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ABSTRACT This paper presents a pragmatic approach established on the hybridization of nature-inspired
optimization algorithms and Bernstein Polynomials (BPs), achieving the optimum numeric solution for
Nonlinear Optimal Control Problems (NOCPs) of dynamical systems. The approximated solution for NOCPs
is obtained by the linear combination of BPs with unknown parameters. The unknown parameters are
evaluated by the conversion of NOCP to an error minimization problem and the formulation of an objective
function. The Fitness Dependent Optimizer (FDO) and Genetic Algorithm (GA) are used to solve the
objective function, and subsequently the optimal values of unknown parameters and the optimum solution of
NOCP are attained. The efficacy of the proposed technique is assessed on three real-world NOCPs, including
Van der Pol (VDP) oscillator problem, Chemical Reactor Problem (CRP), and Continuous Stirred-Tank
Chemical Reactor Problem (CSTCRP). The final results and statistical outcomes suggest that the proposed
technique generates a better solution and surpasses the recently represented methods in the literature, which
eventually verifies the efficiency and credibility of the recommended approach.

INDEX TERMS Bernstein polynomials, dynamical systems, fitness dependent optimizer, genetic algorithm,
nonlinear optimal control problems, optimization problem, optimization techniques.

I. INTRODUCTION
The dynamical systems can be represented by the mathemat-
ical model designed in the form of an optimization problem,
for instance, Optimal Control Problems (OCPs). The OCPs
include dynamic optimization problems which demand com-
plex mathematical operations and contain enormous practical
significance and industrial applications in nearly all branches
of science, i.e., robotics, aeronautics, plasma physics,
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chemical engineering, etc. Due to the sophisticated nature of
OCPs, achieving the optimal solution numerically could be
relatively tedious [1], [2].

Several numerical methods in the literature were
proposed by distinguished researchers with considerable
attention toward OCPs containing nonlinear and dynam-
ical characteristics to determine their optimal solution
and improve the quality of existing techniques [2], [3].
The following papers highlight a few of such OCPs with
applicable numerical schemes where Ratković [4] identified
for OCPs certain limitations of indirect and direct methods
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by applying them to two endogenous growth models.
Stryk and Bulirsch [5] presented a precise list of gener-
ally applied direct and indirect approaches to achieve the
numerical solution of different OCPs. The authors suggested
a hybrid approach to adequately overcome two deficien-
cies, i.e., less accuracy and convergence areas, for problems
like the Brachistochrone Problem and the Apollo Reentry
Problem. Wu et al. [6] devised a computational approach
using the control parametrization scheme and gradient-
based optimization techniques for solving OCPs having
diverse time delays and canonical inequality and equality
constraints. The authors ultimately yielded more effective
approximate numerical results than conventional techniques.
Alipour et al. [7] tailored a hybrid scheme using a com-
bination of the Homotopy Analysis Method (HAM) and
discretization techniques. The authors applied this technique
to various NOCPs, comparing the obtained approximate solu-
tion with the traditional methods and verifying the applicabil-
ity of the proposed hybrid approach. Jia et al. [8] employed
Optimal HAM (OHAM), solving varied linear OCPs with
quadratic performance index, for instance, a linear scalar
time-invariant system. The authors attained the approximated
solution and represented the verification for the validity of
this scheme by the results of comparison with other tech-
niques. S. Ganjefar and S. Rezaei [9] suggested a hybrid
scheme, consolidating the Homotopy Perturbation Method
(HPM) and the Padé technique (HPM-Padé method). The
authors enhanced the accuracy and broadened the conver-
gence domain of the approximate analytical solution for the
concerned OCPs. Nazemi et al. [10] utilized a robust and effi-
cient approximatemethod, namely theDifferential Transform
Method (DTM), constructively solving a class of NOCPs.
The authors acquired the approximate solutions of several
nonlinear differential equations without the requirement for
linearization or discretization processes. Xuesong et al. [11]
presented a spectral method based on Galerkin Approxima-
tion and Chebyshev Polynomials (GACP) for NOCPs and
demonstrated its effectiveness via some numerical exper-
iments, which provided a more stable approximate solu-
tion than the compared techniques, whereas Dehghan [12]
designed an iterative numerical procedure that is dependent
on State Parametrization (SP) and Cardan Polynomials (CP)
for competent approximation of numerous OCPs. Mirinejad
and Inanc [13] introduced a direct numerical technique for
OCPs which is based on Radial Basis Functions (RBFs),
namely, the RBF collocation method, discretized the OCPs,
and transcribed them into some Nonlinear Programming
(NLP) problems. The authors applied the proposed scheme to
the Brachistochrone Problem and the Unmanned Aerial Vehi-
cles (UAVs) navigation problem, achieving better approxi-
mate results than the Legendre pseudospectral method and
B-spline technique, whereas Moghaddam et al. [14] rec-
ommended a direct numerical approach to accurately deal
with OCPs via Genocchi polynomial basis, transforming
the OCP into an NLP problem. The authors examined

the performance and accuracy of the proposed methodol-
ogy and implemented it on five different OCPs, including
the Breakwell Problem. El-Kady [15] exploited divergent
numerical techniques, e.g., Legendre approximation, Penalty
Partial Quadratic Interpolation (PPQI), transforming OCPs
represented as Ordinary Differential Equation (ODE)
into equivalent constrained optimization problems and
eventually ascertaining the numerical results executed.
Edrisi-Tabri et al. [16] generated the approximate analytical
solution for diverse nonlinear constrained quadratic OCPs
by adopting linear B-spline functions. Cichella et al. [17]
implemented BPs on various nonlinear constrained OCPs
after rigorous analysis of their peculiarities and rendered
the numerically accurate and computationally appropriate
approximate results, whereas Ahmed and Ouda [18] elab-
orated on the effectiveness of Boubaker Polynomials with
the aid of theoretically noticed rapid convergence rates for
Quadratic OCPs (QOCPs) and compared the optimum solu-
tion achieved with some other approximation techniques.

The NOCPs demand high-quality approximate solu-
tions, which could not be achieved solely by available
numerical methods because of their limitations and draw-
backs. Recently, nature-inspired optimization techniques
have emerged as a promising approach to operating NOCPs
substantially better than conventional numerical schemes.
These optimization algorithms exhibit tremendous applica-
tions in the industrial and scientific domains [19]. The nature-
inspired optimization techniques encompass a plethora of
advantages, including simple conceptualization, lucid mathe-
matical calculations, derivative-free, and the ability to deftly
grapple with the intricacies of genuine engineering problems
and continuous-time systems par excellence [20].

To name just a few such techniques, GA proficiently tack-
led the trajectory tracking problem for some nonlinear sys-
tems [21]. Particle Swarm Optimization (PSO) meticulously
handled the tuning of the Artificial Neural Network (ANN)
controller for nonlinear systems [22]. Differential Evolution
(DE) tactfully addressed the OCPs utilized for the power
flow in a complex structure of Microgrids (MGs) [23]. Arti-
ficial Bee Colony Optimization (ABCO) splendidly achieved
an optimal solution for a nonlinear inverted pendulum and
ingeniously produced a linear quadratic optimal controller
design [24]. Cuckoo Search Algorithm (CSA) demonstrated
its diverse characteristics by providing justifiable accuracy
measures and convergence rates when applied to several engi-
neering design optimization problems, e.g., pressure vessel
design and compression/tension spring design [25].Firefly
Algorithm (FA) proved its significantly powerful optimiza-
tion capability by solving the nonlinear dispatch problem
and providing the optimum solution for multi-generation sys-
tems [26], [27], [28]. Teaching Learning Based Optimization
Algorithm (TLBOA) outperformed conventional numerical
methods by competently solving various complex optimiza-
tion problems, including the Optimal Power Flow (OPF)
problem for theminimization of dual objective functions [29].
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FDO demonstrated its capability by favorably dealing with
the multi-source Interconnected Power System (IPS) via the
implementation of a prolific Automatic Generation Control
(AGC) [30], [31]. Further, FDO has also been utilized for the
optimization of various NOCPs, and the solutions generated
were validated by comparative and statistical analyses [32].
Other equivalent algorithms are sufficient to unravel the pre-
vailing strength of multifaceted nature-inspired optimization
techniques, yielding global optimal results with swift con-
vergence rates compared to miscellaneous formerly designed
schemes practiced on distinctly authentic optimization
problems.

Despite verifying the capabilities of individual nature-
inspired optimization algorithms at each stage for deter-
mining the optimal solution of several nonlinear problems,
it is worth mentioning that such techniques occasionally
require the incorporation of other methods to enhance the
quality of the solution. An advanced technique, entitled
the hybridization approach, originated for resolving numer-
ous complex real-world optimization problems. The hybrid
approaches sometimes apply local search techniques, opti-
mizing the performance of various algorithms reliant on the
population, ameliorating the quality of previously obtained
results, and further dampening the processing time. Eventu-
ally, such immaculately designed hybrid techniques proved
to be a remarkable strategy for the refinement of the
solution accomplished solely by evolutionary optimization
algorithms.

The incredible problem-solving attributes pertaining to
hybridized optimization techniques could be verified by
investigating the below mentioned citations where Ma [33]
introduced an optimal control technique for aWhole Network
Control System (WNCS) and utilized the eclectic ensemble
of GA, Neural Network (NN), and fuzzy control, incorporat-
ing the benefits of excellent self-learning capacity of NNwith
powerful global search capability of GA. Haghighi et al. [34]
proposed a hybrid architecture by integrating GA and PSO
for optimal path planning problems of diversified UAVs amid
coverage missions. Malik et al. [35] recommended a heuris-
tic scheme based on GA for numerically solving the non-
linear dynamical system of the generalized Burgers’-Fisher
equation. Mahfoud et al. [36] presented a hybrid structure
with a fusion of controller, i.e., Proportional Integral Deriva-
tive (PID) and Ant Colony Optimization (ACO) algorithm
optimizing PID controller gains pertaining to Direct Torque
Control (DTC) for Doubly Fed Induction Motor (DFIM).
Stodola et al. [37] executed a progressive hybrid approach
with a unique combination of ACO and Simulated Annealing
(SA) to significantly outperform other existing metaheuris-
tic algorithms applied to the Dynamic Traveling Salesman
Problem (DTSP). Khadanga et al. [38] consolidated Modi-
fied Grey Wolf Optimization (MGWO) and CSA (MGWO-
CSA) for Load Frequency Control (LFC). The authors finally
applied the hybrid algorithm-based load frequency controller
on a hybrid power system with multiple areas and sources for
its robustness and effectiveness verification. Taeib et al. [39]

formulated an innovative Model Predictive Control (MPC)
technique for nonlinear systems by combining Takagi-
Sugeno (TS) fuzzy models and constrained CSA. The authors
validated the efficacy of the hybridization scheme by exe-
cuting it on a Three Tank System (TTS). Alghamdi [40]
implemented a hybrid evolutionary technique entailing FA
and Jaya Algorithm (JA), i.e., HFAJAYA, providing the opti-
mal solution for single and multiple objective functions OPF
problems of power systems. El-Shorbagy et al. [41] offered
a hybrid scheme combining the strengths of GA and FA
metaheuristic algorithms, i.e., HGAFA. The authors utilized
the HGAFA technique to solve multitudinous Engineering
Design Problems (EDPs) with better convergence rates and
reduced computational intricacies. Dastan et al. [42] featured
a distinctive compilation of optimization algorithms, i.e.,
Hybrid TLBOA and Charged System Search (HTC) algo-
rithm, providing the optimal solution for numerous complex
engineering and mathematical optimization problems, e.g.,
72, 120, 244, and 942-bar truss structure design optimization
problems. Ali et al. [43] employed the Dandelion Optimizer
(DO) for the optimization of LFC of the IPS. Abbas et al. [44]
achieved the optimum values of the weights and biases of NN,
reduced the Mean Square Error (MSE) for relevant optimal
problems, and effectively employed a hybridization scheme
merging FDO and Multi-Layer Perceptron (FDOMLP). Chiu
et al. [45] rendered an innovative hybridization approach
by amalgamating FDO and the Sine Cosine Algorithm
(FDO-SCA). The authors efficiently provided improved per-
formances and rapid convergence speed for numerous Bench-
mark Functions (BFs).

In this paper, a hybrid scheme is presented, which is
composed of a contemporary nature-inspired optimization
algorithm, i.e., FDO, and an eminent approximation tech-
nique, namely, BPs, to procure precisely the optimal solu-
tion of various real-world NOCPs. The proposed approach
approximates divergent NOCPs by utilizing a linear combina-
tion of Bernstein basis polynomials containing unrecognized
parameters. An objective function is devised by an adequate
modification of a dynamical system under consideration to
some essentially equivalent optimization problem. The best
values of unknown parameters are yielded by exploiting GA
and FDO, which effectually solve the nonlinear optimiza-
tion problem(s). Besides, the efficacy of the recommended
hybrid scheme is quantified by comparison with the formerly
designed techniques and significantly minimized Absolute
Error (AE) values. Finally, the statistical analysis is presented
to establish the robustness and proficiency of the proposed
hybrid approach.

The main contributions of the proposed hybrid scheme are
mentioned as follows:
1. A stochastic hybrid computational technique designed for

numerically solving distinct real-world OCPs of nonlinear
dynamical systems.

2. The hybridization of BPs with metaheuristic algorithms,
i.e., FDO and GA, to effectively attain the optimal
solution.
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3. The approximation of NOCPs by a simple and efficient
approach hybridizing BPs with evolutionary algorithms,
i.e., FDO-BP and GA-BP.

4. The formulation of FDO-BP and GA-BP based fitness
functions for obtaining the optimum results.

5. The performance assessment of the suggested hybrid
methodology via extensive comparison with previously
designed techniques.

6. The validation of the robustness of the proposed method
by evaluating a detailed statistical analysis.
This article is organized into several crucial sections, as fol-

lows: Section II elaborates on a generalmathematical descrip-
tion of OCPs. Section III discusses the workingmechanism of
the nature-inspired optimization algorithms and BPs utilized
for the current study. Section IV introduces the recommended
technique. Section V illustrates the results accomplished by
implementing the proposed approach. Section VI presents
the statistical analysis conducted for the suggested method,
followed by the conclusion and future directions concerning
such research fields in Section VII.

II. OPTIMAL CONTROL PROBLEMS
The dynamical system represents a mathematical model
defining the temporal evolution of a particular engineered
system over time. The mathematical model of such con-
trol systems can be designed by utilization of manifold
optimization problems, e.g., OCPs. The OCP denotes the
generalized mathematical form containing a set of dif-
ferential equations which describe the control variable(s)
that optimize the cost function over a specific period of
time.

The pivotal constituents of an OCP statement are as
follows: (i) A mathematical model of a particular system
necessary to be optimized; (ii) An appropriate outcome of
the concerned mechanism; (iii) A group comprising per-
mitted input values; (iv) A cost function/performance index
required for efficacy measurement of the control system in
contemplation.

Optimal control theory deals with the problem of encoun-
tering a control function for a system under consideration
during predetermined time limitation [ti, tf ]. A set containing
nonlinear differential equations represents the control law for
a specific system, as mentioned below:

u (t) = f (t, x (t) , ẋ(t)) (1)

here u(t) symbolizes the mathematical model of a speci-
fied dynamical system that needs the application of various
control processes for optimum performance and is typically
presented by an assemblage of first-order differential equa-
tions. Moreover, f exemplifies a real-valued function that is
continuously differentiable.

For a dynamical system required to be controlled, the
state function consists of a set of boundary conditions imple-
mented at the initial and final time, i.e., ti and tf , respectively,

as follows:

x (ti) = x0, x
(
tf

)
= xf (2)

where u (.) : [ti,tf ] → R and x (.) : [ti, tf ] → R demonstrate
the control and state variables, respectively. Additionally, x0
and xf represent some vector elaborating x (.) subjected to
boundary condition(s).

Throughout the limit t ∈ [ti,tf ] → R, it is presumed
that u (.) equals to piecewise continuous function. Therefore,
it could be implied that modifications due to themathematical
operation(s) enforced on u (.) directly affect the final result of
the related differential equation(s).

The performance index J is presented in a mathematical
form by using some scalar function that defines the neces-
sary requirements. The minimization of J assists in deter-
mining the optimum solution for a given OCP. Generally,
the mathematical formulation of J could be expressed as
below [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], and [20]:

J =

∫ tf

ti
L(t, x (t) , u(t))dt (3)

here, it is assumed that L equals to the nonnegative scalar
function, which is tentatively differentiable in all cases, e.g.,
L (t, 0, 0) = 0. In addition, the Lagrange problem is an
alternative term for the optimization problem containing J ,
as exhibited in (3).

Subsequently, OCP established the fundamental objectives
of determining an optimal value for control u(·), transmit-
ting u(t) from condition x (ti) = x0 to x

(
tf

)
= xf in

the duration
(
tf − ti

)
, and executing best-minimized solu-

tion for J [1], [2], [3], and [12]. Besides, for a com-
prehensive study of the OCPs discussed in this research
work, i.e., (1) - (3), avid readers should refer to [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], and
[45] and the citations therein.

III. NATURE-INSPIRED OPTIMIZATION TECHNIQUES AND
BERNSTEIN POLYNOMIALS
This section introduces concisely BPs, a versatile approxima-
tionmethod, and two nature-inspired optimization algorithms
utilized in this research work, i.e., GA, a renowned algorithm,
and FDO, the latest algorithm, providing a gist of their actual
working mechanism.

A. GENETIC ALGORITHM
The GA is a powerful probabilistic heuristic optimization
technique that mimics the process of evolution and utilizes
a global search strategy to find the best possible solution to
an optimization problem. The profound notion behind GA
is established on the survival of the fittest candidate, which
warrants merely the competent and fit chromosome(s) to
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execute the successive iteration(s). A stepwise description of
the working of GA is presented below [32], [33], [34], [35],
[41], and [46]:

Step 1:Initialization GA scrutinizes for an optimum
solution by initiating with a randomly
created population of individuals
(i.e., not only a solitary individual)
known as chromosomes. These chro-
mosomes offer a probable solution
for the specified problem. Therefore,
an arbitrarily produced fitness-based
value is allocated to every chromo-
some to help identify the quality of the
solution.

Step 2: Evaluation The fitness of each individual in the
population is evaluated using a fitness
function that is designed to either max-
imize or minimize an objective func-
tion. Individuals with better fitness
values are preferred for reproduction
in the succeeding step.

Step 3: Selection Based on the fitness level of indi-
viduals, a subset is selected from the
overall population to be the parents
of the upcoming generation. There
are several methods for selection, e.g.,
roulette wheel selection, tournament
selection, and rank selection.

Step 4: Crossover The goal of crossover is to originate
child chromosomes via reincorpora-
tion of parent chromosomes, rendering
the updated generation which exclu-
sively contains the robust individuals.

Step 5: Mutation If the desired fitness level is not
achieved by the reformed generation
or there is rapid convergence, then
mutation could offer some solution by
inaugurating diversity into the popula-
tion and exploring new dimensions of
the search space. However, the proba-
bility of mutation is typically low, i.e.,
ranging from 0.1% to 1%, contingent
upon the problem.

Step 6: Termination The aforementioned steps are reiter-
ated during consecutive generations,
assessing the most appropriate solu-
tion for a particular problem by uti-
lizing the genetic operators (e.g.,
selection, crossover, and mutation),
where required, until the termination is
attained. The stopping criteria encom-
pass the following necessary condi-
tion(s): (i) an adequate fitness value
accomplished; (ii) the maximal count
of iterations achieved.

Algorithm 1 exhibits the pseudocode of GA.

Algorithm 1 The Pseudocode representing Genetic
Algorithm [20]
Initiate t → 0
Produce Pi randomized %Pi =Population
Estimate Pi

while (standardized cessation unfulfilled)
Reiterate

for i = 1 till total Pi amount
CHOOSEM candidates
Search least fit candidate
Eliminate least fit candidate
CROSSOVER produce advanced candidates
Determine recent candidates
MUTATION employ (elective)
Assess reformed candidates

end for
end while

B. FITNESS DEPENDENT OPTIMIZER
FDO is a contemporary optimization algorithm which pro-
vides numerous effective real-life applications and assists
in efficiently determining the optimum solution for intricate
optimization systems, e.g., task planning in robotics, engi-
neering design, and economic problems. FDO contains a few
similar traits as PSO but also exhibits diversified and signif-
icantly unique features. It emulates the procreation conduct
of the bee swarms when the bees are exploring appropriate
hives. However, the fundamental conceptualization behind
this metaheuristic algorithm is acquired from the practice
of scout bees choosing the most pertinent hive among the
potential ones. Further, all the scout bees seeking desired
hives indicate a prospective solution. Therefore, the selection
of the finest hive raises the possibility of securing the optimal
solution with better convergence.

FDO initializes the randomly executed population of scout
bees inside the realm of the search area. The identification
of an appropriate hive location is vital, having a depen-
dency on the position of scout bee and the relevant fit-
ness function(s). Consequently, searching for the fittest hive
is the ultimate motive of scout bee which when fulfilled
and an advanced solution is discovered successfully then
the formerly allocated solution value is eluded. Conversely,
the inability of scout bee to attain an exceptional result
would be considered as a futile attempt and the previously
achieved result would be preferred to vary the scout bee
position [44], [45], [47], [48], [49].

The scout bee could be expressed as below:

Sb(b = 1, 2, . . . ., n) (4)

Scout bees utilize random walk techniques and fitness
weight fw to randomly search within the search area. The
movement of scout bee relies upon the pace p maintained by
the current scout for modifying position, as mentioned in (5).
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The inclusion of p assists in determining new and high-quality
solutions [47], [48].

Sb,t+1 = Sb,t + p (5)

here b refers to the current scout bee, which serves the pur-
pose of search agent. t denotes a recent generation, whereas
S demonstrates artificial scout bee. Further, p, which is based
upon fw, describes the direction and movement rate of artifi-
cial scout bee. Nonetheless, the direction of p totally counts
upon the randomization process. Accordingly, fw could be
estimated for some optimization problems by (6) and lies
inside the bound of [0, 1] as formulated below [47] and [48]:

fw =

∣∣∣∣∣ s
∗
b,t fitness

sb,t fitness

∣∣∣∣∣ − wf (6)

here sb,t fitness exhibits the optimal result concerning recent
scout bee, s∗b,tfitness represents some desirable result obtained
through scout bee until now, whereas wf (having the numer-
ical value of either 1 or 0) indicates the weight factor.

FDO possesses R random value enclosed by purview
[-1, 1]. Besides, the Levy flight operation is prioritized
over other random walk approaches since it contains a suit-
able distribution curve and facilitates attaining highly stable
movements. Thereupon, it is established that FDO needs
straightforward computations, i.e., R and fw, for accurately
evaluating the fitness function [47], [48].

Additionally, the global solution is achieved by random ini-
tialization of scout bee inside the scope of the inspection area,
and utilizing the related lower and upper limits. Henceforth,
fw is gauged depending upon the imperative requirements
mentioned below [47], [48].

For sb,tfitness = 0 or fw = 0 or fw = 1, p can be found by
the following [47], [48], [49]:

p = sb,t × R (7)

Similarly, R is evaluated while fw > 0 and fw < 1 by the
considerations defined as follows:

In-case R < 0, (8) can be utilized otherwise when R ≥ 0
applying (9) can provide the measure of p as fol-
lows [47], [48], [49]:

p = distancebestbee × fw× (−1) (8)

p = distancebestbee × fw (9)

For the evaluation of distancebestbee calculate the following:

distancebestbee = sb,t − s∗b,t (10)

Algorithm 2 demonstrates the pseudocode of FDO.

C. BERNSTEIN POLYNOMIALS
The BPs provide a resourceful approximation technique
that is endowed with several essential properties, mak-
ing it an indispensable method for refining approximated
solutions [17], [50], [51].

Algorithm 2 The Pseudocode representing Fitness
Dependent Optimizer [47]
Initiate Sb,t Population %Sb,t = Scout bee and b =

1, 2, 3, .., n
while maximum generation (t) unaccomplished
for Sb,t

examine best s∗b,t
perform randomization process Rϵ[−1, 1]

% R = random number
if Sb,tfitness == 0

fw = 0 %fw = fitness weight
else
utilize fw =

∣∣∣∣ S∗
b,tfitness
Sb,tfitness

∣∣∣∣ − wf % wf = weight factor

end if
if fw == 0 OR fw == 1

p = (sb,t × R) %p = pace
else
if R ≥ 0

p = (sb,t − s∗b,t ) × fw
else

p = (sb,t − s∗b,t ) × fw× (−1)
end if
end if
evaluate Sb,t+1 = Sb,t + p
if Sb,t+1fitness < Sb,tfitness

acknowledge Sb,t+1fitness
preserve p

else
execute Sb,t+1 = Sb,t + p % p contains prior value

if Sb,t+1fitness < Sb,tfitness
acknowledge Sb,t+1fitness
preserve p

else
retain present position

end if
end if
end for
end while

The general form of BPs with degree k on the interval
[0,T ] can be expressed as below [17], [50]:

Bi,k (t) =

(
k
i

)
t i (T − t)k−i

T k
(11)

here (
k
i

)
=

k!
i! (k − i)!

(12)

For i > k or i < 0 we get Bi,k (t) = 0, and for i = k = 0 we
obtain B0,0 (t) = 1.

The BPs are positive on the interval [0,T ], which is a criti-
cal factor in numerous applicationswhere quantities could not
be negative, i.e., Bi,k (t) > 0. Also, the sum of all BPs equals
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to unity for each real-valued t , as mentioned below [51]:∑k

i=0
Bi,k (t) = 1 (13)

Such polynomials could be executed recursively using the
equation as follows [17], [50], [51]:

Bi,k (t) =
(T − t)
T

Bi,k−1 (t)+
t
T
B
i−1,k−1

(t) (14)

Some derivatives of BPs within the limits of [0,T ] are pro-
vided below [51]:

˙Bi,k (t) =
k
T
(Bi−1,k−1 (t)− Bi,k−1 (t)) (15)

¨Bi,k (t) =
k(k − 1)
T 2 (Bi−2,k−2 (t)−2Bi−1,k−2 (t)+ Bi,k−2 (t))

(16)

Besides, for further details interested readers should refer
to [17], [32], [46], [50], and [51].

IV. PROPOSED METHODOLOGY
This section expounds on the investigation methodology con-
sidered in this research study, which involves combining
various Nature-Inspired Computation (NIC) algorithms and
BPs through hybridization techniques. The ensuing discus-
sion provides a comprehensive overview of these techniques
and their application in the research.

This research methodology assumes that the optimal
numeric solution for distinct real-world NOCPs can be
derived by expressing the approximate solution as a linear
combination of BPs accompanying unknown coefficients.
The approximations for the state variable(s) x(t), control
variable u(t), and performance index J are then formulated
by (17)-(19) as follows:

The accuracy of the approximation for x(t) is assessed
through the following evaluation:

x(t) =

k∑
i=0

αiBi,k (t) (17)

The estimation of the approximation for u(t) is determined by
considering (1) which involves measuring u(t) as a function
of the unknown coefficients of x(t), as illustrated in (18):

u(t) = f (t,
k∑
i=0

αiBi,k (t) ,
k∑
i=0

αi ˙Bi,k (t)) (18)

The approximation for J is ascertained by substituting
in (3) the approximated estimates for x(t) and u(t), as com-
puted above through (17) and (18), respectively.

Find J according to the following formulation:

J =

∫ tf

ti
L(t,

k∑
i=0

αiBi,k (t),

f (t,
k∑
i=0

αiBi,k (t) ,
k∑
i=0

αi ˙Bi,k (t)))dt (19)

The set of
(
α0, α1,...,αk

)
consists of parameters/coefficients

whose values are not initially known and need to be deter-
mined and tuned through computational operations. Here, the
value of k represents the degree of the BPs.

A. PROPOSED METHODOLOGY BASED ON HYBRID
APPROACH OF EVOLUTIONARY ALGORITHMS AND
BERNSTEIN POLYNOMIALS
This subsection particularly presents the investigation
approach followed herein, which involves hybridizing NIC
methods with BPs to address and overcome the inherent
complexities of distinctive real-world NOCPs. The proposed
approach has the potential to yield an effective and reliable
solution for the concerned problems under consideration, as
described below:

The assumption is that the control signal u(t) represents an
approximated numeric solution obtained by a linear combina-
tion of Bernstein basis functions with unknown coefficients,
i.e., denoted by k = 8, as formulated in (21):

x(t) =

8∑
i=0

αiBi,8(t) (20)

u(t) = f (t,
8∑
i=0

αiBi,8 (t) ,
8∑
i=0

αi ˙Bi,8 (t)) (21)

The necessary optimum values of the unknown parame-
ters are yielded by transforming the relevant NOCPs into
an adequate error minimization problem, as elaborated
by (22)-(25) for Problem 01 of this work.

ε1 =
1
2
((x1 (0)− 1)2 + (x2 (0)− 0)2) (22)

ε2 =
1

N + 1

N∑
i=0

(ẋ1 (t)− x2 (t))2 (23)

ε3 =
1

N + 1

N∑
i=0

(
ẋ2 (t)− u (t)+ x2 (t)− (1 − x21 (t))x2(t)

)2
(24)

εj = ε1 + ε2 + ε3 (25)

here the symbol N denotes the count of steps exploited
within the specified range, while ε1 signifies the mean for the
sum of square error of the initial condition(s). The symbols
ε2 and ε3 define the mean for the sum of square errors of the
system state equations, and j symbolizes the count of total
generations executed.

Moreover, the fitness function εj value is significantly
minimized and improved by employing the evolutionary
algorithms, for instance, FDO and GA. Ultimately, the
approximated numerical solution is accomplished by using
the optimum values of (α0, α1, . . . , α8), which help achieve
minimal error. Likewise, this research methodology is imple-
mented on other NOCPs mentioned in this work to acquire
their desirable approximate outcomes.
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V. SIMULATION AND RESULTS
The optimization method represented in Section IV is imple-
mented on different real-world NOCPs to establish that the
proposed scheme is valid and outperforms previously applied
numerical techniques. The simulations of the concerned
NOCPs are executed by accurately utilizing the MATLAB
tool. Additionally, the comparative analysis between the pre-
sented technique and other existing methods is evaluated,
accrediting the efficacy of the suggested hybrid scheme.

The parameter settings for the computation of GA involve
a population size equivalent to 500 and iterations to 300,
together with some other ones. Likewise, FDO settings
encompass a scout bee count equal to 15 and total generations
up to 200, accompanying the other ones. Further, the degree
of BPs is adjusted to k = 8, executing the optimal values
of unknown coefficients. Moreover, the parameter settings of
the algorithms are the same for the entire NOCPs examined
in this study.

The numerical behavior of GA-BP and FDO-BP is studied
by considering the parameters as follows:

The Relative Error EJ of J defined as:

EJ =

∣∣∣∣J − J∗

J∗

∣∣∣∣ (26)

here J∗ denotes the best achieved solution amidst all eval-
uations.

Norm for the final state constraint(s)ψ , i.e., ϕf , formulated
as:

ϕf = ∥ψ∥2 (27)

here ψ =
[
ψ1,ψ2, . . . ,ψn

]T represents the vector of
final state constraints.

The factor Kψ depicts the addition of two main errors for
quality assessment, as mentioned below:

Kψ = EJ + ϕf (28)

A. PROBLEM 01: VAN DER POL OSCILLATOR PROBLEM
The first NOCP discussed in this article is the VDP oscillator
problem [20], [52] containing one control variable u(t) and
two state variables x1(t), x2(t). The VDP problem includes a
final state constraint that must be satisfied, i.e.,ψ = x1

(
tf

)
−

x2
(
tf

)
+ 1 = 0. The minimization of the below mentioned

cost function is required:

J =
1
2

5∫
0

(
x21 + x22 + u2

)
dt (29)

subject to the system state equations:

ẋ1 = x2 (30)

ẋ2 = −x2 +

(
1 − x21

)
x2 + u (31)

with initial conditions as:

x1 (0) = 1, and x2 (0) = 0 (32)

over the period t ∈ [0, 5] the final state constraint is:

ψ = x1
(
tf

)
− x2

(
tf

)
+ 1 = 0 (33)

The optimal values of (α0, α1, . . . , α8) accomplished by
the represented hybrid approach are provided in Table 1,
whereas the approximate values of x1(t), x2(t), and u(t) at
different points in t are shown in Tables 2 and 3, accord-
ingly. Likewise, a comprehensive comparison between J of
the proposed technique and formerly contemplated meth-
ods, e.g., Sequential Unconstrained Minimization Technique
(SUMT), Continuous GA (CGA), Linear Interpolation (LI),
and Spline Interpolation (SI), is mentioned in Table 4.
Moreover, the approximate numeric values of x1(t), x2(t),

TABLE 1. Unknown parameters generated from FDO-BP and GA-BP
regarding Problem 01.

TABLE 2. Approximated numeric value of state variables for Problem 01.

TABLE 3. Approximated numeric value of control variable for Problem 01.
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TABLE 4. Comparison of results for Van der Pol Oscillator Problem.

FIGURE 1. x1(t), x2(t) approximation for Problem 01.

and u(t), determined by FDO-BP and GA-BP, are illustrated
in Figures 1 and 2, respectively.

It is shown evidently in Table 4 that results achieved by
the proposed hybrid technique offer a better solution and
reduced values of parameters J , EJ , ϕf , and Kψ . The best
value for J , i.e., 1.1656, is achieved by FDO-BP, the good
J value, i.e., 1.4587, is provided by GA-BP, and the highest
J value, i.e., 3.2677, is offered by Gradient Algorithm. The
Shooting Algorithm proved abortive for the convergence of
this problem. Likewise, the final equality constraints executed
by FDO-BP and GA-BP give the best solution compared to
other techniques. Also, it is apparent from Figures 1 and 2
that the approximate values depicted are more appropriate
and help yield an optimal solution.

B. PROBLEM 02: CHEMICAL REACTOR PROBLEM
The second NOCP scrutinized in this study is the CRP [20],
[52], which possesses one control variable, i.e., u(t), and two
state variables, i.e., x1(t), x2(t). The CRP contains two final
state constraints which are mandatory to be fulfilled, i.e.,
ψ = [x1, x2]T . The objective function of CRP demands the

FIGURE 2. u(t) approximation for Problem 01.

maintenance of temperature and concentration, e.g., keep-
ing their values approximately near the steady-state values
without ample control usage. The performance index to be
minimized is as follows:

J =
1
2

∫ 0.78

0

(
x21 + x22 + 0.1u2

)
dt (34)

subject to the nonlinear state equations:

ẋ1 = x1 − 2 (x1 + 0.25)+ (x2 + 0.5) e

(
25x1
(x1+2)

)
− (x1 + 0.25) u (35)

ẋ2 = 0.5 − x2 − (x2 + 0.5)e

(
25x1
(x1+2)

)
(36)

with respect to the initial conditions:

x1 (0) = 0.05, and x2 (0) = 0 (37)

over the period t ∈ [0, 0.78]
the final state constraint is:

ψ = [x1, x2]T (38)

Table 5 exhibits the optimum values for (α0, α1, . . . , α8)
attained by applying FDO-BP and GA-BP, whereas Table 6
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TABLE 5. Unknown parameters generated from FDO-BP and GA-BP
regarding Problem 02.

TABLE 6. Approximated numeric value of state variables for Problem 02.

FIGURE 3. x1(t), x2(t) approximation for Problem 02.

presents the approximate values for x1(t) and x2(t), and
Table 7 demonstrates the optimal values of u(t).

Correspondingly, Table 8 compares the numerical solution
of J exploited by the suggested scheme and some previously
designedmethods. In addition, Figure 3 compares the approx-
imate results of x1(t) and x2(t), whereas Figure 4 depicts the
approximate count of u(t).
It is clearly noticeable from Table 8 that the recommended

technique generates improved results than the prior ones.

TABLE 7. Approximated numeric value of control variable for Problem 02.

FIGURE 4. u(t) approximation for Problem 02.

FIGURE 5. x1(t), x2(t) approximation for Problem 03.

Also, the J , EJ , ϕf , and Kψ values are decreased to a consid-
erable level, indicating the efficacy of FDO-BP and GA-BP.
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TABLE 8. Comparison of results for Chemical Reactor Problem.

TABLE 9. Unknown parameters generated from FDO-BP and GA-BP
regarding Problem 03.

TABLE 10. Approximated numeric value of state variables for Problem 03.

The best value for J , i.e., 9.672E-03, is achieved by FDO-
BP, the good J value, i.e., 1.00E-02, is provided by GA-BP,
and the highest J value, i.e., 2.54E-02, is offered by SUMT
method. Similarly, the final equality constraints computed by
FDO-BP and GA-BP for this system prove that the deviation
of temperature and concentration from their steady-state is
the lowest. Additionally, Figures 3 and 4 disclose that the
acquired x1(t), x2(t), and u(t) values are adequate and assist
in estimating the optimum solution.

C. PROBLEM 03: CONTINUOUS STIRRED-TANK
CHEMICAL REACTOR PROBLEM
The CSTCRP [19], [20] is a benchmark NOCP utilized by
numerous researchers for the evaluation of their respective
techniques. In CSTCRP, the state variable x1(t) defines the
variation from steady-state temperature, and x2(t) indicates

TABLE 11. Approximated numeric value of control variable for
Problem 03.

FIGURE 6. u(t) approximation for Problem 03.

the aberration from the steady-state concentration, while con-
trol variable u(t) stipulates the outcome of the flow rate of
coolant on the concerned chemical reactor. There are no final
state constraints since it is an unconstrained CSTCRP. The
minimization of the following quadratic performance index
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TABLE 12. Comparison of results for Continuous Stirred-Tank Chemical Reactor Problem.

FIGURE 7. Average absolute error generated by GA-BP for x1(t), x2
(
t
)
,

and u(t) of Problem 01.

is statutory:

J =

∫ 0.78

0

(
x21 + x22 + 0.1u2

)
dt (39)

subject to the nonlinear system state equations:

ẋ1 = −(2 + u) (x1 + 0.25)+ (x2 + 0.5) e

(
25x1
(x1+2)

)
(40)

ẋ2 = 0.5 − x2 − (x2 + 0.5)e

(
25x1
(x1+2)

)
(41)

with respect to the initial conditions:

x1 (0) = 0.09, and x2 (0) = 0.09 (42)

over the period t ∈ [0, 0.78]
Table 9 displays the best values of (α0, α1, . . . , α8) yielded

by successfully manipulating the proposed method. Besides,
Table 10 articulates the optimum values achieved for x1(t)
and x2(t), and Table 11 manifests the adequately estimated
values of u(t), highlighting the excellence of the proposed
scheme. Similarly, Table 12 compares the numerical values
of J evaluated by implementing GA-BP, FDO-BP, and
other formerly existing techniques, e.g., Improved PSO with

FIGURE 8. Average absolute error generated by FDO-BP for x1(t), x2
(
t
)
,

and u(t) of Problem 01.

FIGURE 9. Average absolute error generated by GA-BP for x1(t), x2
(
t
)
,

and u(t) of Problem 02.

Successive Quadratic Programming (IPSO-SQP), PSO with
Linearly Decreasing inertia Weight (PSO-LDW), PSO
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FIGURE 10. Average absolute error generated by FDO-BP for x1(t), x2
(
t
)
,

and u(t) of Problem 02.

FIGURE 11. Average absolute error generated by GA-BP for x1(t), x2(t),
and u(t) of Problem 03.

with Nonlinearly Decreasing inertia Weight (PSO-NDW).
Moreover, Figures 5 and 6 provide a graphical representation
of approximated values obtained for x1(t), x2(t), and u(t),
respectively.

As markedly summarized in Table 12, the J , EJ , and Kψ
are reduced sufficiently, which is substantial to establish
the significance of FDO-BP and GD-BP. The best value
for J , i.e., 0.0953, is attained by FDO-BP, the good J value,
i.e., 0.1000, is generated by GA-BP, and the highest J
value, i.e., 0.1381, is executed by PSO-LDW algorithm.
Furthermore, the attained approximate solution, plotted in

FIGURE 12. Average absolute error generated by FDO-BP for x1(t), x2
(
t
)
,

and u(t) of Problem 03.

FIGURE 13. Absolute Error demonstrated pictorially for J of Problem 01.

Figures 5 and 6, reveals that the proposed technique renders
an optimal outcome for x1(t), x2(t), and u(t).

VI. STATISTICAL ANALYSIS OF THE RECOMMENDED
COMPUTATIONAL METHOD
This section elucidates the statistical analysis performed
thoroughly on every NOCP aforementioned, i.e., Problems
01–03, acknowledging the stability and efficiency of the pro-
posed technique. For the implementation of this objective,
12 autonomous runs of FDO-BP and GA-BP are effectuated,
retaining parameter settings to their predefined features. The
pictorial description of average absolute error for x1(t), x2(t),
and u(t) of relevant NOCPs is presented in Figures 7–12.
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TABLE 13. Statistical analysis for x1(t), x2(t), and u(t) of NOCPs.

FIGURE 14. Absolute Error demonstrated pictorially for J of Problem 02.

It can be ascertained from Figures 7–12, for x1(t), x2(t),
and u(t), the average absolute error values are lessened signif-
icantly by suggested hybrid-based approach, which corrobo-
rates its productivity and accuracy.

The visual demonstration of the AE for J of related NOCPs
is given in Figures 13–15 for at least 12 separate runs of
recommended technique.

The numeric solutions illustrated in Figures 13–15 for
Problem 01–03 indicate that the represented technique ren-
ders optimal results for J by adequate minimization of AE
values, which eventually ratifies its efficiency.

The statistical analysis of previously mentioned NOCPs is
based on the following decisive parameters: minimum error

FIGURE 15. Absolute Error demonstrated pictorially for J of Problem 03.

count (MIN), maximum error value (MAX), MEAN of error
values, and Standard Deviation (SD). Moreover, the corre-
lation between MIN and MAX values of error is analogous
to that of the best and worst values. Likewise, MEAN and
SD parameters help detect the central tendency and gauge
the extent of variation in final results determined by FDO-BP
and GA-BP, authenticating their robustness [46], [53], [54].
The numerical solutions evaluated by statistical analysis are
compiled in the following Tables 13 and 14.
It is certainly apparent from Tables 13 and 14, for Prob-

lem 01–03, the MEAN of x1(t), x2(t), u(t), and J are
approximately 10−05 to 10−09, 10−05 to 10−10, 10−05 to
10−09, and 10−05 to 10−10, respectively. Similarly, for
Problem 01–03, the SD for x1(t), x2(t), u(t), and J ranges
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TABLE 14. Statistical analysis for J of Nonlinear Optimal Control
Problems.

from 10−05 to 10−09, 10−05 to 10−10, 10−05 to 10−09, and
10−05 to 10−10, respectively. Subsequently, Tables 13 and 14
evidently manifest that MEAN and SD are adjacent to one
another, i.e., implying only slight deviation from the obtained
result and validating the superiority of represented hybrid-
based scheme over other methods regarding reliability and
efficacy [46], [53], [54].

VII. CONCLUSION
This research work demonstrates a hybrid computational
technique that is based on variants of the evolutionary opti-
mization algorithms combining the beneficial attributes of
FDO and GA with BPs. The recommended hybrid technique
is applied to several real-world NOCPs as an alternative for
obtaining the optimum solution. The final experimental out-
comes attained verify the capability of the presented hybrid
scheme for determining superior quality solutions than the
previous computational methods reported recently in the lit-
erature. The suggested approach effectively optimizes various
real-world NOCP systems by the minimization of J , EJ , ϕf ,
and Kψ for all three problems, including the VDP oscillator
problem, CRP, and CSTCRP, respectively. Moreover, our
findings were validated by statistical analysis that the pro-
posed technique is adequate for the optimization of distinct
nonlinear dynamical systems.

In the near future, we intend to utilize the presented
approach for optimally solving various real-world OCPs, for
instance, Free Floating Robot (FFR), time-delayed problems,
and problems containing disturbances, including exogenous
disturbances. Besides, the hybridization of GA and FDOwith
local searchmethods, e.g., Interior Point Algorithm (IPA) and
Active Set Algorithm (ASA), will be considered. In addition,
various basis functions, for example, Boubaker Polynomials,

would be employed with contemporary heuristic optimiza-
tion algorithms evaluating approximate outcomes for bench-
mark NOCPs.
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