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ABSTRACT Deploying pigeon age detection model on edge equipment can solve the problem of video
transmission delay and reduce the pressure of network transmission. Based on the deployment of edge
devices, we made some improvements to You Only Look Once version 5 (YOLOv5) to form a new,
lightweight, high-performance detector named LN-STEP-YOLO. In order to reduce the size of the model,
we halved the number of channels in the YOLOv5s model. However, the decrease in the number of
channels brings some problems, such as low global information acquisition, retention of image redundancy
information, attention deficit, etc. To solve these problems, we did the following work. First, we proposed a
new convolution structure with the effect of a large convolution kernel, StepConv. Second, a 2×2 convolution
with step size 2 was used at the input to split each image into individual patches. Third, External Attention
(EA) was introduced in the bottleneck structure. Fourth, a modified extremely separated convolutional
block (XsepConv) was used for downsampling. Finally, we replaced the batch normalization (BN) of all
non-downsampled layers with layer normalization (LN). The results showed that the improved algorithm
outperformed generic lightweight networks such asMixnet, Mobilenetv3, and Ghostnet to distinguish small-
sized, overlapping pigeons, achieving 92.8% mean average precision (mAP) at about 17% of YOLOv5s
parameters, 0.1% lower than that achieved by use of YOLOv5s. In addition, the improved method had 3.7G
floating point operations (FLOPs) and 1.25G parameters, which allowed the detection of the growth stages
of pigeons in real environments and provided a reference to guide placement of feeders in automated pigeon
farming.

INDEX TERMS Pigeon, accurate feeding, overlap, greater receptive field, layer normalization.

I. INTRODUCTION
Manual feeding of pigeons is very labor intensive and
time-consuming work. With the development of technology,
machines can replace manual labor. Current machine feeding,
usually aisle feed troughs [1], provide a fixed amount of
feed by averaging the amount needed for a certain number
of pigeons of a certain age, and do not allow manual on-
demand feeding. However, this kind of system is problematic
because the needs of the birds in a particular cage can vary
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due to changes in pigeon feeding patterns and growth stages,
or if pigeons die or have to be transferred to a different
cage [2], [3], [4]. Thus, there can be significant cage-to-cage
variation in the required amount of feed. Too little food will
limit the health development of the pigeons, and too much
food will waste unconsumed feed, thus increasing the cost of
raising pigeons. To address the inability of a feeding machine
to determine how much feed should be provided, several
artificial intelligence approaches have been tested.

Artificial intelligence has been increasingly applied
to smart agriculture [5], including water quality predic-
tion [2], agricultural product traceability [7], and object
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detection [8], [9], [10], [11]. RFID [12] and spectral meth-
ods [13] can work to detect pigeons, but these methods are
too expensive for routine use. Acoustic methods [14] cannot
work in the noisy environment of pigeon cages. However,
computer vision methods (object detection) require only one
camera and can perform accurate detection.

Overall, the current mechanical equipment in pigeon farms
does not consider the differentiated feeding demands of indi-
vidual pigeons, while computer vision methods can effi-
ciently detect and monitor individual pigeons. Therefore,
we adopt computer vision methods for our research. Based
on the small size and overlap of young pigeons, we pro-
posed a LN-STEP-YOLO algorithm. Our contribution is as
follows: First, a new convolution structure (StepConv) is
proposed to obtain more global information and improve the
detection performance of small targets. Second, the Focus
layer is improved to reduce redundant image information.
Third, introduce External Attention (EA) block to reduce
the impact of complex environments. Fourth, since Step-
Conv is not applicable in the downsampling layer, Xsep-
Conv is used instead. Fifth, replace BN layer with LN layer
in non-downsampling layer to avoid excessive BN layer to
reduce model performance. The result shows that this method
has excellent detection performance for pigeons with small
size and small overlap in the complex environment of pigeon
house.

II. RELATED WORK
At present, there are few studies on pigeon age detection.
Therefore, we need to refer to similar studies in other
fields. Systems for pigs [8], cattle [10], and chickens [11],
[15], [16], [17] detect animals as adult individuals. These
systems often utilize additional modules to detect behavioral,
health, and other indicators, and these additional modules
may slow detection speed. In pigeon breeding, the young
pigeons cannot feed themselves and need to be fed by the
adults. Themost economical practice is the ‘‘2+3’’ or ‘‘2+4’’
models (two adult pigeons raising three or four young pigeons
in a cage) [2], [3], and often a pigeon house will have multiple
cage with young pigeons at different stages, for different feed
requirements. Recent research in the area of object detection
has focused on plants [18], [19], [20], and there are obvi-
ous differences being plant detection and pigeon detection,
including the need to distinguish the sky in the background
from detecting plants in outdoor settings [18]. Additionally,
plants in different growth stages may exhibit clear degree of
differentiation, such as the color change of tomato [19] or the
closure of flowers [20], thus allowing the detection of plant
growth status. In contrast, the growth stages of pigeons reflect
a slow and gradual process of change, and these stages often
need to be identified by an expert.

Several commonly used lightweight networks, such
as Mobilenetv3 [21], Mixnet [22], Ghostnet [23], and
YOLOv5 [24], emerged as good options for edge devices.
Mobilenetv3 was used to construct network structures for
mobile platforms based on neural architecture search (NAS).

Mixnet improved detection accuracy by combining mul-
tiple convolutional kernels of different sizes. Ghostnet
reduced computation of feature maps to improve detec-
tion speed. YOLOv5 simplified the YOLOv4 model and
introduced many training techniques (such as mosaic data
augmentation) to achieve the performance of two-stage
detectors at a small cost. In the early work, we experi-
mented with Mobilenetv3 [21], Mixnet [22], Ghostnet [23],
YOLOv5s [24] and other lightweight networks for gen-
eral purpose. Experimental results show that YOLOv5s
model has the highest mAP value (Section IV-C) and is
the best choice for baseline model. However, the num-
ber of parameters and calculation amount of YOLOv5s
model are much larger than other networks, so we will
improve YOLOv5.

In general, the lack of a suitable algorithm to guide the
feeding machine, the complex environment of a pigeon house
(including interference from light, feces, and other distur-
bances), the difficult in assessment of pigeon growth stages,
and the difficulty in detecting young pigeons have limited
used of smart feeding systems for pigeon care. In this work,
we modified the YOLOV5n network as LN-STEP-YOLO,
a method that can identify the growth stage of each pigeon
in each cage with fast and high accuracy in an edge device
environment, providing data that can be used to guide a
feeding machine to feed on demand.

III. LN-STEP-YOLO MODEL
A. THE STRUCTURE OF LN-STEP-YOLO MODEL
YOLOv5 is a mainstream algorithm developed for object
detection in a single stage, with advantages of high speed,
accuracy, and easy to use. We achieved good results in
pigeon age recognition using YOLOv5s, but this method was
not modified based on the edge deployment environment,
making it difficult to detect small-sized pigeons and distin-
guish overlapping pigeons. Based on our previous experience
with YOLOv5s, we first halved the number of channels of
YOLOv5s to YOLOv5n, which reduced the parameters by
nearly 75%, but the mean average precision (mAP) of the
model only decreased by 1.6%, suggesting use of YOLOv5n
as the baseline. Our subsequent work was based on a smaller
YOLOv5n. The overall structure of YOLOv5 [Figure 1 (a-c)]
includes the backbone (CSPDarknet) for extracting features,
neck [Feature Pyramid Network (FPN) and Path Aggre-
gation Network (PAN)] for fusing features, and head for
output.

Figure 2 shows the improved network structure (LN-STEP-
YOLO). To distinguish it from the standard network structure,
we renamed C3 as C3s (C3 with StepConv). The details of the
improvements are described in subsections III-B-III-F.

This study used the loss functions L, Intersection over
Union (IOU) loss LB, Category loss LC , Object Loss LO, and
three constants ( β, γ , and ζ ), to define the loss function of
YOLOv5, as follows:

L = βLB + γLc + ζLO (1)
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FIGURE 1. YOLOv5 network structure and its modules. (a) YOLOv5
network structure. (b) C3 block. (c) Bottleneck block. Number of input
channels ‘‘c’’ and number ‘‘n’’ are derived from (a).

Using the network output xn, Ground truth yn, and using
LC as an example,LC was defined as:

Lc = −

∑ [
yn × log xn + (1 − yn) × log (1 − xn)

]
(2)

IOU loss is calculated using CIOU [25]. Using the inter-
section between prediction box and Ground truth IOU, the
Euclidean distance between the prediction box and Ground
truth center coordinates ρ2(b, bgt ), the diagonal distance
of the minimum closure area between prediction box and
Ground truth c, the balance parameters α, and the prediction
box and Ground truth’s aspect ratio v, the LB was defined as
follows:

LB = 1 − CIOU (3)

CIOU = IOU −
ρ2(b, bgt )

c2
− αv (4)

α =
v

1 − IOU + v
(5)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (6)

B. StepConv
Many neural networks [such as Inception [26] and
Mixnet [22]] improved the network field of view by using

FIGURE 2. LN-STEP-YOLO structure. The meanings of the numbers in
parentheses are the same as in Figure 1.

multiple larger convolutional kernels for effectively improved
network accuracy. Large convolution kernels expanded the
receptive field, but also increased the computational load,
so Ultralytics [24] did not use large convolution kernels
in YOLOv5 to maintain a lightweight model. Assuming a
parallel expansion like for InceptionConv [Figure 3 (a)],
3 × 3, 5 × 5, and 7 × 7 convolutional operations were
performed. The computational overhead incurred was huge
compared to the use of only 3 × 3 convolutional kernels.
MixConv [Figure 3 (b)] [22] was optimized on this basis
by scaling the internal channels to perform 3 × 3, 5 × 5,
and 7 × 7 convolution operations, but this still increased the
computational overhead by using large convolution kernels.
To address the extra computational overhead caused by large
convolutional kernels, Vgg [27] used multiple consecutive
3×3 convolutional kernels to replace one large convolutional
kernel. In this way, multiple 3 × 3 convolution kernels can
be directly used to eliminate the large convolution kernels
used in Mixnet to reduce computation, but the computational
overhead was still higher than a standard 3 × 3 convolution.
Inspired by Ghostconv’s [23] [Figure 3 (c)] multiplexed
channels, we next proposed a new convolution structure
‘‘StepConv’’ [Figure 3 (d)], in which a 3 × 3 convolution
was decomposed into three 3 × 3 convolutions in a step-like
progression. By passing the receptive field in this recursive
manner, the receptive field could be expanded with reduced
parameters. By superposition of these convolution, the recep-
tive field of StepConv was equivalent to the effect of different
convolution kernels (3 × 3, 9 × 9, and 27 × 27).
The parameters and FLOPs of the model were calculated

based on the number of channels identified in Figure 3.
In terms of parameters, StepConv was 11

16 of the standard
convolution, and in terms of FLOPs, StepConv was slightly
less than 11

16 of the standard convolution.
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FIGURE 3. Different Conv structures. (a) InceptionConv, (b) MixConv,
(c) GhostConv, (d) StepConv. The numbers in parentheses mean the same
as in Figure1. Here, ‘c1’, ‘c2’ and ‘_’ represent the number of inputs,
outputs, and the hidden channels of the whole structure, respectively.

TABLE 1. Comparison of improvement.

C. STEM LAYER
To deal with the redundancy inherent in natural images [28],
we utilized the basis of Transformer [29], MLP-Mixer [30],
and Convnet [28] to segment input images into a relatively
small 2× 2 convolution, where the input image could be par-
titioned into individual patches, i.e., stem layers [Figure4 (b)].
The standard YOLOv5 was a slice of the original image
[Focus, Figure4 (b)], and the stem layer deepened the con-
volution depth of the model. Since the input image had only
three channels, the cost of splitting patches by convolution
was extremely small. From the results shown in Table 1,
the stem layer increased the parameters only by 816k, but
increased the mAP by 0.4.

D. EXTERNAL ATTENTION (EA)
People can rapidly detect and understand complex images,
but it is a complicated process to determine the most

FIGURE 4. Network first layer structure. (a) stem layer, (b) focus layer.

efficient strategies for machines to effectively and quickly
detect and make decisions. Self-attention is an exciting direc-
tion in attention-related research [31], but the computational
complexity of self-attention was squared and ignores poten-
tial connection between different samples. EA [32] is pro-
posed to solve this problem, and contains only two linear
and two normalization layers and has linear computational
complexity.

FIGURE 5. The structure of external attention (EA).

Figure5 shows the structure of EA. Query is a 1×1 convo-
lution, Mk , Mv are linear layers and are learnable parameters
independent of the input, serving as memory for the entire
training data set. EA is formulated as follows:

Fout = Norm(FMT
k )Mv (7)

where input feature F ∈ R(N×d), N is the number of image
pixels, d is the number of channels in the input feature map,
memory cell MkMv ∈ R(S×d), S is the hyperparameter with
a value of 64 [32], and Norm is the double-normalization
method [32].

The double-normalization process was performed as fol-
lows. First, Equation 7 was established. Second, Softmax
(Equation 8) was used on the second dimension of ã(i,j).
Finally, L1 Normalization was performed on the third dimen-
sion of ã(i,j) (Equation 9). After this calculation, the output of
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double-normalization a(i,j) was obtained.

ã(i,j)(i,j) = FMT
k (8)

â(i,j) =
exp(ã(i,j))∑k
i=0 exp(ã(k,j))

(9)

a(i, j) = â(i,j)
k∑
i=0

exp(â(i,j)) (10)

Figure6 (a - f) show that with EA, the model better
extracted the effective features (the region where the pigeons
are located).

FIGURE 6. Input feature maps of the three output layers superimposed
on the original image. (a - c) without EA, (d - f) with EA. The color shifts
from blue to red, and the closer the color is to red, the higher the
attention of the region.

E. DOWNSAMPLING IMPROVEMENT
Downsampling results in information loss, and it is common
practice [33], [34], [35] to expand the output channel of
the convolution operation to compensate for this information
loss. If output channel expansion is used on top of StepConv,
the first convolution of StepConv for channel expansion
poses two problems. First, the computation of this module
increases exponentially. Second, with multiple downsam-
pling layers andmultiplying the number of channels, the com-
putation of the whole model explodes, which is not consistent
with the design concept of stepwise convolution. Therefore,
we chose to optimize the downsampling layer in themodified,
extremely separated convolutional block [XsepConv [36]].

The standard XSepConv [Figure7 (a)] was concatenated
in the order of 2×2 (step=1), 1×3 (step=2), 3×1 (step=1)
DW convolution, SE layer, and 1×1 standard convolution.
The improved XSepConv [Figure7 (b)] separated the 2×2
convolution (stem) independently, in parallel with the sub-
sequent structure. The mAP values were equal before and
after this modification, but the improved XSepConv brought
more ‘‘Patchify’’ layers to the model, and the computational
overhead of the improved XSepConv was slightly reduced
compared to the standard XSepConv due to the increased step
length.

F. LAYER NORMALIZATION (LN)
After incorporating the improvements described in
Section III-E (Table 2), we observed a substantial reduction

FIGURE 7. Comparison of XSepConv structures. (a) standard XSepConv,
(b) improved XsepConv.

TABLE 2. Comparison of improvements.

TABLE 3. Experimental comparison of LN replacement of BN.

in the computational effort and parameters of the model.
However, the mAP of the improved model was even lower
than the baseline (YOLOv5n) by 0.04. This was not the result
we wanted, so we revisited the structure of the model and
found that our proposed network included a large number of
BN layers (a StepConv module and an XsepConv module
with three and four times the volume of BN layers as a
standard convolution, respectively). The BN was still the
preferred solution for most vision tasks, despite the fact
that too many BNs can have a bad effect on the model.
A simpler LN is often used in Transformers, and given that
the previous improvements significantly changed the model
structure, we next evaluated the LN replacement of BN [28].
The formula for LN is as follows:

y =
x − E(x)

√
Var(x) + ε

× γ + β (11)

where E(x) represents the mean, Var(x) is the standard devi-
ation, γ and β are the training parameters, and ε is 1e− 5 to
avoid Var(x) equal to 0.
Downsampling can reduce the resolution, so we did

four experiments (Table 3) differentiated by the downsam-
pling layer. We tested the standard model (the model in
Section III-E), keeping the same BN; Experiment I, with
BN replaced with LN in all network layers; Experiment II,
BN replaced with LN only in the downsampling layer; and
Experiment III, replacing BN with LN only in the non-
downsampling layer.
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The experiments in Table 3 showed that LN replacement of
BN was feasible, with improvements for all three variations.
Surprisingly, Experiment III exhibited better performance
and even made up for the reduced mAP in Section III-E.
Therefore, we chose to use LN in the non-downsampling
layer (Experiment III).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The experimental environment used was Windows 10
64-bit operating system, Intel(R) Xeon(R) CPU E5-2678
v3 @ 2.50GHz 2.50GHz, 64GB RAM, NVIDIA GeForce
RTX 2080 Ti graphics card, and the same training parameters
as YOLOv5 [24] were used in the experiment. To evaluate
the model, we selected AP, mAP, FLOPs, and Parameters.
AP and mAP reflect precision and recall, and the higher the
values of AP and mAP, the better the model’s classifica-
tion performance. FLOPs and Parameters reflect the model’s
parameters and computational complexity, and the smaller
the values of FLOPs and Parameters, the less complex the
model is. Although the neck part of YOLOv5 introduces
additional computational complexity [37], it is beneficial to
the learning of the model. Therefore, we retained the neck
part of YOLOv5.

A. DATASET
Images obtained from multiple perspectives allowed the
model to learn more effective features. The data collection
times were 8:00 am to 11:00 am, 2:00 pm to 5:00 pm, and
8:00 pm to 10:00 pm every day. The location of the pigeon
farm wasMeizhou, Guangdong, China. A total of 988 images
(Figure8) were obtained. Of these, 788 were randomly

FIGURE 8. Number of pigeons in the five stages. Classes 1-5 correspond
to stages 1-5, respectively, and the y-axis shows the number of pigeons in
each class.

selected as the training set, and the remaining 200 formed
the test set (approximate 4:1 ratio). Each image contained
1 to 5 young pigeons, and the total number of samples was
about 2700.

The dataset was divided according to experienced workers,
pigeon hatching record and the guidance of the food intake
of young pigeons [38], [39]. Pigeon hatching records refers
to the artificial records of the breeding workers, including the
hatching time of pigeons and the number of days of growth.
The five stages of the pigeons were designated (Figure9) as
follows: 1 (birth, 1-4 days), 2 (5–8 days), 3 (9–14 days),
4 (15–20 days), and 5 (after 21 days).

FIGURE 9. The five stages of the pigeon. (a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4, (e) stage 5.

Stage 1 is the pigeon spawn stage. The pigeons at this
stage were easily obscured and were difficult to observe,
so we added some photos of pigeons in stage 1. Stage 5
corresponds to the slaughtering stage [40] and the sample size
was smaller.We also performed data enhancement (Figure10)
of the images by flipping, changing the saturation or color,
and stitching four randomly cropped images (mosaic) [24].

FIGURE 10. Data enhancement (flipping, changing the saturation or color,
and mosaic).

B. NETWORK PERFORMANCE EVALUATION
Given that true negatives (TN) are not utilized in object
detection frameworks, it is recommended that object detec-
tion algorithms steer clear of TN-based metrics like TPR,
FPR, and ROC curves [41]. Instead, the assessment of object
detection algorithms should be based on precision (P) and
recall (R), which are defined as average precision (AP) and
mean average precision (mAP), respectively, as follows [42]:

P =
TP

TP+ FP
(12)

R =
TP

TP+ FN
(13)

AP11 =
1
11

∑
R∈(0,0.1,··· ,0.9,1)

P(R) (14)

P(R) = max
R̃ : R̃≥R

P(R) (15)

where TP represents true positives, FP represents false posi-
tives, and FN represents false negatives. The AP is calculated
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using the 11-point interpolation method [42], and P(R) repre-
sents the highest precision achieved when the recall value R
surpasses a predefined recall threshold R.

C. ANALYSIS AND EVALUATION
Figures 11 (a - c) show three plots of the LN-STEP-YOLO in
the validation set obtained for the loss [Figure11 (a)], mAP
[Figure11 (b)], and P-R curves [Figures 11 (c)]. As shown in
Figure11, the curves behave well. The loss starts to converge
at about 350 epochs. mAP was stable at about 200 epochs.
The AP values for the five stages of the model were 0.936,
0.922, 0.969, 0.929, and 0.884, respectively.

Figure12 (a) shows the labels we made (ground truth)
and Figure12 (b - g) show the results of different network
detections. Figures 12 (a) - (e) were analyzed in combination
with Tables 4-6.

FIGURE 11. Cross-validation curves. (a) loss, (b) mAP, (c) P-R curves.

To analyze the impact of the improved method pro-
posed here on the performance of the YOLOv5 algorithm,
we designed six sets of experiments (Table 4) according
to the order of problem solving. The experimental environ-
ment used was Windows 10 64-bit operating system, Intel(R)
Xeon(R) CPU E5-2678 v3 @ 2.50GHz 2.50GHz, 64GB
RAM, NVIDIA GeForce RTX 2080 Ti graphics card, and the
same training parameters used in the experiment.

YOLOv5nwas obtained by halving the number of channels
of YOLOv5s. In terms of mAP values (Tables 4 and 5), the
accuracy of YOLOv5n was only 1.6% lower than that of
YOLOv5s (Experimental group I ), which still had a high
mAP. However, in terms of practical results, YOLOv5n easily
produced multiple detection frames on one object when the
pigeon overlap was high [as shown in the 1st and 3rd pictures

FIGURE 12. Detection effects of different models. (a) ground truth,
(b) ghostnet, (c) mobilenetv3, (d) mixnet, (e) YOLOv5s, (f) YOLOv5n,
(g) LN-STEP-YOLO. In the yellow box, the number of detections is greater
than the ground truth, and in the orange box, the number of detections is
less than the ground truth.

of Figure12 (f)], making it not suitable for practical applica-
tion. This was also a drawback of simply halving the number
of YOLOv5s channels, which made the YOLOv5n model
less able to recognize overlapping pigeons, resulting in multi-
detection. However, some heavily obscured pigeons, such as
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TABLE 4. Effect of improved methods on model performance.

TABLE 5. Performance of different models.

the leftmost pigeon in the first panel of Figure12 (a), were
only correctly identified by the LN-STEP-YOLO method
[Figure12 (g)].

By observing Table 4 and Fig. 12 (f) and (g), it can be seen
that the performance of these experimental groups gradually
improved. In Experiment II, StepConvwas introduced, result-
ing in a 0.004 increase in mAP, a 1.3G decrease in FLOPs,
and a 0.21G increase in parameters. In Experiment III, Stem
was introduced, resulting in a 0.004 increase in mAP, a 0.2G
increase in FLOPs, and no change in parameters. In Experi-
ment IV, EA was introduced, resulting in a 0.005 increase in
mAP, a 0.5G increase in FLOPs, and a 0.21G increase in
parameters. The introduction of an improved XSepConv
in Experiment V resulted in a 0.019 decrease in mAP, a
0.2G decrease in FLOPs, and a 0.53G decrease in param-
eters. In Experiment VI, LN was introduced in all non-
downsampling layers, resulting in a 0.021 increase in mAP, a
0.5G decrease in FLOPs, and a 0.01G decrease in parameters.
LN-STEP-YOLO had 1.5% more mAP, 1.3G less computa-
tion, and 0.54G less parameters than YOLOv5n, with better
actual results, especially for the recognition of smaller, over-
lapping pigeons, than YOLOv5n.

To analyze the proposed LN-STEP-YOLO, we compared
the performance of the model with that of other mainstream
lightweight networks (Tables 5 and 6). In Tables 5 and 6, the
Intersection of Union (IOU) of average precision (AP) is 0.45
and the same training parameters were used for all experi-
ments. Bolded numbers indicate that the item is the best, and
italicized numbers are the result of LN-STEP-YOLO.

As shown in Tables 5 and 6, the mAP of LN-STEP-
YOLO was 0.928, the FLOPs was only 3.7G, and the number
of parameters was only 1.25G. In terms of training mem-
ory usage, Mixnet with large convolution kernels had the
highest memory consumption, while Mobilenetv3, Ghostnet,
YOLOv5s, and LN-STEP-YOLO had similar memory usage.
The AP of LN-STEP-YOLO outperformed that of the other
models (includingYOLOv5s) in Stages 1-3where the overlap
was higher and the body size was relatively small. In addi-
tion, the AP of LN-STEP-YOLO was second to Mixnet and

TABLE 6. Classification performance of different models.

YOLOv5s in Stage 4 and second only to Mixnet in stage 5.
YOLOv5s contains a much higher number of channels than
other networks and has a richer feature combination rela-
tionship, resulting in far greater computation. Mobilenetv3
and Ghostnet showed AP values in Stages 4-5 that were
lower thanMixnet, indicating that large convolutional kernels
allowed improved detection of targets with larger body size.
The inferiority of LN-STEP-YOLO to Mixnet for the detec-
tion of large-sized pigeons may be a drawback of splitting the
large convolutional kernel into multiple small convolutional
kernels. However, the combination of multiple small convo-
lutional kernels (StepConv) still retained some of the advan-
tages of large convolutional kernels for the detection of larger
targets, so LN-STEP-YOLO still outperformed Mobilenetv3
and Ghostnet in detection during Stages 4-5. The detection
of smaller, overlapping pigeons is more important, because
larger pigeons are usually not hidden at another angle and
were generally easy to detect, while smaller pigeons were
more likely to be hidden by their parents or other young
pigeons, making them difficult to detect.

Overall, compared to other commonly used lightweight
algorithms, LN-STEP-YOLO boasts the lowest computa-
tional and parameter requirements while demonstrating the
best detection performance in the more crucial Stage1-3
pigeon detection. Additionally, its mAP score ranked sec-
ond, only 0.1% lower than YOLOv5s, with LN-STEP-YOLO
having approximately 17% of YOLOv5s’ parameters and
19% of its Flops. These results suggest that LN-STEP-YOLO
is a highly efficient and accurate object detection model,
particularly in detecting pigeons in practical applications.

V. CONCLUSION
In this work, an LN-STEP-YOLO pigeon age detection algo-
rithm was developed to address the limitations of existing
general-purpose target detection algorithms for recognition
of the growth stages of pigeon members in cages in an envi-
ronment of edge devices. In order to cater to edge devices
with limited computing power, this method first reduces the
channel count of YOLOv5s by half, resulting in lower feature
relationship complexity and computational cost as compared
to YOLOv5s. While low computational cost is an advantage,
it also brings about the drawback of low feature relationship
complexity, which may affect the model’s ability to express
features. To tackle the problem of low complexity in fea-
ture relationships, we have developed a new method called
LN-STEP-YOLO. Our approach boasts several innovations:
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firstly, we have introduced a convolution structure that has
a large convolution kernel efficiency while requiring less
computational complexity. Secondly, we have improved the
input module and XsepConv. Finally, we have integrated EA
and LN to further enhance the model’s performance. Experi-
mental results indicate that the LN-STEP-YOLO method has
a mAP that is only 0.1% lower than that of YOLOv5s, and
has lower computational cost, and outperforms YOLOv5s in
Stage1-3 of pigeon detection. Finally, the developed method
in this paper reached mAP of 0.928, parameter of 3.7G, and
FLOPs of 1.25G in the validation set, indicating this method
shows excellent performance for the detection of pigeons
with small size and overlap and meets the requirements of
determining pigeons’ growth stage in a real environment. The
pigeon farm is situated in a semi-exposed environment, and
specific weather conditions, such as heavy fog, can cause
interference, such as rain streaks appearing in the image,
resulting in a decrease in image quality and an increase
in noise levels. Low-quality and high-noise level images
may negatively impact the model’s performance. Therefore,
in the future, we will take into account the effects of spe-
cific weather conditions and further optimize the LN-STEP-
YOLO model to effectively address these challenges.
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