSED MULTI-NETWORK
Within a sliding time window extracted from the data stream,
it is necessary to generate small networks in each group
after dividing the OPs into suitable groups and determining
the corresponding RPs, as described in the previous section.
Figure 3 illustrates this process. The input and output of the
proposed networks are the power of all the generators and the
RE, respectively.
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FIGURE 3. The proposed multi-network.

Unlike the conventional models where a single network
is trained using all available samples, the proposed multi-
network is composed of some small networks as demon-
strated in Fig. 3. Several machine learning algorithms, such as
ANN, support vector machine (SVM), convolutional neural
network (CNN), and etc., can be considered as the poten-
tial network. Deep learning algorithms are known for their
superior learning ability in handling nonlinear models and
improving accuracy, but require a larger number of trained
parameters and computation time to some extent.

To select the appropriate algorithm for the proposed
method, we initially focus on shallow machine learning algo-
rithms with fewer training parameters. Among them, GRNN
seems to be a good choice to be the supporting network in
the proposed method due to its strong nonlinear mapping
ability and learning speed, especially in the case of a small
sample set.

FIGURE 4. The comparison of different machine learning algorithms.

To verify this assumption, a case study is demonstrated in
the Fig. 4, by using the generated samples (960 OPs) of the
WSCC 9-bus test system, 70% for training and the rest for
testing (same samples as the case study in the Section IV-A).
In fact, the accuracy of such algorithms is similar. It can be
clearly shown that regardless of the training time and testing
time, the performance of CNN is much worse than other three
algorithms, owing to its large number of parameters. As for

the shallow machine learning algorithms, although the learn-
ing speed of SVM is faster than GRNN and ANN, the error of
the former is larger than the latter, the reason of it may be the
SVM is better suited for classification problem rather than
regression problem. The learning speed of GRNN is faster
than that of ANN, although the accuracy of them is similar.
Overall, it is reasonable to choose GRNN as the supporting
machine learning algorithm for the proposed paper.

GRNN is composed of four layers: input layer, pattern
layer, summation layer and output layer. One of the advan-
tages of GRNN is that it has fewer tunable parameters, usually
limited to the value of spread. However, if the value of spread
is set to be too large or too small, it may lead to poor accuracy
or overfitting of the network training. The algorithm selection
and tuning are not the main focus of this paper, besides, the
accuracy of GRNN remains stable within a certain range of
the spread value.

Therefore, considering the different characteristics of sam-
ples, the proposed paper provides a simple method to find a
suitable value of spread. Firstly, the initial value of spread
is set as 1 and then reduced by a multiple of 10 to observe
the performance of network. If the training set accuracy is
much higher than the test set, overfitting may have occurred;
secondly, the value of spread is fine-tuned to this order
of magnitude, for instance, the order of magnitude of the
negative power of 10, then the value of spread is gradually
reduced by 0.1 until the test set accuracy starts to show an
upward trend; finally, after comparing the performance of the
indicators, such as accuracy and testing time, which the user is
more concerned about, a spread value within the better range
can be selected.

FIGURE 5. Online tracking of small-signal stability rightmost eigenvalue
flowchart.

III. ONLINE TRACKING FRAMEWORK
This paper proposes a framework for the online tracking of
SSS RE, the flowchart is shown in Fig. 5. The sliding time
window extracts OPs from the data stream and updates from
Wd to Wd+1 in a regular time length as (11):

1t ≥ Tm (11)
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where 1t represents the time gap of last sliding time window
and the current sliding time window. Tm represents the time
threshold of updating the sliding time window.

A. ONLINE DATA MATCHING REFERENCE POINTS
As shown in Fig. 5, the data within one sliding time window
is divided into two parts, one for offline model training model
and the other for online RE tracking. In the offline stage,
RPs are firstly selected using the AP clustering method which
is depicted in the Section II-B. Then, the RPs from the last
sliding time window are compared to the current RPs to
determine whether any networks need not be trained. The
detailed description of this partial update method is given
in the following Section III-B. The remaining RPs and their
surrounding OPs are used to train new GRNNs. These newly
trained networks (network 3 to n in the Fig. 5), along with
suitable networks (network 1 and 2 in the Fig. 5) transferred
from the last sliding time windowWd, are combined to form
the new multi-network for the current sliding time window
for online assessment.

The other OPs of the current sliding timewindowWd+1 are
used for the online prediction of SSS RE, as can be visualized
in Fig. 5. Firstly, it is necessary to determine to which group
the new OPs belong. By calculating the standard Euclidean
distance between new OPs and each RP, the RP with the
minimum distance is identified as the group to which the OPs
belong as (12):

Gj = gj(min([D1,D1, . . . ,Dn])) (12)

where Gj represents the label of the group to which the
j-th OP, the function g(·) represents get the index number,
Di represents the standard Euclidean distance between the
new OP and i-th RP.
Finally, the generator power of the new OP as the input

of the corresponding network, thus, the RE of the OP can be
quickly obtained.

B. ADAPTIVE PARTIAL UPDATE STRATEGY
The proposed model utilizes a regular update strategy which
is inflexible and may consume much unnecessary computa-
tional time due to frequent updates. To address such issues,
an adaptive partial update strategy is introduced in the pro-
posed model is given in Fig. 6. If the input of one network is
similar to another one, then the two networks which trained
by each input and output are also similar, which means that
such samples belong to the same group. Therefore, in order
to better utilize the historical information of the networks, the
proposed adaptive partial update strategy reduces the number
of networks needed to be updated, thus saving computational
resources.

In the Fig. 6, both of the OPs extracted from current and
last sliding time window are divided into several groups by
AP clustering, a group consists of one RP and its surrounding
OPs. To determine if there are any trained networks in the
last window that can be directly transferred into the current
window, the similarity of the current RPs to the last RPs

FIGURE 6. The diagram of adaptive partial update strategy.

is compared. However, conventional similarity comparative
method requires same size, which is contrary to the proposed
approach since the size of each group is normally different,
such as the group R and Q in the Fig. 6. To remove the
limitation, this paper chooses dynamic time warping (DTW)
algorithm, as it is adept in measuring the similarity of two
time series with different length. An example is given in
the Fig. 6 to demonstrate the application of DTW algorithm,
R and Q can be represented as (13)

R = [Pg1,Pg2, · · · ,Pgn]

Q = [Pg1,Pg2, · · · ,Pgk ] (13)

where n and k represent the length of R and Q, respectively.
Pg represents the vector of generator outputs.

A distance matrix of size n × k is used to compare the
similarity of R and Q in Fig. 6. The object of DTW algorithm
is to find an optimal warping path (red squares) that goes
across this matrix as (14):

D(R,Q) =min

√√√√√ J∑
j=1

dj

s.t.


d1 = (1, 1), dJ = (n, k)
dj − dj−1 = (1n, 1k), 0 ≤ 1n ≤ 1,

0 ≤ 1k ≤ 1
(14)

where dj = (n, k)j represents the j-th element of the optimal
warping path, the horizontal and vertical coordinates of dj
represent the corresponding point of R and Q, respectively.
Generally speaking, the constraint conditions mean that the
warping path should subject to the boundary condition, con-
tinuity, and monotonicity.

Dynamic programming algorithm is adopted to solve (14)
as (15):

γ (n, k) = d(n, k)

+ min{γ (n− 1, k − 1), γ (n, k − 1), γ (n− 1, k)}
(15)
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where γ (n, k) represents the cumulative sum of optimal
warping path at element (n, k) in the distance matrix.

Hence, the similarity of R and Q can be calculated accord-
ing to (13)-(15), if the similarity D(R, Q) is smaller than a
threshold Dm, the sample of Q does not require new net-
work training but can adopt the network of R directly as
demonstrated in the Fig. 6. The networks of the other RPs
are able to be determined whether use previous networks
in this way, or if the new networks should be trained as
described in Section II-C. The adaptive partial update strategy
is able to reduce the unnecessary updates, which can save
the computational storage and time in the proposed online
framework.

IV. CASE STUDIES
Two typical systems with different scales are inves-
tigated in this paper: WSCC 9-bus test system with
9 buses, 3 generators, 9 transmission lines, all generators
use 4th-order model with 4th-order excitation system. IEEE
118-bus system with 118 buses, 54 generators, 186 transmis-
sion lines, all generators use 6th-order model with 4th-order
excitation system. The polynomial loads are used in both test
systems. Power SystemAnalysis Toolbox (PSAT) [26] is used
for data generation. All the tests are performed on a computer
with Intel Core i3-8100 3.6GHz CPU, 16GB RAM.

The baseline steady-state power flow data of the test sys-
tems are taken fromMATPOWER [27]. Based on these base-
line data, one-year typical daily load curves (data step size is
15 minutes) are used to generate samples of case studies. The
load types of the proposed paper include the constant power
load and mixed load (mixture of constant power, constant
current, and constant admittance load) are shown in (16)
and (17), respectively:

P′
= CP

Q′
= CQ (16)

P′′
= Ap(Un/UN )2 + Bp(Un/UN ) + CP

Q′′
= AQ(Un/UN )2 + BQ(Un/UN ) + CQ (17)

wherePn,Qn, andUn represent the constant loads and voltage
of n-th load bus, respectively. UN represents the nominal
voltage. Ap, Bp, and Cp represent the constant admittance
load, constant current load, and constant active power as the
percentage of the active power load, respectively;AQ,BQ, and
CQ have the similar meaning in the reactive power load.

In the proposed paper, each of the aforementioned three
loads accounts for one-third of the mixed load. The proposed
model and case studies are implemented using MATLAB.

A. EFFECTIVENESS OF REFERENCE POINTS
The proposed paper introduces the RPs in multi-network to
enhance the RE tracking accuracy. To validate the effective-
ness of RPs, 10-day generated samples (960 OPs) from the
9-bus test system were utilized, where 7-day data of samples
were used for training and others for testing. Load types
include constant power loads, and partial constant power

loads replaced by mixed loads. In the constant power load
scenario, 8 RPs are selected in this case study by the method
based on AP clustering as demonstrated in Fig. 7, where
the surrounding OPs are linked to the corresponding RPs
(triangle mark) within their groups.

FIGURE 7. The reference points selected by the proposed method in
9-bus test system.

After selecting the RPs, the network of each group is
trained by the corresponding RPs and the surrounding OPs.
Table 3 lists the performance of different methods to vali-
date the effectiveness of the RP. The REs calculated by the
eigenvalue analysis method are considered as the accurate
REs [26]. A two-layer data-driven method, the combination
of hierarchical clustering (HC) and extreme gradient boosting
(XGBoost), is introduced by [23] to obtain the REs and is
also presented in this case study. In addition, Table 3 gives
the result of the proposed method and the method without
RPs, where the latter method trains one GRNN by using
all the training samples. The proposed paper introduces two
indexes to evaluate the performance of accuracy as (18): the
mean absolute percentage error (Mape) depicts the numerical
error and tracking performance of REs; error of stability (ES)
measures the error of wrong stability assessment, which is the
intolerable error in SSS problems.

Mape = mean|(λra − λrp)/λra| × 100%

ES = Nf /N × 100% (18)

where λra and λrp represent the actual and predicted RE,
respectively. mean(·) is a function that averages the values
inside the parentheses. Nf represents the number of OPs
which the stability is false assessed, N represents the total
number of OPs.

The experimental results presented in Table 3 demonstrate
that all the data-driven methods for obtaining REs require
significantly less testing time compared to the eigenvalue
analysis method, with a minor reduction in accuracy, which
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can be meet the real-time requirements of online RE track-
ing. Additionally, the ES values for all approaches are 0,
which guarantees that the stability of the SSS will not be
wrong. Although the accuracy of HC + XGBoost method
is only slightly lower than the proposed model, its running
time is nearly 4 times that of the latter, the reason may
be that the parameters of ensemble learning is more than
GRNN. The method without RPs takes less time than the
proposed method, its accuracy is 1.85% lower in the constant
power load scenario. Moreover, the accuracy performance
of mixed load is worse than constant power load, obviously,
when the load type is more complex, the ability of the data-
driven model to establish the mapping of input and output
diminishes. These results validate that the RPs do help to
improve the performance of fast RE tracking.

TABLE 3. The effectiveness of reference points in 9-bus test system.

B. COMPARISON OF DIFFERENT NUMBER OF
REFERENCE POINTS
As previously mentioned, the number of RPs in the proposed
method has significant impact on its performance. However,
determining the number of RPs in advance is inflexible and
imprecise, especially in the online data stream. To demon-
strate reasonableness of using AP clustering in this paper,
a statistical analysis to the different number of RPs is dis-
played in this case study. The same samples from the pre-
vious case study are utilized, and a benchmark method uses
the classical clustering method, k-means clustering, to fix
the number of RPs in advance. The results of this case are
presented in Fig. 8.

It can be seen from Fig. 8 that the more RPs, the longer
the test time (the bar chart) and the smaller error (the line
chart) of the model. Taking into account the aspects of test
time and accuracy, the models with 7 and 8 RPs have better
performance when using conventional clustering. To make a
clearer comparison, the result from the previous case study
using AP clustering is added in the Fig. 8 (two triangular

FIGURE 8. The benchmark performance of different number of reference
points by using classical cluster method.

markers in the circle). The proposed paper regards 8 is the
optimal number of RPs, which aligns with the conclusion of
the k-means clustering. The conventional cluster approaches
typically faster than graph cluster approaches, so the test time
of the proposedmethod is slightly longer than that of k-means
clustering. However, the error of the former is smaller than the
latter. In practical applications, the minor difference in time
performance can be considered negligible, and the proposed
reference point selection method offers greater flexibility in
online RE tracking.

C. PERFORMANCE OF ONLINE TRACKING
The proposed method for online tracking of SSS RE is vali-
dated on a larger scale test system, the 118-bus system, using
one-year generated samples where the load type scenario
is mixed loads. The length of the sliding time window for
the regular updating is 10 days, of which 8 days of data
are used for offline training, the rest for online assessment.
The RE tracking performance is demonstrated in Fig. 9 for
a given day in the test dataset. The proposed method shows
a RE trajectory that is very close to the actual value, out-
performing the method without RPs, especially at the catas-
trophe point indicated by the ellipse in Fig. 9. The method
without RPs assumes that REs change slowly between adja-
cent OPs, thus fails to capture the sudden changes in the
RE trajectory. In fact, the REs sometimes have irregular
movement due to the strong nonlinearity, so the introduc-
tion of RPs is effective in improving the performance of
REs tracking.

The change of the error over one year is illustrated in the
Fig. 10. To make it clearer, the average daily error is pre-
sented, with the proposed method consistently outperforming
the data-driven method without RPs. The frequency of error
exceeding 0.05 is also displayed, indicating that the proposed
method has almost twice as many days with an error of
less than 0.05 as the method without RPs. The above results
demonstrate that the method proposed in this paper can better
control the single-day error to a low level. Overall, RPs do
help to reduce the error of online tracking for RE.

40476 VOLUME 11, 2023



X. Cun et al.: Online Tracking of Small-Signal Stability Rightmost Eigenvalue

FIGURE 9. Rightmost eigenvalue online tracking performance in a
given day.

TABLE 4. The effectiveness of adaptive partial update strategy in 118-bus
system.

FIGURE 10. Error comparison between data-driven method with and
without reference points.

D. PERFORMANCE OF ADAPTIVE PARTIAL
UPDATE STRATEGY
To illustrate the effectiveness of the proposed adaptive partial
update strategy, Table 4 brings the comparison between the
model of updating all the networks and partial update net-
works in each updating period, by adopting the same samples
in the last case study of 118-bus test system.

There are two error indexes and three indexes about
time are listed in Table 4. Compared to the model that
updates all networks, the total time performance of the par-
tial updating networks is greatly reduced, despite slightly

decreased accuracy. Notably, the network training time in all
the updating periods of partial model is 42.34% less than that
of the model that updates all networks. Although the partial
model takes a little time to calculate the similarity of adjacent
RPs, the total running time of former is also 10.23% less
than latter. Hence, the adaptive partial update model based
on DTW algorithm is effective in avoiding the unnecessary
network updating during the regular updates and savingmuch
computation time for the online tracking framework in the
proposed paper.

V. CONCLUSION
This paper brings an accurate online tracking framework for
SSS RE based on data-driven. The main finding of this study
is that the overall performance of multiple networks repre-
senting different characteristics of given samples is better
than a single network using all the data, especially at OPs
where the RE has sudden changes. This paper identifies the
central OP of such network as RP, which is crucial to the per-
formance of the proposed method. To determine the RPs and
its surrounding OPs, the proposed method adopts a flexible
approach, AP clustering. The multi-network of the proposed
paper consists of networks trained by different groups, then
the REs of online OPs are obtained by the corresponding
networks. Although the online framework of this paper is
regular updating, a partial update strategy is proposed to
relieve the stress of refreshing all the networks in each sliding
time window. The DTW algorithm is used to check whether
any current RPs can directly use the networks in the previous
time slidingwindow. The effectiveness of the proposedmodel
is illustrated by using 9-bus test system and 118-bus system.
The small-scale system verifies the determination method of
RPs is reasonable in this paper, in addition, shows that using
RPs improves the accuracy by nearly 2% and 2.75% com-
pared to methods without them in constant power load type
and mixed load type scenarios, respectively. The online case
studies are demonstrated in the larger test system, validating
that this work does improve the accuracy of RE tracking with
total running time saving of 10%. Furthermore, the proposed
model reduces the frequency of large errors occurring in a
single day by 40% and captures sudden changes in RE. The
future works of authors will focus on the impact of renewable
energy uncertainty on SSS assessment, building upon the
foundations established in this paper.

REFERENCES
[1] C. Canizares, T. Fernandes, E. Geraldi, L. Gerin-Lajoie, M. Gibbard,

I. Hiskens, J. Kersulis, R. Kuiava, L. Lima, F. DeMarco, N. Martins,
B. C. Pal, A. Piardi, R. Ramos, J. dos Santos, D. Silva, A. K. Singh,
B. Tamimi, and D. Vowles, ‘‘Benchmark models for the analysis and
control of small-signal oscillatory dynamics in power systems,’’ IEEE
Trans. Power Syst., vol. 32, no. 1, pp. 715–722, Jan. 2017.

[2] A. T. Saric and A. M. Stankovic, ‘‘Rapid small-signal stability assessment
and enhancement following changes in topology,’’ IEEE Trans. Power
Syst., vol. 30, no. 3, pp. 1155–1163, May 2015.

[3] C. Li, Y. Cao, C. Duan, and K. Zhang, ‘‘A feasible delay margin sensitivity
analysis method,’’ IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2713–2716,
May 2021.

VOLUME 11, 2023 40477



X. Cun et al.: Online Tracking of Small-Signal Stability Rightmost Eigenvalue

[4] R. Krishan and A. Verma, ‘‘Assessment and enhancement of Hopf bifurca-
tion stability margin in uncertain power systems,’’ Electr. Power Syst. Res.,
vol. 206, May 2022, Art. no. 107783.

[5] Y. Li, G. Geng, Q. Jiang, W. Li, and X. Shi, ‘‘A sequential approach for
small signal stability enhancement with optimizing generation cost,’’ IEEE
Trans. Power Syst., vol. 34, no. 6, pp. 4828–4836, Nov. 2019.

[6] J. Rommes, N. Martins, and F. D. Freitas, ‘‘Computing rightmost eigen-
values for small-signal stability assessment of large-scale power systems,’’
IEEE Trans. Power Syst., vol. 25, no. 2, pp. 929–938, May 2010.

[7] S. Gao, Z. Du, and Y. Li, ‘‘An improved contour-integral algorithm for
calculating critical eigenvalues of power systems based on accurate number
counting,’’ IEEE Trans. Power Syst., vol. 38, no. 1, pp. 549–558, Jan. 2023.

[8] C. Li, J. Wu, C. Duan, and Z. Du, ‘‘Development of an effective model
for computing rightmost eigenvalues of power systems with inclusion of
time delays,’’ IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4216–4227,
Nov. 2019.

[9] T. Y. Ji, X. Zheng, W. B. Lin, and L. L. Zhang, ‘‘Low frequency oscillation
modal identification based on blind source separation considering uncer-
tainty of modal parameters,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023,
Art. no. 108908.

[10] J. G. Philip, Y. Yang, and J. Jung, ‘‘Identification of power system oscil-
lation modes using empirical wavelet transform and Yoshida–Bertecco
algorithm,’’ IEEE Access, vol. 10, pp. 48927–48935, 2022.

[11] S. A. N. Sarmadi and V. Venkatasubramanian, ‘‘Electromechanical mode
estimation using recursive adaptive stochastic subspace identification,’’
IEEE Trans. Power Syst., vol. 29, no. 1, pp. 349–358, Jan. 2014.

[12] T. Wang, T. Bi, H. Wang, and J. Liu, ‘‘Decision tree based online stability
assessment scheme for power systems with renewable generations,’’ CSEE
J. Power Energy Syst., vol. 1, no. 2, pp. 53–61, Jun. 2015.

[13] F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ‘‘Efficient
database generation for data-driven security assessment of power sys-
tems,’’ IEEE Trans. Power Syst., vol. 35, no. 1, pp. 30–41, Jan. 2020.

[14] D. Shetty and N. Prabhu, ‘‘Performance analysis of data-driven tech-
niques for detection and identification of low frequency oscillations in
multimachine power system,’’ IEEE Access, vol. 9, pp. 133416–133437,
2021.

[15] T. Jiang, Y. Mu, H. Jia, N. Lu, H. Yuan, J. Yan, and W. Li, ‘‘A novel
dominant mode estimation method for analyzing inter-area oscillation in
China Southern power grid,’’ IEEE Trans. Smart Grid, vol. 7, no. 5,
pp. 2549–2560, Sep. 2016.

[16] J. Zhang, C. Y. Chung, Z. Wang, and X. Zheng, ‘‘Instantaneous electrome-
chanical dynamics monitoring in smart transmission grid,’’ IEEE Trans.
Ind. Informat., vol. 12, no. 2, pp. 844–852, Apr. 2016.

[17] S. Liu, D. Mao, T. Xue, F. Tang, X. Li, L. Liu, R. Shi, S. Liao, and
M. Zhang, ‘‘A data-driven approach for online inter-area oscillatory stabil-
ity assessment of power systems based on random bits forest considering
feature redundancy,’’ Energies, vol. 14, no. 6, p. 1641, Mar. 2021.

[18] S. K. Azman, Y. J. Isbeih, M. S. E. Moursi, and K. Elbassioni, ‘‘A
unified online deep learning prediction model for small signal and tran-
sient stability,’’ IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4585–4598,
Nov. 2020.

[19] S. P. Teeuwsen, I. Erlich, M. A. El-Sharkawi, and U. Bachmann, ‘‘Genetic
algorithm and decision tree-based oscillatory stability assessment,’’ IEEE
Trans. Power Syst., vol. 21, no. 2, pp. 746–753, May 2006.

[20] J. Liu, Z. Yang, J. Zhao, J. Yu, B. Tan, and W. Li, ‘‘Explicit data-driven
small-signal stability constrained optimal power flow,’’ IEEE Trans. Power
Syst., vol. 37, no. 5, pp. 3726–3737, Sep. 2022.

[21] R. Liu, G. Verbic, J. Ma, and D. J. Hill, ‘‘Fast stability scanning for
future grid scenario analysis,’’ IEEE Trans. Power Syst., vol. 33, no. 1,
pp. 514–524, Jan. 2018.

[22] S. Gurung, S. Naetiladdanon, and A. Sangswang, ‘‘A surrogate based
computationally efficient method to coordinate damping controllers for
enhancement of probabilistic small-signal stability,’’ IEEE Access, vol. 9,
pp. 32882–32896, 2021.

[23] S. Asvapoositkul, ‘‘Data-driven small-disturbance stability assessment and
preventive control in mixed ACDC low inertia power systems,’’ Ph.D.
dissertation, Dept. Elect. Eng., Manchester Univ., Manchester, U.K., 2021.

[24] D. Yang, B. Wang, J. Ma, Z. Chen, G. Cai, Z. Sun, and L. Wang,
‘‘Ambient-data-driven modal-identification-based approach to estimate
the inertia of an interconnected power system,’’ IEEE Access, vol. 8,
pp. 118799–118807, 2020.

[25] B. J. Frey and D. Dueck, ‘‘Clustering by passing messages between data
points,’’ Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[26] F. Milano. Power System Analysis Toolbox (PSAT). Accessed: Jun. 6, 2022.
[Online]. Available: http://faraday1.ucd.ie/index.html

[27] D. Z. Ray and E.M. Carlos.AMATLABPower System Simulation Package.
Accessed: Jan. 12, 2022. [Online]. Available: https://matpower.org/

XIN CUN received the B.S. degree in electri-
cal engineering from Southwest Jiaotong Uni-
versity, China, in 2015, and the M.Sc. degree
in electrical engineering from the School of
Automation, Guangdong University of Technol-
ogy, Guangzhou, China, in 2019. She is currently
pursuing the Ph.D. degree in electrical engineering
with Zhejiang University, Hangzhou, China.

In 2017, she was a Visiting Student with the
Department of Engineering, University of Sannio,

Benevento, Italy. Her research interests include small-signal stability, elec-
tricity market load forecasting, and machine learning.

XUNJUN CHEN (Member, IEEE) received the
B.S. degree in electrical engineering and its
automation and the M.S. degree in electrical
engineering from Southwest Jiaotong University,
Chengdu, China, in 2018 and 2021, respectively.
He is currently pursuing the Ph.D. degree in power
engineering with Zhejiang University, Hangzhou,
China.

From 2017 to 2018, he was an Exchange Stu-
dent sponsored by the China Scholarship Council

with the Department of Electrical and Computer Engineering, Technical
University of Munich, Munich, Germany. His research interests include the
modeling of power electronics-based power systems and energy storage
systems.

GUANGCHAO GENG (Senior Member, IEEE)
received the B.S. and Ph.D. degrees in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2009 and 2014, respectively.

From 2012 to 2013, he was a Visiting Student
with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA,
USA. From 2014 to 2017, he was a Postdoctoral
Fellow with the College of Control Science and
Engineering, Zhejiang University, and the Depart-

ment of Electrical andComputer Engineering, University of Alberta, Edmon-
ton, AB, Canada. From 2017 to 2019, he was a Research Assistant Professor
with the College of Electrical Engineering, Zhejiang University, where he is
currently an Associate Professor. His research interests include power non-
intrusive sensing technology, data analytics in power systems, and power
system stability and control.

QUANYUAN JIANG (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 1997, 2000, and 2003, respectively.

From 2006 to 2008, he was a Visiting Associate
Professor with the School of Electrical and Com-
puter Engineering, Cornell University, Ithaca, NY,
USA. He is currently a Professor with the Col-
lege of Electrical Engineering and an Academic

Dean of the Graduate School, Zhejiang University, Hangzhou, China. His
research interests include power system stability and control, applications
of energy storage systems, and high-performance computing technique in
power systems.

40478 VOLUME 11, 2023


