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ABSTRACT Unmanned aerial vehicles (drones) have gained a high level of practical confidence due to their
ease of use in different applications as well as their advantages such as flexibility, ease of operation and low
cost. In this paper, we propose the use of drones equipped with onboard sensors for monitoring the status
of electrical distribution networks. Specifically, we formulate a multi-objective optimization approach for
distribution networks’ situational awareness, which aims to minimize two conflicting objectives. These are
the total annual cost and loss of observability. The proposed approach decides on the optimal number of
drones, their batteries, the nodes to be visited, and the trip plan. In order to obtain a set of Pareto solutions,
we utilize the non-dominated sorting genetic algorithm (NDSGA) in conjunction with branch-and-bound
algorithm to minimize both objectives. To validate the performance of the proposed approach, we applied it
to a practical distribution system under different scenarios of monitoring frequency and working hours. The
obtained results prove the effectiveness of the proposed approach.

INDEX TERMS Distribution network, drones, power source sizing, trip planning, observability, non-
dominated sorting genetic algorithms.

I. INTRODUCTION
Distribution networks status monitoring is very important for
electric power utilities to ensure reliability, customer satisfac-
tion, and operating cost reduction. It is estimated that utilities
in the US lose up to 3.5% of their annual revenue due to
electricity theft [1]. Therefore, it is crucial to monitor the
network continuously. Although the transmission system is
usually fullymonitored, it is only possible to partiallymonitor
the distribution one. This is because it is financially infeasible
to fully monitor it due to the associated large number of nodes
and lines when compared to the transmission system. In fact,
some distribution systems have as low as only 0.1% of their
nodes monitored.
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The status of the distribution system is monitored
by installing Supervisory Control and Data Acquisition
(SCADA) metering devices. As mentioned earlier, monitor-
ing all nodes is very expensive and only a few SCADA
units are installed on certain limited nodes in the system.
Consequently, the loss of system observability (the ability
to observe the power lines voltages, currents, and powers)
is inevitable. These nodes need to be carefully selected to
maximize the observability of the system as much as pos-
sible and to monitor different parts of the system [2], [3].
Although some standards are available for the communica-
tion and cybersecurity requirements in substations, such as
IEC 61850 [4], there are no similar ones for the required
suitable number of monitoring devices in distribution systems
nor for their placement. Hence, several approaches were pro-
posed in the literature to optimally position these devices as
in [5], for example.
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To address the main challenge of monitoring the distribu-
tion networks at a proper observability level with minimum
budget, we propose using drones equipped with sensors for
monitoring several locations at different periods of time. The
monitoring can be done by hooking sensors temporarily to the
line to allow measuring the voltages and currents. Thus, there
is no need to place a metering unit at each bus. However, the
drawback of the proposed solution is that monitoring is for a
short period of time and not simultaneously at different buses.
In spite of that, this could be satisfactory for distribution
systems operators to know the status of the system during
peak demand hours, which is the most critical period of
the day. This will help in identifying information related to
system reliability, power quality, and electricity theft, which
we will call situational awareness.

More specifically, in this paper, we present a new multi-
objective optimization framework to optimize the number of
drones and their battery sizes needed for monitoring distribu-
tion networks. The proposed framework also determines their
optimal charging locations, trip planning, and the number
of buses that have to be visited, as well as their locations.
It is worth mentioning that the proposed work can only be
applied to rural and sub-urban systems with overhead lines
due to the nature of the sensing process involved. In addition,
the proposed methodology requires steady hovering, which
can only be performed using multi-rotor drones, such as
quadcopters. The objectives of the proposed framework are
the total annual cost and the loss of observability, which are
simultaneously minimized to create a set of Pareto optimal
solutions, which the distribution network operator can choose
from.

The contributions of this work can thus be summarized as
follows:

• Formulating a multi-objective optimization problem to
minimize two conflicting objectives, namely the cost
and the loss of observability in the system using a non-
dominating sorting genetic algorithm (NDSGA-II).

• Proposing a new drone-based approach for monitor-
ing the distribution networks by solving the formulated
problem.

• Two different cases are studied taking into consideration
the effect of observing recurrence and the effect of the
number of daily working hours.

• Validating the performance of the proposed framework
using an extensive set of experiments using the data of a
practical distribution system.

The rest of this paper is organized as follows. An overview
of relatedwork is presented in Section II. The systemmodel is
discussed in Section III. In Section IV, we present the multi-
objective problem formulation aiming at simultaneouslymin-
imizing the total annual cost for all trips and the loss of
observability. In Section V, we present the proposed joint
algorithm for solving our problem. Simulation results are
then presented in Section VI. The paper is finally concluded
in Section VII.

II. RELATED WORK
In this section, we review the most relevant works in the
literature related to monitoring power lines. The first set
of works addresses optimizing the locations of monitoring
units to achieve multiple goals. For example, an alloca-
tion model for monitoring distribution systems where non-
technical losses are the main reason for voltage sags was
suggested in [6] based on the P-median model. After obtain-
ing the monitors’ optimal locations, the modified P-median
model was enforced to obtain complete observability in the
system. Also, in [7], genetic algorithms and fuzzy set pro-
gramming were applied in different types of short circuits
to solve the allocation problem of power quality monitors
to detect the occurrence of voltage sags and swells. Similar
to the above works, the authors of [8] suggested a branch-
and-bound programming algorithm to optimize the locations
of power quality meters, which were used to monitor the
voltage sags in a large transmission system. Along the same
lines, the work in [9] minimized the number of necessary
measuring devices and optimized their locations in a process
based on correlation and regression analysis of simulated
measurements time series. In [10], the authors optimized the
location of meters while guaranteeing the observability of
the system in the case of possible single emergency and loss
of single measurements. An allocation scheme that aims at
finding the minimum number of locations of the monitoring
equipment was suggested in [11] to maximize a detection
capability index. The problem formulation is based on char-
acterizing the system in terms of the most likely short circuits
that could occur in the system and was solved by using
Genetic Algorithms (GA). The work in [12] optimized the
power quality monitors (PQM) and considered both the fault
location and the observability of the system constraints. The
authors suggested a local search algorithm to solve the prob-
lem. Also, the authors in [13] proposed a methodology based
on Kirchhoff’s current and voltage laws and the branch-and-
bound algorithm to optimize the location of power quality
meters in the IEEE 14-bus system while achieving maximum
observability.

The second set of works addresses cost minimization by
optimizing the monitoring devices locations. In particular,
an approach for allocating monitoring devices was stud-
ied in [14] to minimize the total cost while guaranteeing
total observability. The problem was formulated using binary
integer programming and solved by applying the branch-and-
boundmethod.Moreover, the total cost of themonitoring sys-
tem was minimized by optimizing the number and locations
of monitoring devices with observability constraints in [15].
Integer programming was used for solving the proposed
optimization problem and the formulation of the constraints
did not require any knowledge about generation or loads in
the system. Also, an integer linear programming algorithm
was proposed in [16] for reducing the cost of the distributed
monitoring system with data redundancy constraints by opti-
mizing monitors allocations. Furthermore, the monitoring
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system cost was minimized in [17] by optimizing the number
of power quality monitors. Also, an optimization allocation
problem of power quality monitors was formulated in [18]
as a non-linear integer problem for minimizing the total
cost while maximizing the redundancy of measurements.
The optimization problem was solved by compact genetic
algorithm (CGA). The branch-and-bound method was sug-
gested to minimize the total annual cost and guarantee total
observability in the Brazilian Electrical Transmission and
Distribution Systems in [14]. The work in [19] formulated the
optimum allocation problem of transmission systems moni-
tors as a multi-objective problem to acquire the lowest cost
solution with the highest data redundancy. The formulated
problem was solved by using an extended compact genetic
algorithm.

The third set of works focus on the use of drones to
establish monitoring systems. Lots of works in the literature
have already inspected this idea but in different applications.
For example, the work in [20] collected all information about
using drones outfitted with sensors in the field of chemical
sensing. Also, the authors in [21] studied the use of drones for
sensing the traffic speed, ozone, carbon dioxide, temperature,
and humidity levels.

Since the proposed framework in this paper is based on
multi-objective optimization, we now focus on works in the
literature that tackled similar frameworks and discuss how
the problem was solved. In particular, the authors in [22]
combined differential evolution (DE) with particle swarm
optimization (PSO) algorithm in a hybrid multi-objective
algorithm with no guarantee of the closeness of this solution
to the true Pareto-Optimal frontier. Also, in [23], the authors
suggested the use of the non-dominating sorting genetic algo-
rithm (NDSGA). An adjusted version of an effective ant
colony optimization (ACO) was proposed in [24] for solv-
ing a multi-objective resource allocation problem. Finally,
a multi-objective evolutionary algorithm (MOEA) was com-
bined with the multi-objective computing budget allocation
(MOCBA) method to optimize a multi-objective aircraft
spare parts allocation problem in [25].

As the main goal of this work is to increase system observ-
ability at a minimum cost, we propose a multi-objective
genetic algorithm to get a set of Pareto optimal solutions for
minimizing the total annual cost and the loss of observability.
In particular, the number of drones, their proper batteries,
starting points, which also act as their charging pad locations,
and trip planning are jointly optimized as will be detailed in
the sequel.

III. SYSTEM MODEL
We consider a system with d ∈ U = {1, 2, . . . ,U} multi-
rotor drones equipped with sensors for monitoring the over-
head lines, where U is the maximum number of available
drones, and there is a set of batteries B = {1, 2, . . . ,B}

from which each drone is assigned only one. The power
distribution system has N buses that are labelled according
to the set N = {1, 2, . . . ,N }. Let Ci,j,p represent a binary

variable that indicates whether or not a connection between
bus i ∈ N and bus j ∈ N for phase p exists. For i = j,
Ci,j,p = 1, and for i ̸= j, if there is a connection between
buses i and j; then, Ci,j,p = 1, otherwise, Ci,j,p = 0. Also, let
the coordinates of the nth bus be denoted by qn ∈ R2×1. Now,
each bus i ∈ N has a number of connections ni given by

ni =

∑
j̸=i

∑
p∈P

Ci,j,p, ∀i ∈ N, (1)

where P = {1, 2, 3} is the set of phases. The system lines are
monitored in a number of trips T, where T ≤ N . Moreover,
we assume that each bus should be visited once during the
monitoring period T, and the drone hovers over each connec-
tion of the bus for a certain time th to monitor the overhead
connections. Consequently, the drone’s hovering time T sensi
over bus i is simply given by

T sensi = thni. (2)

Also, let the starting point of the d th drone be denoted
by gd , which is assumed to have coordinates qgd ∈ R2×1.
Finally, we define the subset of buses visited by drone d as
Nd = N ∪ {gd } .

The number of trips for each drone will clearly depend
on the available charge in the drone’s battery, the distance
between buses, the number of connections to each bus, and
the number of buses. In the following, we elaborate on the
two conflicting objectives that will be tackled in the multi-
objective optimization formulation.

A. SYSTEM OBSERVABILITY
Various degrees of system observability can be achieved
depending on the location where the drone hovers for moni-
toring a certain bus. One of the greatest challenges that face
the system designers is obtaining 100% system observability.
Based on that, observability is defined as the percentage of
the fully observed states in the system [26], i.e.,∑

s∈S Ws

O
× 100%, (3)

where S = {1, 2, . . . ,O} is the set of all possible observable
states, O represents the total number of observable states
andWs represents a binary variable that indicates whether or
not state s ∈ S is observed. For an unbalanced system, the
phase voltages at each bus and the phase currents in the lines
connected to the bus are considered as separate states because
each bus may not have all three phases connected. Hence, the
total number of observable states is calculated as follows:

O = OI + OV , (4)

where OI and OV are the number of current and voltage
observable states, respectively. We define SV , SI ⊂ S as
the subsets of voltage and current states, respectively. It is
worth mentioning that there are up to 3 voltage states in each
bus, and up to 3 observable current states between every two
connected buses.

VOLUME 11, 2023 41417



H. Shahin et al.: Multi-Objective Situational Awareness Approach for Distribution Networks

In an unbalanced system, some buses may not have all the
three phases, so for any bus i in an unbalanced system, the
three elements Ci,j,p, ∀i = j, p ∈ P do not have to be all
ones. Hence, the number of voltage states OV is calculated as
follows

OV =

∑
i∈N

∑
p∈P

Ci,j,p, (5)

and the number of the current states OI is calculated by
finding the difference between the sum of all connections and
OV then multiplying the result by 0.5, i.e.,

OI =

(∑
i∈N

∑
j∈N

∑
p∈P Ci,j,p − OV

)
2

. (6)

Ohm’s Law and Kirchhoff’s Current Law (KCL) can be used
to find the relationships between the nodes and the observ-
ability [16]. In particular, if the voltage and current are known
at a certain end of one connection, the voltage at another end
of this connection can be calculated. It is worth mentioning
that the observability variable in (3) is calculated as

Wi = min
(
WCN
i , 1

)
, ∀s ∈ S, (7)

where the number 1 indicates that the binary observability
variable is set to 1 for any value more than 1, as redundancy
in readings should not be considered and WCN

i is a simple
observability variable calculated as follows:

WCN
i = As,i × Zi, (8)

where Zi ∈ {0, 1} , ∀i ∈ N with Zi = 1 indicating that bus
i is visited by a drone and Zi= 0 otherwise, and As,i is the
connectivity parameter of the system calculated by leveraging
Ohm’s law, which states that if the voltage and current at
a certain bus are observable, the voltages at the other buses
connected to this bus are also observable. Also, if the voltages
at two buses are observable, the current flowing between them
is observable too.

B. OVERALL COST
The cost associated with the considered system is that of
the initial investment, which is assumed to be paid annually
in addition to the operating cost of all trips per year. The
former is basically the sum of the annualized capital cost of
the drones and their associated wireless charging pads as well
as their batteries while the latter represents the expenditures
related to the consumed energy in flying and hovering a
drone. The details of the costs are explained in the next
section along with the problem formulation.

IV. PROBLEM FORMULATION
As mentioned earlier, the goal in this paper is to minimize the
total annual cost denoted by f1 of using drones for monitoring
(including both the capital cost of the chosen set of drones and
their associated batteries in addition to the operating cost of
all the trips per year due to the drones’ batteries recharging)
as well as to minimize the loss of observability denoted by f2,

simultaneously. This is achieved via the proper choice of the
number of drones, their batteries as well as proper choice of
the drones’ starting points and trip planning, in addition to
finding the optimal number of buses to be visited by the drone
and their locations. The optimization problem thus submits
as a multi-objective optimal allocation approach, where the
problem formulation can be defined as:

min
X,Y,Z,G

(f1, f2)

f1 =
∑
d∈U

Xd

(
costd +

∑
b∈B

Yb,d
(
costb + C total

b,d

))
f2 =

(
1 −

∑
s∈S Wi
O

)
× 100%


(9)

where Xd , d ∈ U represents a binary decision variable that
indicates whether or not drone d is selected and X =

{X1,X2, . . . ,XU }. Also, Yb,d , b ∈ B, d ∈ U represents
a binary decision variable that indicates whether battery b
is associated with drone d and Y = {Y1,d ,Y2,d , . . . ,YB,U .
Moreover, Z =

{
Zi,j,t,d

}
, where i, j ∈ Nd ⊂ N, t ∈ T =

{1, 2, . . . ,T }, d ∈ U with Zi,j,t,d ∈ {0, 1} being another
binary decision variable, which indicates that drone d travels
from bus i to j as part of trip t . Finally, G represents the set
of all candidate locations of the buses, which could act as
possible starting points for any drone.

In (9), costd and costb are the annualized capital cost of
the d th drone and the bth battery, respectively. The first is
calculated as follows:

costd =

(
r (1 + r)L

year
d

(1 + r)L
year
d − 1

)
× prd , (10)

where prd and the quantity inside the parentheses represent
the price and the capital recovery factor (CRF) of drone d and
its associated wireless charging pad, respectively. The CRF
converts the capital cost to annual payments at a discount rate
r , where Lyeard is the lifetime of drone d in years [27]. The
annualized capital cost of the battery costb can be calculated
as in (10) but using prb instead of prd and Lyearb,d instead
of Lyeard as the battery has a shorter lifetime (that depends
on the number of charging cycles) compared to the drone.
In addition, the lifetime of battery b when associated with
drone d in years, Lyearb,d , can be calculated as:

Lyearb,d = min

(
Lcycleb

Ccycle
b,d

,Lmax

)
, (11)

where Lmax is the chemical lifetime of any battery in years,
which is independent of the number of recharging cycles
and Lcycleb represents the maximum number of recharging
cycles of battery b (the battery discharges during each trip and
needs to recharge afterwards). Finally,Ccycle

b,d is the number of
recharging cycles of battery b when associated with drone d
per year, which, in turn, is given by

Ccycle
b,d =

Eyearb,d

ϵ × Emaxb
, (12)
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where the denominator term in (12) represents the actual
useful energy of a battery with ϵ being the maximum depth
of discharge and Emaxb = Cb × Vb, is the battery capacity
(in Wh) where Vb is its voltage rating and Cb is its capacity in
Ah. Furthermore, Eyearb,d is the consumed energy per one year
(in Wh), and is calculated as follows:

Eyearb,d = ω × Emonb,d , (13)

where ω is the frequency of the monitoring, and Emonb,d is the
consumed energy per one cycle by drone d when battery b is
associated with it.

Also, in (9), C total
b,d is the annual operating cost per all trips

when battery b is associated with drone d is equal to the
battery charging cost, and is calculated as follows:

C total
b,d = µ × Echargb,d , (14)

where Echargb,d =
Eyearb,d

ϕ
is the consumed charging energy, µ is

the price per Wh in dollars and ϕ is the discharging/charging
efficiency. Now, we are ready to describe the different con-
straints needed to complete the formulation of the optimiza-
tion problem in (9).

A. TRIP PLANNING CONSTRAINTS
For any drone d and for any bus i that is visited in trip t , the
total number of all outgoing trips to any other point needs to
be equal 1. In addition, for any bus j, it is necessary to ensure
that each point is visited only once in all trips and is visited
by only one drone, so the total number of incoming trips from
any other point needs to be equal to 1. These constraints can
be formulated, respectively, as∑

j∈Nd

Zi,j,t,d = 1, ∀i ̸= gd , ∀t, ∀d, (15)

∑
i∈Nd

Zi,j,t,d = 1, ∀j ̸= gd , ∀t, ∀d . (16)

It is important to note, however, that the constraints in (15)
and (16) do not apply to the starting point gd ∈ G of any drone
d . Also, since every feasible solution must contain only one
closed sequence of visited points so, in each trip t , the starting
point gd for the d th drone needs to have only one outgoing
and only one ingoing connections. This is represented by the
following two constraints:

N∑
i∈N

Zi,gd ,t,d = 1,∀t, ∀d, (17)

N∑
j∈N

Zgd ,j,t,d = 1,∀t, ∀d . (18)

Now, based on the above definitions, the total flying time for
drone d during trip t is equal to

T flyingt,d =

∑N
i=1

∑N
j=1

∥∥qi − qj
∥∥Zi,j,t,d

V fwd
d

, ∀i, j ∈ Nd , (19)

where V fwd
d is the speed of drone d in the horizontal motion

between any two buses in km/h and
∥∥qi − qj

∥∥ is the distance
between buses i and j in km with ∥·∥ denoting the Euclidean
distance. Furthermore, the total hovering time of drone d
during trip t is equal to the summation of all hovering times
during this trip, i.e.,

T senst,d =

∑
i∈Nd

∑
j∈Nd

Zi,j,t,d

T sens, ∀t, ∀d, (20)

where the quantity inside the parentheses represents the total
number of buses visited in trip t by drone d. Finally, the drone
does not work all day, but it works only for a certain time
because it needs charging, and the city municipality might
have limitations on drones’ operation. This is in addition to
the fact that the utility has specific working hours. Hence, one
needs to add the following constraint:

T flyingt,d + T senst,d ≤ τd , ∀d, ∀t, (21)

where τd is the maximum number of working hours for the
drone.

B. NUMBER OF DRONES AND THEIR POWER SOURCE
SIZING CONSTRAINTS
Clearly, the battery selected by any drone must have enough
energy to enable the drone to cover the distance between its
starting point and the furthest point in the transmission line
because only one battery will be associated with each drone.
This clearly leads to the following two constraints:∑

b∈B

Yb,d = Xd , ∀d . (22)∑
b∈B

Yb,d ldb ≥ 2lgd ,n, ∀n ∈ N, ∀d, (23)

where ldb is the maximum distance covered by drone d when
equipped with battery b, ldg,n is the distance between the
starting point of drone d and any bus n that needs to be visited,
and the factor 2 is included to ensure that the drone can come
back again to its starting point for recharging after finishing
its trip.

Next, since the discharge power limit of the drone’s battery
should be greater than the maximum consumed power of the
battery during either hovering and power quality monitor-
ing or forward motion, the following constraint needs to be
included:∑

b∈B

Yb,dPmax
b ≥ max

(
Pconsumedb,d

)
, ∀d, (24)

where Pmax
b = Emaxb × Crate

b , is the maximum discharge
of battery b, and Crate

b is the C-rate of battery b in h−1.
On the other hand, Pconsumedb,d is the power consumed during
the hovering or flying of drone d when powered by battery b
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and is calculated as:

PHoveringb,d =

(
m0,d +

∑
b

Yb,dmb

)
g

√
2mtotd
ndAdρ

(25)

PFlyingb,d =
1
2
ρndAdvair

(
v2air − v2f ,d sin θ2d

)
(26)

where m0,d is the dead mass of the drone d , mb is the mass
of battery b, g is the gravitational acceleration, ρ is the air
density, nd is the number of rotors in the drone, vair is the
velocity of air, Ad is the area of the cylindrical mass of air,
which represents the force created by the motion of the blades
of drone d, vf ,d is the drone forwarding flight velocity and θd
is its tilt angle. It is worth noting that the consumed power
during flying is constant for drone d .
Next, the useful energy of the battery must be enough to

cover each trip by drone d assuming the battery is recharged
between trips. Hence,∑

b

Yb,dE
useful
b ≥

(
Eflyingt,d + Esenst,b,d

)
, ∀t, ∀d (27)

where Eflyingt,d andEsenst,b,d are the consumed energies by drone
d during the forward motion and while hovering in trip t ,
respectively and are calculated as:

Eflyingt,d = PFlyingb,d × T flyingt,d , ∀t, ∀d, (28)

Esenst,b,d = PHoveringb,d × T senst,d , ∀t, ∀d, ∀b. (29)

Finally, it is important to note that the total consumed energy
during all trips needs to be equal to the sum of the consumed
energies during hovering and during flyingmotion in all trips,
which for drone d is given by

Emonitoringb,d =

∑
t

Eflyingt,d +

∑
t

Esenst,b,d , ∀d, ∀b (30)

Emonitoringb,d can be calculated by substitution from (28) and
(29) into (30).

V. PROPOSED SOLUTION APPROACH
In order to solve the previously introduced multi-objective
optimal allocation problem (9), which is a mixed integer
non-linear program (MINLP), we propose using the non-
dominated sorting genetic algorithm (NDSGA-II) as detailed
in the flow chart in Fig. 1. The most important advantage of
the proposed method is that NSGA-II simultaneously opti-
mizes each objective. Also, NSGA is a popular and fast-
sorting multi-objective genetic algorithm, which can handle
non-penalty constraints. It enjoys a fast and efficient conver-
gence. It is also capable of searching on a large scale and
dealing with problems that start with a non-feasible solution.

The proposed algorithm is based on several layers of classi-
fications of the individuals where non-dominated individuals
get a certain dummy fitness value and then are removed from
the population. The process is repeated until the entire popu-
lation has been classified. NDSGA-II has advantages such as
introducing elitism to NDSGA besides diversity preservation
in a fast and less complex algorithm [28].

In more details, NDSGA-II selects the optimal number
of drones, their proper battery sizes, their proper charging
point (starting point), and the assigned buses to each drone.
Furthermore, the algorithm assigns these buses to trips, the
optimal number of buses to be monitored, and their locations.
All of the previous selections are then passed to the fitness
calculation of NDSGA, which has two parts. The first part is
responsible for calculating the loss of observability (objective
one), and it receives its input as the number of buses to be
monitored and their locations. The second part is responsible
for calculating the total annual cost (objective two), which
receives its inputs as the selection of the number of drones,
their proper battery sizes, their proper charging point (starting
point), and the assigned buses to each drone.

Inside the second part, there is an internal sub-problem to
obtain the optimum route for each trip. This internal sub-
problem is comparable to the travelling salesman problem
(TSP) [29], which is solved using the branch-and-bound
method that yields a good solution in a reasonable time. After
calculating the optimal route for each trip, NDSGA uses the
selected route and the specification of the selected battery
to check the constraints for each trip, i.e., the maximum of
hovering and flying power must be less than or equal to the
selected battery’s power consumption as in (24). Further-
more, the consumed energy must be less than or equal to the
actual useful energy of the battery, as in (27).

VI. SIMULATION RESULTS AND DISCUSSIONS
In this section, we provide simulation results to demonstrate
the performance of the proposed approach. Table 1 summa-
rizes the simulation parameters used to produce our results.
We used a distribution network for a utility in the US provided
by the Electric Power Research Institute (EPRI-Ckt5) [30],
which is a 76.4552 km unbalanced system with 973 buses
as shown in Fig. 2 [31]. We assume that the drones have no
contact with thewires, and the current is calculated by sensing
the magnetic field emitted by the wires as in [32]. Also, for
voltage sensing, a contactless approach such as in [33] can be
used, otherwise, the drone must be able to deploy a probe to
the conductor.

Concerning the candidate drones, we assume a set of
19 identical drones whose specifications are summarized in
Table 1. Also, a set of 19 batteries whose specifications are
summarized in Table 2 are used. The results in this work will
be given in terms of the Pareto frontier where every point in
the frontier represents the two objectives (total annual cost
and loss of observability) and the associated optimal number
of drones, their batteries, their starting points, and the trip plan
for each drone. MATLAB was used to generate all the results
that are presented in the paper.

Clearly, the increase in the number of observable buses
increases the total annual cost because the total annual cost
includes the operation cost, which is the cost of recharging
the battery. Furthermore, increasing the number of observ-
able buses increases the amount of consumed energy during
flight between these buses and also increases the amount of
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FIGURE 1. The proposed NDSGA-II algorithm flow chart.

TABLE 1. Simulation Parameters [34].

consumed energy during hovering. For example, as shown
in Fig. 3, which represents the Pareto frontier results for the
EPRI-Ckt5 system in case of 2 hours monitoring per day
every month, if the drone does not monitor any bus, the total
annual cost is $0 and the loss of observability is 100% as
shown in point L. While at point A, the total annual cost is
$127.4 when a significant increase in the cost (from $0 to
$127.4) despite a merely 0.3% increase in observability. This
is because the cost of the drone and its battery exist even if
only one bus is monitored. Also, the minimum total annual
cost for monitoring all buses is $226.5 as shown in point D as
indicated in Fig. 3. In this particular scenario, the algorithm
selects a drone with a small battery of 6,000 mAh@ 7.4 V to
cover all buses and the charging point is found to be located at
(395.85, 287.7). If the number of operating hours is reduced
to one hour per day instead of two as shown in Fig. 4, the

FIGURE 2. EPRI-Ckt5 system [30].

previously selected battery cannot provide adequate monitor-
ing, so the 20,000 mAh@ 22.22 V bigger battery is selected,
and the charging point is shifted towards the location (295.38,
208.17). Moreover, as shown in Figs. 3 and 4, increasing the
number of observable buses increases the total annual cost.
For example, the case of 33% loss of observability incurs a
cost of $176.7 annually in case of 2 working hours per day but
this cost increases to $239.3 per year in case of one working
hour per day because of choosing a high-capacity battery.

In addition to the above, increasing the number of observ-
able buses (decreasing the loss of observability) and the
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TABLE 2. Candidate Batteries Specifications.

frequency of monitoring will inevitably lead to an increase in
the number of drones. For example, Fig. 5 shows the Pareto
frontier for the EPRI-Ckt5 system in case of weekly moni-
toring instead of monthly monitoring as previously studied.
In this figure, Point A represents the results for 85.2% loss
of observability with a total annual cost of $190.97 where
one drone with battery 6,000 mAh @ 7.4 V is selected.
On the other hand, point B represents the optimal solution
for achieving 84.87% loss of observability with total annual
cost $362.69 where two drones with batteries 22,000 mAh
@ 22.2 V and 6,000 mAh @ 7.4 V are selected. Comparing
the results with point C, we find that total annual cost greatly
increases due to the need to use three drones while the observ-
ability only slightly increases. This is because the number of
drones increases to two. Likewise, a similar observation holds
at point D where four drones will be necessary.

FIGURE 3. The Pareto frontier for the EPRI-Ckt5 system in case of 2-hours
monitoring per day every month.

Finally, comparing Figs. 4 and 5, assuming only one work-
ing hour per day, if the monitoring frequency is monthly, one
drone equipped with a 20,000 mAh @ 22.22 V is selected

and the total annual cost is found to be $270.4 assuming 0%
loss of observability. However, in case of weekly monitoring,
for the case of 0% loss of observability, the cost increases to
$1208.2 because four drones with batteries 22,000 mAh @
22.2 V, two 20,000 mAh @ 22.2 V, and 6,000 mAh @ 7.4 V
are selected to cover all buses. This means that for weekly
monitoring, the number of drones and the total annual cost
increases four times than in the case of monthly monitoring.

In order to find a suitable trade-off point of operation,
we make use of the point U indicated in Figs. 3, 4 and 5.
This point is referred to as the Utopia point defined as the
point that simultaneously minimizes the observability and the
total annual cost. Since this is an infeasible point, we find the
nearest point from the Pareto frontier to point U.

FIGURE 4. The Pareto frontier for the EPRI-Ckt5 system in case of 1-hours
monitoring per day every month.

FIGURE 5. The Pareto frontier for the EPRI-Ckt5 system in case of 1-hour
monitoring per day every week.

In order to check the sensitivity of the obtained optimal
solution to the type of optimization algorithm used in the
external sub problem as shown in Fig. 1, we performed
a new simulation using a different optimization technique
other than NDSGA-II, that is, simulated annealing (SA).
Table 2 and Fig. 6 summarize the total annual cost and loss
of observability obtained using both NDSGA-II and SA in
case of 2-hours monitoring per day every month. It is clear
that the new algorithm provides results that are very close
to those obtained via NDSGA-II, emphasizing the stability
of the optimization approach and showing that the optimal
value was actually acquired. As shown in Table 2 and Fig. 6,
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TABLE 3. Comparison between NDSGA-II and SA Results.

FIGURE 6. Pareto fronts obtained using the NDSGA-II and SA algorithms.

TABLE 4. The maximum depth of discharching and total annual cost.

TABLE 5. The maximum number of charging battery and total annual cost.

the results of using NDSGA-II are better than using SA, for
example to achieve 0% loss in observability, the total annual
cost equals $226.5355 when using NDSGA-II and equals
$288.888 when using SA. Also, the total annual cost in the
case of NDSGA-II is generally lower than in the case of using
SA to achieve the same percentage of observation.

Finally, examination the effect of changing the percentage
of the maximum depth of discharging in the total annual cost.
In the case of 2 hours of monitoring per day every month and
zero loss of observability, decreasing the percentage of the
maximum depth of discharge increases the total annual cost
as shown in Table 4. Also, decreasing the maximum depth of
discharge increases the total annual cost as shown in Table 5.

VII. CONCLUSION
In this paper, we proposed a novel approach for distribution
networks monitoring for situational awareness. The proposed
approach relies on using drones equipped with contactless
sensors to monitor overhead transmission lines. We formu-
lated the problem as a multi-objective optimization problem
to minimize the total annual cost and loss of observability.
To solve the proposed problem, an outer sub problem is
tackled using genetic algorithms and an inner sub problem is
tackled using branch-and-bound. We used a non-dominated
sorting genetic algorithm to create the set of Pareto optimal
solutions.

The outcome of the proposed approach is the optimal
number of drone(s) needed for system observability with
their battery(ies) size, charging point location(s), the buses
to be visited in each trip, and the optimal path for each trip.
The proposed approach has been applied to the Epri-Ckt5
system assuming two different cases of frequency monitoring
(monthly and weekly) and two different cases of number of
working hours per day (1 hour/day and 2 hours/day). Simu-
lation results proved the efficiency of the proposed approach.

It was found that, assuming monthly observation and
2 working hours/day, the algorithm selects a UAV with a
small capacity battery 6,000 mAh @ 7.4 V to observe all
buses. However, in case of a 1 working hour/day, a bigger
capacity battery 20,000 mAh @ 22.22 V has been selected.
It was also observed that if the observation is done weekly,
more than one UAV will need to be chosen with their suitable
batteries and charging locations.

As a possible extension to this work, methods for recharg-
ing the battery of the UAVs without the need to return to
the charging location can be investigated and further incor-
porated into the studied problem. For example, this can be
done by harvesting the energy from mobile base stations or
by installing solar panels on the UAVs. Another possible
direction that could be pursued is to use the same UAV for
collecting data from smart meters and observing the distribu-
tion network at the same time.
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