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ABSTRACT Remote sensing object detection is an essential task for surveying the earth. It is challenging
for the target detection algorithm in natural scenes to obtain satisfactory detection results in remote sensing
images. In this paper, the RAST-YOLO (You only look once with Regin Attention and Swin Transformer)
algorithm is proposed to address the problems of remote sensing object detection, such as significant
differences in target scales, complex backgrounds, and tightly arranged small-size targets. To increase the
information interaction range of the feature map, make full use of the background information of the object,
and improve the detection accuracy of the object with a complex background, the Regin Attention (RA)
mechanism combined with Swin Transformer as the backbone is proposed to extract features. To improve the
detection accuracy of small objects, the C3D module is used to fuse deep and shallow semantic information
and optimize the multi-scale problem of remote sensing targets. To evaluate the performance of RAST-
YOLO, extensive experiments are performed on DIOR and TGRS-HRRSD datasets. The experimental
results show that RAST achieves state-of-the-art detection accuracy with high efficiency and robustness.
Specifically, compared with the baseline network, the mean average precision (mAP) of detection results is
improved by 5% and 2.3% on DIOR and TGRS-HRRSD datasets, respectively, which demonstrates RAST-
YOLO is effective and superior.Moreover, the lightweight structure of RAST-YOLO can ensure the real-time
detection speed and obtain excellent detection results.

INDEX TERMS Remote sensing images, object detection, attention mechanism, swin transformer, multi-
scale features.

I. INTRODUCTION
Object detection in remote sensing images is crucial in inter-
preting aerial and satellite images, which is widely used in
many fields, such as resource exploration [1], intelligent nav-
igation [2], environmental monitoring [3] and target tracking
[4]. The main task of remote sensing target detection is to
determine whether there are targets of interest in remote sens-
ing images and provide their spatial location. In recent years,
with rapid development in aerospace and UAVs, numerous
high-resolution and high-quality datasets have been created
for remote sensing image processing. Compared with natu-
ral scene images, remote sensing object detection faces the
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following challenges: small data scale; similar appearance of
objects in different categories; significant disparity appear-
ance of objects in the same category; uneven distribution
of small, medium, and large targets; sometimes dense and
sometimes sparse target distribution; complex background
and extreme imbalance in the number between classes, etc.,
as shown in Fig. 1.

It is seen from Fig.1 that, in (a) and (b), the object cate-
gories are aircrafts, but the backgrounds of the aircrafts are
ocean and land, respectively. Moreover, the size difference of
the aircrafts in (b) is significant, which is a common challenge
for remote sensing object detection. The targets in (c) are
sparse, while the targets in (d) are very dense and small.
The target in (e) is a bridge, while the target in (f) is a
dam. They are of different categories but have highly similar
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FIGURE 1. Common difficulties in remote sensing target detection.

appearances. The targets in (g) and (h) are both ships, but
the former is a warship while the latter is a cargo ship. They
attribute to the same category with different appearances.
Therefore, it is difficult to obtain satisfactory results if the
target detection methods for natural scene images are directly
used to detect remote sensing targets.

Traditional object detection algorithms consist of sev-
eral steps: feature extraction, feature transformation, and
classifier prediction. The feature extraction stage mainly
extracts target features, such as color, texture, shape and
angle. The feature extraction methods include scale-invariant
feature transform (SIFT) [5], histogram of oriented gradi-
ent (HOG) [6], and deformable part model [7]. Classifiers
are used to identify specific classes of targets, including
support vector machine (SVM) [8], random forest [9], and
naive Bayesian algorithm [10], etc. which are based on
manual empirical selection and inefficient because of their
low target feature extraction capability, especially for deep
semantic information. Thus, their robustness and general-
ization capability are poorer than those of deep learning
methods.

Since Alex Krizhevsky et al. proposed Alexnet [11], deep
learning has been developed rapidly, and convolutional neu-
ral networks have been used for various tasks in computer
vision. The deep learning-based target detection algorithms
are mainly divided into two categories:

(i) One-Stage Object Detection Algorithm, which include
YOLO [12], SSD [13], Retinanet [14], CornerNet [15], etc.
They do not need the Region Proposal. The class probability
and coordinate location values of objects are directly gener-
ated in one stage.

(ii) Two-Stage Target Detection Algorithms, which include
R-CNN [16], Fast R-CNN [17], Faster RCNN [18], Mask
RCNN [19], etc. Their detection process consists of two
stages. The first stage generates Region Proposals, which
contain the approximate location information of targets and
the second performs classification and location refinement of
the Region Proposals.

Transformer [20] is the most advanced machine trans-
lation method for many natural language processing tasks
(BERT [21], GPT [22]). Inspired by the successful appli-
cation of Transformer in NLP, Alexey Dosovitskiy et al
proposed ViT [23] (Vision Transformer), which is the first
model that only uses Transformer to classify images with-
out using convolution neural network. When pre-training the
ImageNet-21 k data set or the JFT-300 M data set, the Vit
surpassed the most advanced image recognition models at
that time. From then on, Transformer began to shine in the
visual space.

Transformer-based object detection algorithms can be
divided into two categories according to the network struc-
ture: Transformer as Backbone uses CNN to extract features
and realize prediction with Transformer, and Transformer
as Neck uses Transformer as the backbone network and
realizes prediction with CNN. Mainstream object detection
algorithms based on Transformer neck include DETR [24],
deformable DETR [25], ACT [26], UP-DETR [27], etc.
Mainstream object detection algorithms based on Trans-
former backbone include FPT [28], Swin Transformer [29],
DeMT [30], etc.

The object detection algorithm based on Transformer
outperforms the traditional convolution neural network
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algorithm in detection accuracy. But it still has many short-
comings, such as a large number of model parameters,
slow training time and reasoning speed. The training pro-
cess depends on large data sets. Because its calculation cost
increases in square times with the increase of resolution, it is
not suitable for processing high-resolution images.

The main performance indexes of the target detection
model are the accuracy and speed of detection. The accuracy
of target location and classification and the speed of algorithm
detection are mainly considered. Object detection algorithm
based on Transformer has achieved satisfactory results in
accuracy, but its detection speed is not satisfactory.

To solve the difficulties of remote sensing target detec-
tion and improve its accuracy and detection speed, the
high-precision advantages of the target detection algorithm
based on Transformer are used to obtain the main contribu-
tions as follows:

a) A feature extraction backbone network integrated with
convolutional neural network and Transformer is pro-
posed. This network can better extract rich information
features from input images, increase the interaction range
of feature information, make full use of the global back-
ground information and local details of the target, and
improve the detection accuracy of remote sensing targets
in complex backgrounds. C3Dmodule is designed to gen-
erate a feature pyramid at the Neck stage, which enhances
the fusion of deep semantic information and shallow loca-
tion information. It not only perfectly identifies the same
class of objects with different sizes and scales, but also
improves the detection accuracy of small objects.

b) The C3Dmodule is designed to generate feature pyramids
in the Neck stage to enhance the fusion of deep semantic
information and shallow location information, which per-
fectly identifies the same class of objects with different
sizes and scales, and improves the detection accuracy of
small objects.

c) The attention mechanism module RA (regional attention)
is designed and used in parallel with the Swin Transformer
[29], which extends information interaction within the
window to the global level. The RAmechanism is superior
to the existing attention mechanisms.

d) ACmix Plus Detector, a detector combining convolu-
tion and self-attention mechanisms, is designed, which
improves network detection accuracy and recall for each
type of objects.

The rest of this paper is as follows: In Section II, the
applications of target detection in natural images and remote
images are reviewed; In Section III, the target detection
framework proposed in this paper is introduced in detail;
Experimental results of RAST-YOLO proposed in this paper
are shown in Section IV; Conclusions are drawn in Section V.

II. APPLICATION OF OBJECT DETECTION
Object detection is one of the most critical and challenging
branches in the field of computer vision, which has been

widely used in many areas and attracted the attention of many
researchers. In this section, the research progress of target
detection in natural scenes and remote sensing images and
its application in various industries are introduced in detail.

A. OBJECT DETECTION IN NATRUAL SCENES
In past decades, deep learning-based target detection algo-
rithms have been successfully applied to natural scene
images. Convolutional neural network-based target detection
algorithms are classified into two-stage detection algorithms
with Region Proposal Network (RPN), and single-stage
detection algorithms without RPN.

Two-stage detection algorithms divide the detection pro-
cess into two stages. In the first stage, Region Proposal is
generated, and in the second stage, candidate regions are clas-
sified (generally the position needs to be refined). RCNN [16]
is the first object detection algorithm based on deep learning,
which implements the whole detection process through deep
neural networks. Compared with traditional object detection,
it achieves significant improvement in accuracy and speed.
However, the fully connected layer of RCNN requires a
fixed-size image input, and cropping or stretching the original
image affect the detection accuracy. In Fast RCNN [17], the
structure of ROI Pooling between the convolutional layer
and the fully connected layer effectively reduces the impact
of cropping and stretching on detection accuracy. However,
it takes Selective Search much time to find candidate frames.
The Faster RCNN [18] algorithm replaces Selective Search in
Fast RCNN [13] with RPN and uses the Anchor mechanism
to link region generation with convolutional networks. Faster
RCNN improves the detection speed to 17 FPS and achieves
70.4% detection accuracy in the test set of PASCL VOC [31].

One-stage detection algorithms, such as YOLO [12],
SSD [13], RetinaNet [14], YOLOv3 [32], etc. do not need
to generate the Region Proposal, and directly generate the
class probability and coordinate position values of the object.
The final detection result is directly obtained after a single
detection. Thus, the speed of one-stage detection algorithms
is faster. To address the slow detection speed of the two-stage
detection algorithm, YOLO [12] applies a single neural net-
work to the whole image, which predicts the bounding box
and probability of each region simultaneously. The algorithm
efficiently improves the speed of target detection, and its
accuracy is better than that of two-stage algorithms, espe-
cially for detecting small targets. To improve the detection of
multi-scale objects, SSD [13] detection algorithm introduces
multi-reference and multi-resolution detection techniques
and uses multi-scale feature maps for prediction, which sig-
nificantly improves the accuracy of the one-stage detection
algorithm, especially for small target objects. Retinanet [14]
addresses the reason why the detection accuracy of one-stage
algorithms is inferior to two-stage algorithms is the positive
and negative sample class imbalance. The algorithm proposes
Focal loss based on cross-entropy loss and improves the
detection accuracy of hard-to-classify samples by increasing
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its’ weight in the loss function, thus improving the detection
accuracy of the one-stage algorithm. YOLOv3 [32] designs
Darknet53, a feature extraction network with excellent per-
formance for multi-scale prediction with faster speed and
higher accuracy.

B. APPLICATION OF OBJECT DETECTION IN VARIOUS
INDUSTRIES
In recent years, object detection has become a research
hotspot in the field of computer vision. As a branch of image
processing and computer vision, it is widely used in robot
navigation, intelligent video surveillance, industrial detec-
tion, trafficmonitoring andmany other fields. In the summary
of this section, successful application of target detection in
various industries will be listed. They play an important role
in the development of remote sensing. To solve the problems
in infrared image target detection, such as poor texture infor-
mation, low resolution and high noise, Zhang et al. [33] pro-
posed the Deep-IRTarget backbone network, which consists
of a frequency feature extractor, a spatial feature extractor
and a dual-domain feature resource allocation model. And a
resource allocation model RAF is designed to superimpose
the features of frequency domain and spatial domain to con-
struct the dual domain features. Thus, an ideal infrared image
target detection effect is achieved. To better solve the problem
of small target detection in infrared images,Wu et al. [34] pro-
posed a simple and effective ‘‘U-Net in U-Net’’ framework,
which embeds a tiny U-Net into a larger U-Net backbone,
and realizes multi-level and multi-scale representation learn-
ing of objects. For live operation of distribution lines, Zhao
et al. [35] designed an autonomous robot navigation system.
They proposed an insulator and drop fuses target detection
method based on the Larger Scale ’You Only Look Once’
Version 4 (LS-YOLOv4) algorithm, which helps the robot
grasp the power components of the manipulator to accurately
identify the target. In the railway industry, the use of cameras
to accurately and quickly detect targets is an important but
challenging problem. Ye et al. [36] proposed the LFD algo-
rithm, which improves the real-time detection accuracy of
targets of different scales (especially small targets) without
additional storage space and processing time, and is used for
collision warning in the train safety system. Wang et al. [37]
introduced Region-of-Interest into the YOLOv4 network to
enhance train detection of pedestrians and signal lights in
highly complex and harsh environments. The application of
the above object detection algorithm based on deep learning
in various industries provides certain ideas and insights for
the development of remote sensing image object detection,
and plays an indispensable role in its development.

C. OBJECT DETECTION IN REMOTE SENSING
Due to its’ excellent detection accuracy, two-stage target
detection algorithms are used as baselines and appropri-
ately improved to obtain superior remote sensing algorithms.
In [38], RPN and local contextual feature fusion network

FIGURE 2. Network structure of RAST-YOLO.

based on Faster RCNN are redesigned for remote sensing
images with multi-scale and multi-angle features of targets,
such that multi-angle and multi-scale features of geospatial
objects can be extracted. In [39], a structure-guided fea-
ture transform hybrid residual (SGFTHR) network based
on FCOS [40] is proposed, which effectively improves the
detection performance for a large number of small and dense
objects in remote sensing images. Lv et al. proposed a multi-
scale feature adaptive fusion (MFAF) method [41] for many
multiscale objects and complex backgrounds of targets in
remote sensing images. They used it in YOLOv4 [42] to
improve its detection performance for multiscale targets suc-
cessfully. Yang et al. [43] replaced feature extraction trunk
CSPDarknet53 with ConvNeXt-S on the basis of YOLOv4,
used EIoU loss function, and added CA attention mecha-
nism into the network, thus improving the detection ability
of remote sensing targets. In [44], the cross-scale feature
fusion pyramid network (CF2PN) is proposed to solve the
multi-scale problem of remote sensing images. In [45], the
bi-directional contextual enhancement (CBD-E) method is
proposed, which filters useless background information and
collects useful background information to enhance its detec-
tion performance.

YOLOv5 is a one-stage target detection algorithm with
real-time detectability and better detection accuracy, espe-
cially for small target objects. Moreover, the network struc-
ture of YOLOv5 is flexible and easy to change. In this
paper, the existing target detection methods are compre-
hensively compared and YOLOv5 is used as the base-
line to improve the performance of remote sensing object
detection.

III. METHODOLOGY
The performance of existing object detection algorithms is
compared in detection accuracy and speed and the framework
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of YOLOv5-6.1 is used as the baseline of RAST-YOLO. The
structure of RAST-YOLO contains a Backbone to extract
features, a Neck to fuse features, and a Detector to get the
result. Since information around targets is needed to identify
remote sensing targets, the feature extraction module RASTn
is designed, which integrates attentionmechanism and convo-
lutional neural network in feature extraction backbone. This
module RASTn can effectively extract contextual informa-
tion of feature maps and supplement information extraction
around remote sensing targets. The CONV module is a com-
bination of convolution, Batch Normalization, and activation
functions. Its role is to reduce the size and expand the number
of channels in the feature maps. SPPF module can realize the
pyramid pool of adaptive size output and enhance the feature
expression ability of feature extraction backbone. In Neck,
based on dense linking from DenseNet [46] the C3 module
in YOLOv5, called the C3D (C3DF) module, is redesigned.
C3D(C3DF) significantly fuses the semantic information of
deep and shallow layers and improves the detection accu-
racy of multi-scale targets via splicing shallow and deep
feature maps. The improved ACmix [47] module combined
with YOLO Detector forms the ACmix Plus Detector, which
obtains global information across spatial dimensions and
channel dimensions and enhances the recall and accuracy
of the network. The structure of RAST-YOLO is shown in
Fig.2, and the modules in the figure are described detailly in
subsequent chapters.

The following is a description of the procedure for evaluat-
ing variables in RAST-YOLO. After data preprocessing, the
resolution of the feature map is 640 × 640. In Backbone, the
CONV module can reduce the feature map size and expand
the number of channels of the feature map, while RASTn
does not change the feature map size and the number of
channels. The function of RASTn is to extract various feature
information in the feature map. After the input image is
processed by Backbone, it outputs feature images with sizes
of 80 × 80, 40 × 40 and 20 × 20 to the Neck. In Neck, the
size of convolution kernels in CONV1module is 1× 1, which
does not change the size and number of channels of feature
map, but only plays the role of feature fusion. The feature
maps sent to Neck by Backbone have different sizes. The
small-size feature maps contain deep semantic information,
while the large-size feature maps contain shallow semantic
information. Deep semantic information and shallow seman-
tic information will be fused in Neck to construct a fea-
ture pyramid structure. The C3D module in Neck can fully
integrate deep and shallow semantic information to improve
the detection accuracy of multiscale remote sensing targets.
After the feature maps are processed by the Neck of RAST-
YOLO, the feature maps with sizes of 80 × 80, 40 × 40 and
20 × 20 are output to ACPD (ACmix Plus Detector) to
predict the final results. ACPD predicts small-size remote
sensing targets on large-size feature maps and large-size
remote sensing targets on small-size feature maps, thus men-
tioning the detection accuracy of multi-scale remote sensing
targets.

A. REGION ATTENTION MECHANISM
RAmechanismmodule is embedded into the backbone of the
RAST-YOLO, which gives more weight to interested remote
sensing detection targets, effectively reduces the influence
of complex backgrounds and improves the detection perfor-
mance of remote sensing targets. RA mechanism module
enables the RAST-YOLO algorithm to focus on the interested
region and allocate more computational resources for it. The
structure of the RA mechanism module is shown in Fig.3.

FIGURE 3. The structure of RA.

The CBAM [48] performs average pooling and maximum
pooling on the input feature map along the channel direction,
and compresses the channel dimension of the featuremap into
one dimension. Then it is stitched along the channel direc-
tion and compressed into one dimension with a convolution
with kernel size of 7 × 7; The spatial attention features are
obtained via the nonlinear activation function Sigmoid. It is
difficult to capture detailed location information by pooling
the input feature map along the channel direction directly.
To capture more precise location information, an RA with
pooling method similar to CA [49] is adopted. As shown in
Figure 3, RA attention mechanism module enhances global
feature extraction through channel and spatial dimensions,
and integrates the attention feature information of the two
dimensions to obtain global feature information.

Step 1. Let the feature map of the input RA mechanism
module be

X = [x1, x2, x3, · · · , xc] ∈ RC×H×W , (1)

which is calculated as follows.

xh−Avgc (h) =
1
W

∑
0≤i<W

xc (h, i); (2)

xh−Maxc (h) = Max
0≤i<w

{xc (h, i)} ; (3)

xw−Avg
c (w) =

1
H

∑
0≤i<H

xc (i,w); (4)

xw−Max
c (w) = Max

0≤i<H
{xc (i,w)} , (5)
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Step 2. The pooling results obtained in Step 1 are summed
and copied along the pooling direction. xhc (h,w) and x

w
c (h,w)

with the same size as the input feature map are obtained,
which is calculated as follows:

xhc (h) = xh−Avgc (h) + xh−Maxc (h) ; (6)

xwc (w) = xw−Avg
c (w) + xw−Max

c (w) ; (7)

xhc (h,w) = xhc (h) ; (8)

xwc (h,w) = xwc (w) , (9)

Step 3. xhc (h,w) and x
w
c (h,w) obtained in Step 2 are stitched

along the channel direction, and the number of channels is
reduced to a convolution with kernel size of 1 × 1. After the
Batch normalization is performed on the result, the nonlinear
activation function Swish is used to calculate f1. And then,
the channels are expanded to the same dimension as the input
feature map via a convolution with kernel size of 1 × 1 and
the regional attention weight parameter f2 is obtained, which
is calculated as follows:

g1 = F1
([
xh1 , x

h
2 , · · · , xhc , x

w
1 , xw2 , · · · , xwc

])
; (10)

g2 = BN (g1) ; (11)

f1 = g2 × σ (g2) ∈ R

(
C
r

)
×H×W

; (12)

f2 = σ [F2 (f2)] ∈ RC×H×W , (13)

Step 4. For the feature fin Step 3, the mean and maximum
values of its channel dimensions are found, respectively. After
the nonlinear activation function Sigmoid calculation, the
regional attention bias term parameters are obtained as in (14)
and (15):

bAvg (h,w) = σ

 1
C
r

∑
0≤i<C

r

f1 (i, h,w)

 ∈ R1×H×W
; (14)

bMax (h,w) = σ

[
Max
0≤i< c

r

{f1 (i, h,w)}

]
∈ R1×H×W , (15)

Step 5. The final feature mapwith RAweights is calculated
as in (16):

Output =
(
X + bAvg + bMax

)
∗ f2. (16)

The results calculated via the RA mechanism module are
output.

B. BACKBONE BASED ON RAST
The feature extraction network proposed in this paper consists
of two modules alternatively. One is the Conv module, which
has three steps in series: a two-dimensional convolution with
kernel size of 1×1 and strides size of 2, Batch Normalization,
and the Silu activation function. The Conv module is to
reduce the length and width of the feature map and expand
the number of dimensions. The module RASTn consists of
2D convolution, RA (Regin Attention) module, and Swin
Transformer blocks in parallel, where RASTn denotes the
STR module in its structure with n Swin Transformer blocks.

The function of the RASTn module is to extract features and
obtains the global background information and local details
of the feature map. Its structure is shown in Fig.4:

The computational complexity of the multi-headed atten-
tion mechanism is proportional to the square of the size of
the feature map. To reduce the computational complexity
of multiple attention mechanisms and extend the range of
information interactions. In Swin Transformer [29], the fea-
ture maps is divided into each window, and the attention
mechanism is calculated for the pixels in each window and
shifted window. However, the recognition and localization
of objects in remote sensing images depends on the feature
information of the global background. Information interac-
tions in Swin Transformer exist only in individual windows
and shifted windows, which can only capture local details of
the target, but global background information is difficult to
obtain. To achieve a wider range of information interactions
and simultaneously obtain global background information
and local details, the RAST feature extraction backbone is
designed to combine Swin Transformer and RA modules.

FIGURE 4. The structures of RAST feature extractor and Swin Transformer.

In RAST, the input feature map is expanded into three
feature maps by using three convolutions with kernels of size
1 × 1. One is used as a residual link, and the others, com-
puted by RA module and Swin Transformer Block module
respectively, are stitched and the features are fused by using
a 2D convolution with kernels of size 3 × 3. The background
of remote sensing targets is extremely complex. However,
the global background information is absolutely crucial for
remote sensing object detection. And the local information
containing rich spatial details is also indispensable. The RA
module captures the feature information of the global back-
ground in both channel and spatial paths, while the Swin
Transformer Block captures the local feature information
with rich spatial details. By integrating the information cap-
tured by the two modules, the feature representation will
contain both global and local information. This scheme effec-
tively increases the receptive field and improves the detection
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accuracy of remote sensing targets in complex backgrounds.
Moreover, 2D convolution is used to disassemble the feature
maps and send them to different modules for calculation
and fusion, which improves the efficiency of processing
procedure.

C. DENSELY CONNECTED C3 (C3D)
C3 is a feature extraction module of yolov5, which has three
convolutionswith kernel size of 1× 1 and several Bottlenecks
composed of 2D convolutions. When the feature map is input
into the C3, two convolutions are first calculated and two
feature maps with half of the channel number are obtained,
one as a residual link and the other into Bottlenecks. The
bottleneck has two types of structures, one with residual links
and the other without residual links. In the C3D structure
proposed in this paper, dense links between Bottlenecks are
added, which enhances the transmission of feature informa-
tion between Bottlenecks and effectively uses the feature
information. The comparison of C3 and C3D(F) structures
is shown in Fig.5.

FIGURE 5. The structure of C3 and C3D.

Suppose the feature map of the input Bottleneck is X ∈

R(C/2)×H×W . Fi denotes the ith computation process of the
Bottleneck. Then the computation process of C3 is as in (17):

f = F3 {F2 [F1 (X)]} ∈ R

(
C
2

)
×H×W

, (17)

And the calculation process of C3D is as follows:

g1 = F1 (X) ; (18)

g2 = F2 ([g1,X ]) ; (19)

f = F3 ([g2, g1,X ]) ∈ R

(
C
2

)
×H×W

. (20)

C3D with dense links makes full use of the information of
the input feature map compared with the residual network.
It is more effective in overcoming the gradient disappearance
of the deep neural network. In the Neck of RAST-YOLO, the
input feature map is the combination of deep and shallow
feature maps. The shallow feature map has less semantic
information, but more location information, while the deep
feature map has richer semantic information, but poorer loca-
tion information. The fusion of the two effectively improves
the detection accuracy of densely arranged small targets.

FIGURE 6. The structure of ACmix plus detector.

D. ACMIX PLUS DETECTOR
Convolution and self-attentive mechanisms are two inde-
pendent representational learning methods. A paper pub-
lished in 2022 [47] demonstrates the potential connection
between convolution and self-attentive mechanism because
some computations of both methods are similar. For example,
a 2D convolution with kernel size of k × k is decomposed
into k × k convolutions with kernel size of 1 × 1. In com-
puting the self-attentive mechanism, the encoding process to
get the key, query, and value is regarded as a convolution
with kernel size of 1 × 1. This process takes up more than
99% of the number of parameters and computation of the
convolution.Meanwhile, the self-attentivemechanism inverts
approximately 83% of the parameters into this process. Due
to the potential strong connection between convolution and
self-attention, the ACmix module is proposed to perfectly
combine convolution and self-attention mechanism.

In the ACmix module, perform the convolution operation
on the input feature map, and obtain three feature maps by
using three 2D convolutions with kernel size of 1 × 1 respec-
tively. These three feature maps are input to the convolution
module and the self-attentive mechanism module to obtain
the convolutional features fConv and self-attentive features
fAtt. The results of output features are as in (21), where α and
β are learning parameters:

f = αfConv + βfAtt , (21)

The ACmix module is connected to each YOLO detector,
which could improve the detection accuracy of YOLOv5.
It is difficult to effectively fuse the features computed by
the convolutional and self-attentive mechanisms through the
learnable parameters α and β. In this paper, the convolutional
and self-attentive features are stitched along the channel
direction and fully fused through 2D convolution as in (22).

f = F ([fConv, fAtt ]) . (22)

The structure of ACmix Plus Detector is shown in Fig.6,
which is obtained by splicing the modified Acmix Plus and
YOLO detectors in this paper.

IV. EXPERIMENTS
To demonstrate the superiority of RAST-YOLO detection
in remote sensing object detection, experimental proce-
dures, including the data set, experimental parameter setting,

VOLUME 11, 2023 38649



X. Jiang, Y. Wu: Remote Sensing Object Detection Based on Convolution and Swin Transformer

evaluation index, result comparison, analysis network inter-
pretability, and visualization of detection effect, are shown in
this section.

A. EXPERIMENTAL CONFIGURATION
The experimental environment is windows 11 operating sys-
tem, the computer running memory is 32GB, CPU is i9-
12900K, GPU is RTX 3090, the deep learning framework is
pytorch1.9, and the programming language is python3.9.

B. DATASETS
DIOR [50] is a publicly available optical remote sensing
image object detection dataset released by Northwestern
Polytechnic University in 2019. DIOR consists of 23,463
high-quality remote sensing images and 192,472 instance
objects, containing 20 common remote sensing category
objects, such as airplanes, airports, baseball fields, basketball
courts, bridges, chimneys, dams, expressway service areas,
expressway toll stations, golf field, ground track field, harbor,
overpass, ship, stadium, storage tank, tennis court, train sta-
tion, vehicle, and windmill. The remote sensing target detec-
tion dataset contains the most images and the most instances,
with features as follows: Extensive range of object sizes; Rich
images; High inter - class similarity and intra - class diversity;
Uneven distribution of instances by category.

TGRS-HRRSD [51] is a dataset released by the Univer-
sity of Chinese Academy of Sciences in 2019, which con-
sists of 21761 images and 55740 instance objects acquired
from Google Earth and Baidu maps. TGRS-HRRSD contains
13 categories such as airplane, baseball diamond, basketball
court, bridge, crossroad, ground track field, harbor, parking
lot, ship, storage tank, T junction, tennis court, and vehicle.
In the dataset, the number of samples in each category is
balanced and each category contains about 4000 instances.

C. EXPERIMENTAL PROTOCOL AND EVALUTATION
INDICATIORS
Before training, the prior frame clustering algorithm of
YOLOv5 is used to calculate the relative dataset. Dataset
DIOR and GTRS-HRRSD are divided into training set, val-
idation set, and test set in a ratio 1:1:2. The input image is
640 × 640 pixels, the training batch size is 16, the number
of training epochs is 100, the optimizer is stochastic gradient
descent, the initial learning rate size is set to 0.01, themomen-
tum is 0.937 and the IOU threshold is 0.45.

The evaluation indexes in this paper are Precision (P),
Recall, mAP50, and mAP50:95. Precision is the percentage of
correctly predicted positive samples in all predicted positive
samples. Recall is the percentage of correctly predicted posi-
tive samples in positive samples. Ap is an area under the P-R
curve, and mAP is the mean value of all categories of AP. The
calculation procedure is as follows:

P =
TP

TP+ FP
; (23)

TABLE 1. Ablation experiments on DIOR dataset.

R =
TP

TP+ FN
; (24)

AP =

∫ 1

0
PdR; (25)

mAP =

∑
i APi
m

. (26)

where TP, FP, TN and FN denote the number of true positive
samples, false positive samples, true negative samples and
false negative samples, respectively, m is the number of sam-
ple categories. Moreover, mAP50 indicates that the sample is
judged to be positive when the IOU of the predicted box and
the real box are greater than 0.5. mAP50:95 is the mean value
of mAP50, mAP55, mAP60, mAP65, mAP70, mAP75, mAP80,
mAP85, mAP90 and mAP95.

D. ANALYSIS OF EXPERIMENTAL RESULTS
Five sets of experiments on the ablation of different
improvement parts, the interpretability analysis of the net-
work, the comparison between RA attention mechanism
and other attention mechanisms, the comparison between
RAST-YOLO and other algorithms, and the analysis of the
visualization on detection results, are designed in this section.

1) ABLATION EXPERIMENTS
In order to verify the positive effects of RAST, C3D, and
ACPD (ACmix Plus Detector) on remote sensing target
detection proposed in this paper. We designed a set of
ablation experiments based on DIOR data set. (1) RAST-
YOLO model; (2) The feature extraction backbone RAST
was removed on the basis of RAST-YOLO; (3) Remove
C3D on the basis of RAST-YOLO: (4) Remove ACmix Plus
Detector on the basis of RAST-YOLO; (5) RAST and C3D
were removed based on RAST-YOLO; (6) Remove feature
extraction backbone RAST and ACmix Plus Detector on the
basis of RAST-YOLO; (7) Remove C3D and ACmix Plus
Detector on the basis of RAST-YOLO; (8) On the basis of
RAST-YOLO, the feature extraction backbone RAST, C3D
and ACmix Plus Detector were removed(namely YOLOv5).
Experiments on the DIOR dataset are conducted under the
same experimental conditions. The experimental results are
shown in TABLE.1

It follows from TABLE.1 that the precision, recall and AP
of RAST-YOLO significantly decrease after removing the
proposed modules.
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FIGURE 7. Comparison of P-R curves of YOLOv5 and RAST-YOLO.

i)When the feature extraction backbone RAST is removed,
the recall of the RAST-YOLO is reduced by 1.6%; ii) When
the C3D module of RAST-YOLO is removed, the mAP50:95
of the model decreases by 2.8%; iii) When the ACmix Plus
Detector was removed and the detector of YOLOv5was used,
the recall of the model was reduced by 1.2%, but the precision
was increased by 0.4%; iv) When the feature extraction back-
bone RAST and C3Dmodule of RAST-YOLOwere removed
simultaneously, the precision of the model decreased by
1.4%, and the recall decreased by 3.8%; v) When the feature
extraction backbone RAST of RAST-YOLO and ACmix Plus
Detector were removed, the recall of the models decreased
by 3.4% and mAP50 decreased by 2.6%, but the precision
increased by 0.5%; vi) When removing C3D module and
ACmix Plus Detector, model recall decreased by 2.3%, and
mAP50:95 decreased by 4.1%; vii) Comparedwith YOLOv5,
the precision of model detection of RAST-YOLO increased
by 4.7%, recall increased by 3.3%, mAP50 increased by 5%,
and mAP50:95 increased by 7.5%. Therefore, the ablation
experiment can firmly verify the positive effect of RAST,
C3D, and ACmix Plus Detector proposed in this paper on
remote sensing object detection.

In the Fig.7, the P-R curves of YOLOv5 and RAST-YOLO
are compared for each of the 20 categories in the DIOR
dataset, and the area below the curve is the AP for each
category. Specially, the detection effect of RAST-YOLO in
airports, golf courses, dams and railway stations is obviously
better than that of YOLOv5.

2) COMPARISON OF INTERPRETABLE ANALYSIS BETWEEN
NETWORKS
The interpretably comparative analysis betweenRAST-YOLO
and YOLOv5 is performed by using the Grad-CAM++

[52]. Three images containing common difficulties in remote
sensing target detection are selected in each of the DIOR and
TGRS-HRRSD datasets to test the performance of RAST-
YOLO and YOLOv5. These images, which include common
difficulties in remote sensing target detection, are used to test
the performance of RAST-YOLO and YOLOv5.

The selected images, containing the heat map output by
RAST-YOLO and YOLOv5, are shown in Fig.8. In the heat
map, the model tends to be more sensitive and pays more
attention to the redder regions.
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FIGURE 8. Interpretable comparison of YOLOv5 and RAST YOLO.

FIGURE 9. Comparison of visual detection results.

As can be seen from Fig. 8, the focus positions of the
heat maps generated by RAST-YOLO are more accurate than
those generated by YOLOv5. Specifically, aircrafts with dif-
ferent sizes are relatively orderly distributed in the first image.
YOLOv5 ignores some small-sized aircrafts, compared with
RAST-YOLO. Irregularly distributed ships with various sizes
fill the second image. The focus of the heat map generated
by RAST-YOLO covers all ships, while YOLOv5 ignores

some small ships. In the third image, the dam needs to be
detected.

The heat map generated by YOLOv5 focuses on the
embankment with the same color and shape as the dam, while
the heat map generated by RAST-YOLO precisely focuses
on the dam. In the fourth image, four tennis courts need to
be detected, one of which is partially obscured by branches
and their shadows. RAST-YOLO pays more attention to the
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TABLE 2. Comparison of attention mechanisms.

obscured tennis court than YOLOv5. The fifth image con-
tains an old ground track field that looks very similar to
the background. The heat map generated by RAST-YOLO is
precisely focused on the ground track field, but the heat map
generated by YOLOv5 is partially focused on the open space
around the area. In the sixth image, two ground track fields
between urban buildings with complex backgrounds needs
to be detected. The heat map generated by YOLOv5 ignores
one of them, while the heat map generated by RAST-YOLO
perfectly focuses on all fields.

Compared with the baseline, RAST-YOLO improves the
detection accuracy of small sizes targets in complex back-
grounds, partially obscured objects, and irregularly arranged
remote sensing targets.

3) PERFORMANCE COMPARISON BETWEEN ATTENTEION
MECHANISMS
To verify the performance of RA(Region Attention) proposed
in this paper, and prove the rationality of combining Swin
Transformer Block with attention mechanism in RASTn
module. The experimental comparison group in this section
includes the performance comparison of the attention mech-
anism of RA with SE [53], CBAM [48], CA [49] and GAM
[54], as well as the comparison of using attention mechanism
and not using any attention mechanism. Experiments were
conducted on the DIOR data set under the same experimental
setup, and the experimental results are shown in TABLE.2:

As can be seen from TABLE.2, the recall rate, mAP50
and mAP50:95 of the detection results of RA mechanism are
0.6%, 0.4% and 0.1% higher than those of SE [53] attention
mechanism, respectively. Recall, mAP50 andmAP50:95 of RA
are 0.7%, 0.6%, and 0.5% higher than those of GAM [54],
respectively. Precision, recall, mAP50 and mAP50:95 of RA
are 1.1%, 0.8%, 1%, and 0.7% higher than those of CBAM
[48], respectively. Recall, mAP50 and mAP50:95 of RA are
0.7%, 0.5%, and 0.3% higher than CA [49], respectively.
However, the accuracy of detection results of SE, GAM and
CA is all slightly higher than that of RA.

When no attention mechanism module is used, the global
background information is lost, and only the local detail
information obtained by the Swin Transformer Block is avail-
able. The detection result of the model is obviously worse
than the combination of Swin Transformer Block and atten-
tion mechanism. Specifically, combining Swin Transformer
Block with the attention mechanism effectively increases
the recall of mAP50 and mAP50:95 by about 2%. It can be
demonstrated that combining the local detail information cap-
tured by Swin Transformer Block with the global background

feature captured by RA module can effectively improve the
accuracy of remote sensing object detection.

In summary, combining with Swin Transformer Block and
attention mechanism in this paper can effectively improve
the detection accuracy of remote sensing targets, and the
comprehensive performance of RA attention mechanism is
better than the other four mainstream attention mechanisms.
Therefore, the RA attention mechanism and Swin Trans-
former are used to synthesize the RAST feature extraction
backbone RAST.

4) PERFORMANCE COMPARISON BETWEEN RAST YOLO
AND OTHER ALGORITHMS
To verify its performance, RAST-YOLO is compared
with mainstream algorithms such as Faster RCNN [18],
YOLOv3 [32], YOLOv5, Retinanet [14], CF2PN [44] and
CBD-E [45] on DIOR, Faster RCNN [18], YOLOv3 [32],
YOLOv5, Retinanet [14], MFDF [41] and SGFTHR [39]
on TGRS-HRRSD, where the backbone and feature fusion
networks of Faster RCNN and Retinanet are Resnet50 [55]
and FPN [56], respectively. Moreover, RAST-YOLOs is the
lightweight network of RAST-YOLO. Its structure is the
same as the RAST-YOLO, but its network width is three-
quarters of that of RAST-YOLO, and its number of param-
eters is about 56% of that of RAST-YOLO. We compare
it simultaneously with the mainstream state-of-the-art algo-
rithms mentioned above. The experimental results are shown
in TABLE.3 and TABLE.4.

It follows from TABLE.3 that mAP50 obtained by RAST-
YOLO is 0.698, which is superior to all compared algorithms
and about 2% higher than CBD-E [45] and CF2PN [44]
in DIOR dataset. In the detection results of each category,
RAST-YOLO achieves more significant results than other
algorithms in categories of both aircraft and ships which
contain multi-scale targets, and in the small car target cate-
gory, which outperforms CBD-E [45], CF2PN [44] by about
10%. Meanwhile, the best detection results for the complex
background targets (categories of baseball fields and tennis
courts) are the best. However, the RAST-YOLO is inferior to
CBD-E [45] and CF2PN [44] in the detection of bridges and
dams, and windmills, respectively.

On TGRS-HRRSD, RAST-YOLO achieves the mAP50 of
0.907, which is superior to all other algorithms. Similar to the
results on DIOR, RAST-YOLO achieves satisfactory detec-
tion accuracy on multi-scale categories. Its AP on aircraft
and ship is 0.992 and 0.974, respectively, which is superior
to all the compared algorithms. RAST-YOLO exceeds all the
compared algorithms. In the detection results of baseball dia-
monds and baseball fields with complex backgrounds. How-
ever, RAST-YOLO is inferior to MFDF [41] and SGFTHR
[39] in detecting tennis courts, harbors and vehicles,
respectively.

Moreover, the lightweight network RAST-YOLOs also
achieved excellent test results in this experiment. RAST-
YOLOs only use approximately 56% of the parameters of
RAST-YOLO. However, among the test results in the DIOR

VOLUME 11, 2023 38653



X. Jiang, Y. Wu: Remote Sensing Object Detection Based on Convolution and Swin Transformer

TABLE 3. Object detection results on DIOR.

TABLE 4. Object detection results on TGRS-HRRSD.

dataset, mAP50 and mAP50:95 are only 1.5% and 1.8% worse
than RAST-YOLO, respectively. Moreover, the comprehen-
sive detection results are more excellent than CBD-E [44],
CF2PN [43] and other excellent algorithms. However, in the
test results on the TGRS-HRRSD dataset, the mAP50 and
mAP50:95 RAST-YOLOs are only 1.4% and 2.7% worse than
the RAST-YOLO, respectively. Furthermore, the compre-
hensive detection results of RAST-YOLOs exceed advanced
algorithms such as SGFTHR [39] and MFDF [41]. RAST-
YOLOs also achieved excellent results in the speed test. Fur-
thermore, it takes RAST-YOLOs 19.6 to detect each remote
sensing image and the detection speed reaches 51.02FPS
when detecting remote sensing images with resolution of
640 × 640, which can ensure the real-time detection speed.

In conclusion, the results of the RAST-YOLO algorithm
for remote sensing object detection are significantly supe-
rior to those obtained by Faster RCNN [18], Retinanet [14],
YOLOv3 [32] and other algorithms for natural scenes. Com-
pared with the SOTA remote sensing object detection algo-
rithms, the detection results in most categories still have some
advantages. Moreover, the lightweight structure of RAST-
YOLO can ensure the real-time detection speed and obtain
excellent detection results. From the above analysis of the

experimental results, it can be shown that the RAST-YOLO
proposed in this paper has significant advantage on remote
sensing target detection.

5) COMPARISON OF THE VISUAL DETECTION RESULTS
BETWEEN RAST-YOLO AND OTHER ALGORITHMS
In this paper, two images are selected from DIOR and
TGRS-HRRSD datasets, respectively. The visual detection
results are compared between Faster RCNN [18], Retinanet
[14], YOLOv3 [32], YOLOv5, and RAST-YOLO, which are
shown in Fig. 9. In the pictures of the detection results, the
colors of the detection boxes are used to indicate the predicted
categories.

The detection results between the algorithms are analyzed
as follows. The first image required detecting densely packed
aircraft at airfield. Faster RCNN [18], Retinanet [14], and
YOLOv5 do not detect all aircraft. They are not as good
as RAST-YOLO for small size aircraft. The second image
needs to detect a stadium, a ground track field, two tennis
courts, and an overpass. Faster RCNN [18], Retinanet [14],
and YOLOv3 [32] incorrectly detect the ground track field
as a stadium because of their similar appearance. Because
the tennis courts and overpasses are very small and located
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at the edge of the picture, Faster RCNN [18], Retinanet [14],
YOLOv3 [32], and YOLOv5 do not detect themwhile RAST-
YOLO successfully detected them. The third image needs to
detect several ships at sea, and the clouds interfere with the
detection of ships. YOLOv3 [32] and YOLOv5 incorrectly
detect the clouds as ships, while the Retinanet [14] ignores
a small-sized ship. However, Faster RCNN [18] and RAST-
YOLO successfully detect all the ships. Compared with the
GT boxes, the detection frame of RAST-YOLO is more accu-
rately located. The fourth image needs to detect a bridge and a
ground track field. The shadow of the tall buildings has some
influences on the detection of the bridge. Faster RCNN [18]
incorrectly detects this bridge as three bridges. Meanwhile,
Faster RCNN [18], Retinanet [14] and YOLOv3 [32] ignored
the athletic field. YOLOv5 and RAST-YOLO detect both
the bridge and the athletic field, and RAST-YOLO more
accurately locates the ground track field than YOLOv5. From
the analysis above, it is obvious that RAST-YOLO is more
effective than the mainstream target detection algorithms in
detecting small-sized targets and complex background targets
in remote sensing images. RAST-YOLO can more effectively
deal with the interference of remote sensing images such as
weather, climate, light, and shadow in the detection process.
Thus, the superiority of RAST-YOLO in remote sensing tar-
get detection is verified.

V. CONCLUSION
Complex background targets, small-scale targets, and multi-
scale targets are the challenges in remote sensing object
detection. Based on the framework of YOLOv5, RA mecha-
nism is proposed and combined with Swin Transformer as the
backbone to extract features. It can sufficiently extract global
background information and local details of the target, effec-
tively increasing the interaction range of feature information
and reducing the impact of complex backgrounds on remote
sensing object detection. The proposed C3D module fully
integrates deep semantic information with shallow semantic
information to build a more effective feature pyramid, and
improve the detection accuracy of multi-scale targets and
small targets. And the global and local information is fully
used again with ACmix Plus Detector to output more accurate
categories and target localization. Experimental comparison
and analysis indicate that RAST-YOLO significantly outper-
forms themainstream natural scene target detection algorithm
and shows certain advantages compared with other excellent
remote sensing target detection algorithms, which provides
new ideas and insights for researchers to process remote
sensing images.
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