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ABSTRACT The muscular activities gathered by real-time myoelectric interfaces of surface electromyogra-
phy (sEMG) can be used to develop myoelectric prosthetic hands for physically disabled people. However,
the acquired myoelectric signals must be accurately classified in real time to properly control the operation
of the external devices. In this study, we propose methods for detecting and classifying muscular activi-
ties using sEMG signals. These methods include outlier removal, data manipulation, data preprocessing,
dimensionality reduction, and classification. We use the Ninapro database 1 (DB1) containing sEMG signals
from 27 intact subjects while performing 53 hand movements repeatedly. We apply the Principle Component
Analysis (PCA), Independent Component Analysis (ICA), and t-distributed Stochastic Neighbor Embedding
(t-SNE) feature extractionmethods for dimensionality reduction. Fivemachine learning (ML) algorithms and
deep learning artificial neural networks (ANN) are applied for the classification of muscular movements. It is
observed that for the recognition of 53 muscular movements of 27 subjects with preprocessed raw data, ANN
obtains the highest accuracy of 93.92% for inter-subject and 97.73% for intra-subject movement recognition.
Among the ML algorithms, K-Nearest Neighbors (KNN) performs the best with both t-SNE features and the
preprocessed raw data in least computational time. With the preprocessed raw data, KNN obtains 93.174%
and 97.458% for inter-subject and intra-subject movement classification, respectively while with the t-SNE
features, KNN obtains 89.844% accuracy for inter-subject and 95.04% accuracy for intra-subject in reduced
computational time.

INDEX TERMS Gesture recognition, computational and artificial intelligence, biomedical signal
processing.

I. INTRODUCTION
The myoelectric interfaces of the surface electromyogra-
phy gather muscular activity information for different move-
ments. The sEMG signals of different muscular activities can
be used to control the operation of external prosthetic devices
that are used tomake the life of physically disable people easy
and comfortable. The external devicesmay bewearable or not
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wearable depending on the requirements of the disable peo-
ple. To ensure the quality and proper operation of the external
devices, the muscular activities for different movements are
required to be classified accurately in real-time to control the
operation of the external devices.

There are many works in the literature on muscular move-
ment recognition based on the EMG signals [1]. In [2], the
authors consider feature extraction using the mean absolute
value (MAV), the variance (VAR), the waveform length
(WL), sEMG histogram (HIST), cepstral coefficients (CC),
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short-time Fourier transform,marginal discrete wavelet trans-
form (mDWT) and classification using linear discriminant
analysis (LDA), k-nearest neighbors (KNN), support vector
machine (SVM), multi-layer perceptron (MLP), SVM with
a radial basis function (RBF) kernel on the Ninapro DB1
and achieve a classification accuracy of 76% by several of
the above-mentioned methods. In [3] and [4], the authors use
NinaproDB1 of 27 subjects and classify themovements using
RMS features and a convolutional neural network (CNN)
classifier. The authors in [3] report inter-session gesture
recognition accuracy of 94% for 6 movements while the
authors in [4] report 70.5% intra-session gesture recogni-
tion accuracy for 53 movements. The authors in [5] propose
a system that depends on the extraction of multi-channel
EMG activation trajectories underlying handmovements, and
classifying the extracted trajectories using a metric based
on multi-dimensional dynamic time warping (MD-DTW).
The authors in [5] apply their proposed system on Ninapro
database 2 (DB2) for 40 different hand movements of 40 sub-
jects and obtain a classification accuracy of 90%. However,
the main limitation of the proposed work is that a classi-
fication of the movement cannot be obtained until the end
of the trajectory is detected. This restricts the usability of
the proposed system to applications that can be controlled
using discrete commands. The authors in [6] use the raw
sEMGofNinaproDB1 and obtain 75.45% intra-session accu-
racy in recognition of 52 movements of 27 subjects using
Long short-term memory (LSTM) classifier. The authors
in [7] apply transfer learning (TL) and deep learning algo-
rithms to learn features from the big data collected from
multiple users. Three different deep learning networks with
raw EMG, spectrograms and continuous wavelet transform
(CWT) as input are trained and tested on three datasets -
two datasets from Evaluation database comprised of 19 and
17 intact subjects and one dataset of 10 participants from
Ninapro database 5 (DB5). The maximum achieved offline
accuracy on test data from Evaluation database is 98.31%
for 7 gestures of 17 participants using CWT-based Con-
vNet and 68.98% using Ninapro database of 18 gestures of
10 participants using raw EMG-based ConvNet. The authors
in [8] use high density EMG signal to decode the motion
intention based on the transient EMG signals and achieve
decoding performance of 94.21% with CapgMyo and below
70% using Ninapro database 4 (DB4) for 8 finger movements
using SVM. In [9], the authors use RMS features and apply
temporal convolutional network (TCN) classifier for gesture
recognition and report 89.76% intra-session accuracy in clas-
sifying 52 movements of 27 subjects using Ninapro DB1.
Transfer learning based several approaches are proposed in
[10], [11], [12], and [13] and applied on Ninapro database 2,
3, 5 and 6, respectively. The reported accuracy in [10] is
49.76% for self-decoding and 52.52% for subject transfer
using CNN. The reported average accuracy in [11] is 67.98%
with Gaussian kernel function SVM classifier (GKF-SVM)
using Mean value of square root (MSR) features and 70.40%

using transfer learning. The authors in [12] propose Trans-
fer learning based multi-scale kernel convolutional neural
network (TL-MKCNN) and achieve 97.22% within-session,
74.48% cross-subject, and 90.30% cross-day accuracy that
are higher than the MKCNN model by 4.31%, 11.58%, and
5.51%, respectively. The authors in [13] 86.3% accuracy
using their proposed Few-shot Learning for Hand Gesture
(FS-HGR) framework. The authors in [14] use tensor-based
multilinear singular value decomposition (MLSVD) for hand
gesture recognition with multiple channels for training and
single channel for recognition. The authors in [14] apply
the proposed methods on Ninapro, CapgMyo (DB-a, DB-
b and DB-c), and CSL-HDEG databases for intra-session,
inter-session and inter-subject evaluations and obtained high-
est accuracy of 75.2%, 75.4%, 68.3% and 67.7%, respec-
tively for inter-subject classification. The authors in [15]
develop a real-time system for prosthetic hands control
and use a database with EMG data from local volunteers
and Ninapro 2 and 3 databases. They implement a MLP
classifier on a platform for rapid prototyping (Raspberry
Pi 3 Model B+) and generate responses in real-time (11ms)
with an average accuracy of 96.30% for 11 hand and wrist
gestures/movements.

Though there have been extensive research works on
sEMG-based movement recognition, still there is scope
for improvement considering big database of a higher
number of users and movements. For real-time hand
prosthesis, the muscular movements must be accurately
detected and classified in real-time with low computational
complexity and time.

In this paper, we propose the methods of sEMG sig-
nals based movement detection and classification for hand
prosthesis using artificial intelligence techniques. To con-
trol the operation of the external prosthetic devices prop-
erly, the muscular activities due to different movements are
required to be detected and classified accurately. Therefore,
the sEMG signals for different muscular activities are col-
lected, preprocessed, and classified using different machine
learning and deep learning methods. We collect the sEMG
data from the publicly available Ninapro DB1 [16]. Ninapro
DB1 includes 10 repetitions of 53 movements (including
rest position) of 27 intact subjects. We apply dimensionality
reduction techniques on the preprocessed dataset to reduce
the computational complexity and processing time of the
machine learning methods. We apply different Linear feature
extraction techniques as PCA, ICA and Non-linear feature
extraction technique as t-SNE to reduce the dimensional-
ity of the dataset. Among those, t-SNE performs the best
in terms of accuracy. t-SNE is a non-linear dimensionality
reduction technique suitable for visualizing high-dimensional
data in a low-dimensional space of two or three dimen-
sions. After applying the feature extraction, we apply five
different machine learning methods and compare the move-
ment classification accuracy. As we can observe that for
53 movements, the KNN classifier shows the best accuracy
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FIGURE 1. System block diagram.

of 93.174% for inter-subject and 97.458% for intra-subject
classification with the preprocessed raw data in the least
processing time among the ML methods. By extracting the
3-dimensional t-SNE features, the KNN obtains 89.844%
inter-subject accuracy and 95.04% intra-subject accuracy
with reduced processing time and computational complexity.
We also apply deep learning ANN for classification which
shows the best accuracy of 93.92% for inter-subject and
97.73% for intra-subject movement recognition.

II. SYSTEM MODEL
We propose sEMG based movement detection and classifica-
tion using artificial intelligence to control the operation of the
prosthetic hand. The system block diagram of the proposed
system is shown in Figure 1. Here, the system uses the
sEMG signals collected for different muscular activities of
the hand using real-time myoelectric interfaces or electrodes.
The sEMG signals of both training and test phases are prepro-
cessed and classified to detect the intended hand movements
using different machine learning and deep learning methods.
The feature extraction method is applied before machine
learning-based classification to reduce the dimensionality of
the sEMGdataset. It also reduces the computational complex-
ity and processing time of the classifier. Deep learning-based
classifiers are applied to classify the movements using pre-
processed raw data. The predicted movements may control
the operation of the prosthetic hand.

III. DATA SOURCE AND PARTICIPANTS
We use the Ninapro DB1 available in the official Ninapro
repository [16]. The database contains muscular activity data
acquired using OttoBock sEMG electrodes. The datasets
were collected in [17] using 10 OttoBock MyoBock 13E200-
50 electrodes (www.ottobock.com), providing an amplified,
bandpass-filtered, and Root-Mean-Square (RMS) rectified
version of the raw sEMG signals. Among the 10 electrodes,
eight are equally spaced around the radio humeral joint of
the forearm at position 1, and two are placed on the finger
extensor digitorum and finger flexor digitorum at position 2

FIGURE 2. Placement of the sEMG electrodes; Position 1: Eight equally
spaced electrodes around the radio humeral joint of the forearm; Position
2: Two additional electrodes placed on finger extensor and flexor
muscles; Position 3 and 4: Cyberglove sensors. [17].

as shown in Fig. 2. DB1 includes labeled data of 10 repeti-
tions of 52 hand movements and 1 rest position of 27 intact
subjects. During the experiment, the subjects were asked to
repeat the 52 movements of Exercise A, B, and C as shown
in Fig. 3 with the right hand for 5 seconds followed by
3 seconds of rest. The three exercises include the following
movements.

1) ExerciseA: 12 basicmovements of the fingers (flexions
and extensions),

2) Exercise B: 8 isometric and isotonic hand config-
urations and 9 basic movements of the wrist, total
17 movements, and

3) Exercise C: It is done with 23 grasping and functional
movements.

Several signal processing steps including synchronization,
relabelling, and filtering was performed before making the
data available on the repositories [16], [17]. The sEMG sig-
nals are sampled to a high sampling frequency of 2 kHz to
synchronize the data streams and then relabeled [17]. The
Ninapro DB1 contains one matlab file with synchronized
variables of each exercise for each subject. A single file
includes the variables as shown in Table 1.
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FIGURE 3. Rest position and 52 hand movements of Exercise A: 12 Basic movements of the fingers (flexions and
extensions), Exercise B: 17 Isometric, isotonic hand configurations and Basic movements of the wrist and Exercise
C: 23 Grasping and functional movements. [17].
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FIGURE 4. Implementation Methodologies.

TABLE 1. Variables in a single matlab file of Ninapro DB1 of each
exercises for each subject.

IV. METHODOLOGIES
We propose the methodologies to develop the sEMG-based
muscular movement recognition system for hand prostheses.
The methodologies include outliers detection and removal,
data manipulation, preprocessing, feature selection, feature
extraction, and classification. The proposed methodologies
are developed in Python programming language using a vari-
ety of popular data analysis libraries and tools, including
pandas, scipy.io, loadmat, numpy, matplotlib, seaborn, and
the Keras, TensorFlow and Scikit-Learn tools. Since Ninapro
dataset belongs to the big data category, it is not practical to
apply the entire dataset for classification due to very high

processing time. Therefore, we apply the outliers removal,
data manipulation, preprocessing, and dimensionality reduc-
tion methods to reduce the size of the data. The implemen-
tation methodologies with the system flow are shown in
Figure 4 and explained in the following.

A. OUTLIERS DETECTION AND REMOVAL
The required variables for our proposed movement recogni-
tion system are the emg and the stimulus. The emg variable
includes the sEMG signals of 10 electrodes and the stimulus
variable includes the labels of 53 movements (including rest).
To keep the required variables and to remove the outliers,
we apply the following methods:

1) First, the variables except emg, stimulus and restimulus
are removed.

2) Then, to extract the required data, we apply outliers
detection and removal method. To detect the outliers,
we apply a matching algorithm to find the matches
between the stimulus and restimulus. If any value of
the stimulus matches with the restimulus values, then
the corresponding sEMG signals (of 10 electrodes)
and the stimulus values are kept unchanged. Else if
the stimulus doesn’t match the restimulus, then the
corresponding sEMG signals and the stimulus values
are considered as outliers and dropped. In this way, the
unnecessary variables and outliers are removed and the
required values of the emg and stimulus are extracted
for further processing.

B. DATA MANIPULATION
We apply the following three steps for data manipulation
before the preprocessing of data.
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FIGURE 5. Outliers removal and data manipulation.

1) DATA SPLITTING
First, we split data into training and test phases where 90%
of the data are used for training and 10% data are used for
testing. All the variables of the dataset are not required for
the sEMG based movement recognition.

2) RELABELING
There are 13 movements of Exercise A, 17 movements of
Exercise B and 23 movements of Exercise C. The 13 distinct
movements of Exercise A are labeled as 0 to 12, 17 move-
ments of Exercise B as 0 to 17 and 23 movements of Exercise
C as 0 to 23, respectively in the corresponding stimulus
variables. However, 53 movements of Exercises A, B, and
C should have 53 distinct labels. Therefore, the movement
labels of Exercise A (1 to 12), Exercise B (1 to 17), Exer-
cise C (1 to 23) are relabeled as 1 to 12, 13 to 29 and
30 to 52, respectively to get distinct movement labels for the
53 movements.

3) CONCATENATION
Finally, the sEMG data of all 53 movements (including rest
position) of 3 exercises and the corresponding stimulus labels
are combined in a single data file by concatenation process.
Thus, the concatenated training and test data files include all
the sEMG signals of 53 distinct movements.

The emg variable including 10 sEMG signals of each
movement is used as the input in both training and test
phase. The stimulus including the movement labels is used
as the output in the training phase. In the test phase, the
stimulus is used to evaluate the accuracy of the predicted
movements.

The system flow diagram of the outliers removal and data
manipulation is shown in Fig. 5.

C. DATA PREPROCESSING
The following preprocessing methods are applied to the train-
ing and test data.

1) STANDARD SCALING
After data manipulation, we apply standard scaling on the
sEMG signals of input variable to remove the mean and to
scale the data to unit variance. The standard score is calcu-
lated as

z =
(x − µ)

s
, (1)

where, µ is the mean and s is the standard deviation of the
samples. Standard scaling is applied to the input variable of
both machine learning and deep learning models.

2) ONE HOT ENCODING
One hot encoding is applied to encode the movement labels
of the output variable stimulus prior applying to the deep
learning model for classification.

D. DIMENSIONALITY REDUCTION
To reduce the dimensionality of the dataset, feature selection
and feature extraction methods are applied. Feature selection
discards less important features of the data whereas feature
extraction creates new features which summarize the con-
tents of the original features. Feature extraction improves the
accuracy, reduces overfitting risk, speeds up in training and
improves data visualization.

1) FEATURE SELECTION
To reduce the dimensionality of the dataset, we apply
the Recursive Feature Elimination with Cross Validation
(RFECV) which is a wrapper-based method of feature selec-
tion. RFECV ranks the features among the 10 sEMG signals
as per importance and then selects the optimal features by
cross validation [18].

2) FEATURE EXTRACTION
We apply and compare the following feature extraction tech-
niques to reduce the dimensionality of the dataset.

• Principle Component Analysis (PCA): PCA is a com-
mon linear feature extraction method used to reduce
the dimensionality of data by finding the best combi-
nation of input features and capturing maximum infor-
mation about the dataset. However, if the components
are not selected with care, it may miss some information
[19], [20].

• Independent Component Analysis (ICA): ICA is a linear
method which takes the mixed independent components
and correctly identify them removing the unnecessary
noises. However, ICA algorithms are sensitive to mea-
surement noise [21].

• t-distributed Stochastic Neighbor Embedding (t-SNE):
t-SNE is a very effective non-linear dimensionality
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reduction algorithm. t-SNE tries to minimize the diver-
gence between the different probability distribution of
the input features in the original high dimensional space
and in the reduced low dimensional space. The dissim-
ilarity of two different distributions is measured using
Kullback-Leiber (KL) divergence and it is minimized
using gradient descent. The original dimensional space
is modelled using a Gaussian Distribution, while the
lower-dimensional space is modelled using a student’s
t-distribution. t-SNE handles non-linear data efficiently
and it preserves local and global structure of the data.
However, t-SNE is slow and computationally complex
as it has a quadratic time and space complexity in the
number of data points. It also requires a lot of calcula-
tions for computing the pairwise conditional probabil-
ities for each data point and to minimize the sum of
the difference of the probabilities in higher and lower
dimensions. It involves hyper-parameter tuning which
may cause unwanted results due to incorrect tuning
[19], [22].

E. CLASSIFICATION AND MOVEMENT RECOGNITION
In the training phase, the sEMG signals are trained to the cor-
responding stimulus labels of movements. In the test phase,
the sEMG signals are applied to the classifier to detect the
corresponding movements. In the machine learning model,
we compare the accuracy by applying both preprocessed
data and the features extracted. As the deep learning model
performs better with raw data, only the preprocessed data are
applied for classification.

1) MACHINE LEARNING METHODS
For machine learning based classification, we employ the
Decision Tree (DT), KNN, Random Forest (RF), Extra Trees
(ET), and Extreme Gradient Boosting (XGB) classifiers [23],
[24], [25], [26], [27]. To fine-tune the parameters, we apply
GridSearchCV with three levels of cross validation. The
default settings of the DT classifier, RF classifier, and ET
classifier, perform the best. For the XGB, we use the ‘‘gpu
predictor’’ to speed up the training process. For the KNN
classifier, we use the ‘‘ball tree’’ algorithm as the optimum
parameter. For KNN, we considered 2 nearest neighbors (K
= 2), manhattan distance as a measure of distance and the
wights measured by distance. However, there is space for
improvement by boosting the estimators for all tree-based
methods which could not be implemented due to a lack of
computing configurations.

2) PROPOSED DEEP LEARNING ARCHITECTURE
We apply Artificial Neural Networks for deep learning-based
classification. The architecture of the ANN is shown in Fig. 6.
We start with 10 emg signals as inputs, then add a dense layer
of 3000 neurons with a relu activation function, followed by
another dense layer of 1500 neurons with a relu activation
function. Next, a 0.2 dropout layer is added. 3 dense layers

FIGURE 6. Deep learning architecture.

with activation functions of 750, 375, and 48 correspondingly
are then added. A dense layer as 53 class with a SoftMax
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activation function is added last. Then, with batch size set
to 9000 and 300 epochs, we compile the model using Adam
as the optimizer and categorical cross entropy as the loss
function.

V. PERFORMANCE EVALUATION
We apply the following performance metrics to evaluate the
performance of the classification models [28].

A. CONFUSION MATRIX
Confusion Matrix is a visualization of ground-truth labels
versus model predictions. Each cell in the confusion matrix
represents any of the following evaluation factors:

1) True Positive (TP) signifies how many positive class
samples are predicted correctly.

2) True Negative (TN) signifies how many negative class
samples are predicted correctly.

3) False Positive (FP) signifies how many negative class
samples are predicted incorrectly.

4) False Negative (FN) signifies how many positive class
samples are predicted incorrectly.

B. PRECISION
Precision is the ability of a classifier not to label an instance
positive that is actually negative. It is defined as

Precision =
TP

TP+ FP
. (2)

C. RECALL
Recall is the ability of a classifier to find all positive instances.
For each class, it is defined as

Recall =
TP

TP+ FN
. (3)

D. F1 SCORE
The F1 score is a weighted harmonic mean of precision and
recall such that the best score is 1.0 and the worst is 0.0. F1
score is expressed as

F1 score =
2 × Recall × Precision
(Recall + Precision)

. (4)

E. ACCURACY
Classification accuracy is defined as the number of correct
predictions divided by the total number of predictions, mul-
tiplied by 100. The classification accuracy is calculated as

Accuracy =
(TP+ TN )

(TP+ FP+ FN + TN )
× 100. (5)

F. CROSS ENTROPY LOSS FUNCTION
In classification model, a loss function is calculated based on
the probability of how far the predicted class is from the actual
expected value. Cross-entropy loss is used to optimize the
model by adjusting the weights during training to minimize

TABLE 2. Accuracy (intra-subject) after applying different improvement
steps of outliers removal and preprocessing.

the loss tends to 0. Cross-entropy loss function is defined as

LCE = −

n∑
i=1

tilog(pi), for n classes (6)

where, n is the number of classes, ti is the true label and pi is
the Softmax probability for the ith class [29].

VI. SIMULATION AND RESULTS
The proposed movement detection and classification sys-
tem is developed in Python programming language using
a variety of popular data analysis tools and libraries. The
libraries include pandas, scipy.io, loadmat, numpy, mat-
plotlib, seaborn. The classifiers are developed using Keras,
TensorFlow, and Scikit-Learn tools. The computational envi-
ronment of simulation, training and testing is based on a
64-bit Windows operating system with an x64-based Intel(R)
Core(TM) i7-5500U CPU with 2.40 GHz processor and
8.00 GB of installed RAM. In addition, we leverage the
NVIDIA GeForce 840M GPU for efficient computation.

To verify the accuracy of the proposedmovement detection
and classification, we simulate the proposed methods using
Ninapro DB1 which contains sEMG signals of 10 electrodes
of 27 intact subjects for 53 movements. To analyze the effect
of outliers removal, initially we apply the ML algorithms on
the data of subject 1 without applying the outliers removal.
As we can see that the accuracy is very low as the data
contains outliers. Next, we apply the outliers removal, data
manipulation and preprocessing on the data of subject 1. It is
found that the accuracy significantly improves after apply-
ing the outliers removal. The accuracy further improves by
applying the standard scaling as preprocessing. The findings
are shown in Table 2.

Then, we apply RFECV for feature selection on the data of
subject 1 only. We configure the Random Forest Classifier as
estimator, step = 1, and cross validation = 5. Figure 7 shows
the five cross-validation results for an increasing number of
selected features, demonstrating how the accuracy improves
with each emg value. The best number of features is then
discovered to be 10, indicating that all the EMG signals of
the 10 electrodes contains important features.

Next, to verify the accuracy of movement recognition,
we apply the machine learning algorithms on all the EMG
data of 27 subjects after outliers removal, data manipula-
tion and preprocessing steps without applying any feature
extraction. Table 3 summarizes the performance in terms of
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FIGURE 7. Optimal feature selection using cross validation score.

TABLE 3. Accuracy scores (intra/inter-subject) of different machine
learning algorithms using raw sEMG of 27 subjects.

FIGURE 8. Accuracy comparison of different machine learning algorithms
using raw sEMG of 27 subjects (Inter-subject).

Accuracy, Precision, Recall, F1-score for both intra-subject
and inter-subject movement classification. Figure 8 com-
pares the accuracy of inter-subject movement detection and
classification using different machine learning algorithms.
We observe that the KNN performs the best for intra-subject
movement classification with 97.458% accuracy and the ET
classifier performs the best for inter-subject with 93.376%
accuracy using preprocessed sEMG data.

Next, we apply the ANN based deep learning classification
method on the preprocessed sEMG data of all 27 subjects
to detect the 53 movements. Figures 9 and 10 show how
the loss decreases and the accuracy improves with increasing

FIGURE 9. Loss curve of ANN-based deep neural network.

FIGURE 10. Accuracy curve of ANN-based deep neural network.

TABLE 4. Performance scores of deep learning ANN classifier with all
27 subjects.

number of epochs. Table 4 summarizes the results of both
intra-subject and inter-subject movement classification per-
formance of the deep learning ANN. We can see the ANN
can achieve highest intra-subject accuracy of 97.73% and
inter-subject accuracy of 93.92%with preprocessed raw data.

Next, we apply three different feature extraction techniques
PCA, ICA and t-SNE to sequentially reduce the dimen-
sionality of the input dataset emg which contains 10 EMG
features (E1 to E10) of different movements. Figure 11
shows the impact of dimensionality reduction on the accu-
racy of different classification methods. As we can see in
Fig. 11 that the performance of PCA and ICA significantly
drop if the dimensionality of the features are reduced below
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FIGURE 11. Accuracy using different dimensional features; (a) PCA, (b) ICA, (c) t-SNE.

TABLE 5. Classification results (intra or inter-subject) with 8 dimensional
features extracted using PCA.

TABLE 6. Classification results (intra or inter-subject) with 9 dimensional
features extracted using ICA.

8 and 7, respectively whereas the performance of t-SNE
drops if the dimension is below 2. Therefore, to extract the
data features of all subjects, we apply linear dimensionality
reduction methods PCA to extract 8 dimensional features

TABLE 7. Classification results (intra or inter-subject) with 3 dimensional
features extracted using t-SNE.

TABLE 8. Training time comparison (in seconds) of different machine
learning algorithms.

and ICA to extract 9 dimensional features. We also apply
non-linear dimensionality reduction method t-SNE to extract
3-dimensional features of all subjects. Tables 5, 6 and 7 show
the intra-subject and inter-subject classification results using
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FIGURE 12. Accuracy comparison (inter-subject) using different dimensionality reduction
techniques and by using raw sEMG.

TABLE 9. Accuracy and Training time comparison for different Exercises with t-SNE features and raw data.

the three feature extraction methods PCA, ICA and t-SNE,
respectively. As we can see that the best accuracy using
lowest dimensional features (3 dimension) can be achieved
using t-SNE feature extraction method. Here we can see that
using the 3 dimensional t-SNE features, highest intra-subject
accuracy of 95.272% and inter-subject accuracy of 90.429%
can be achieved using ET classifier. Figure 12 compares
the inter-subject accuracy of the machine learning methods
using the preprocessed raw data and by applying different
dimensionality reduction techniques. It can be seen in Fig. 12
that the best accuracy can be obtained using the highest
dimensional features of the preprocessed raw data whereas
the best accuracy with lowest dimensional features can be
obtained using the t-SNE features. Thus, it may be concluded
from the results of Tables 5, 6 and 7 and Fig. 12 that the KNN,
RF and ET classifiers perform with significantly high accu-
racy for both intra and inter-subject movement classification
with preprocessed raw data as well as with 3-dimensional t-
SNE features reducing the computational complexity.

Table 8 compares the training time of the extracted low
dimensional features and the preprocessed raw data. It is
observed that the training time of DT and RF classifier
increases with the extracted feature which is not expected.

It is also observed that the training time of the ET classi-
fier is significantly reduced by using t-SNE features which
can speed up the processing time and can make the system
computationally more intelligent. We can also see that KNN
performs the best in terms of time accuracy and computa-
tional intelligence. KNN requires only 2.492 seconds training
time to classify preprocessed raw data of 53 movements
of all 27 subjects with inter-subject accuracy of 93.174%
and 0.079 seconds to classify the extracted t-SNE features
with inter-subject accuracy of 89.844%. Thus, in terms of
accuracy and time efficiency, KNN performs the best among
all the machine learning algorithms for classification of the
53 movements.

From the above classification results and the time com-
parison in Table 8, it is observed that among the machine
learning algorithms KNN performs the best with lowest com-
putational time. It is also observed in Table 8 that using
t-SNE feature extraction, the computational time of KNN
and ET is reduced further. Thus, to compare the performance
of machine learning based KNN, ET and the deep learning
ANN, the accuracy of KNN, ET and ANN are further ana-
lyzed for different exercises using both t-SNE features and
preprocessed raw sEMG data. The results are included in
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TABLE 10. Accuracy and Training time for increasing number of movements with raw sEMG data.

TABLE 11. Accuracy comparison of the proposed methods to the state of the art works.

Table 9 which shows that for different exercises, the accuracy
is different and the accuracy above 94% and 97% is obtained
for Exercise 3 using t-SNE features and raw data, respec-
tively. As the accuracy for Exercise 3 is comparatively higher,
we further analyze the accuracy of Exercise 3 for increasing

number of movements. Table 10 shows the accuracy and
the training time for increasing number of movements using
KNN, ET andANN.Aswe can see that theKNNperforms the
best with 97.266% accuracy for 23 movements of Exercise C
with the lowest training time of 1.335s using raw data. It is
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also observed that ET requires comparatively more time to
obtain 97.164% accuracy and ANN requires extensively high
processing time of 22565.775s to get the accuracy of 97.899%
for 23 movements. Table 11 compares the accuracy of the
proposed methods to the state of the art works in the liter-
ature. As we can see that our proposed methods can obtain
significantly high accuracy for a large number of inter-subject
and intra-subject movements classification compared to other
works in the literature.

VII. CONCLUSION
In this paper, we have proposed sEMG-based movement
detection and classification for hand prostheses using the data
of Ninapro DB1 of 53 hand movements of 27 intact subjects.
First, we have proposed the outliers detection and removal to
remove the unnecessary data points. Then, we have applied
data manipulation methods like data splitting, relabeling,
and concatenation to rearrange the data for easy processing.
Next, we have applied standard scaling on the input variables
and one hot encoding (for ANN) on the output variables.
Then, to reduce the computational complexity and time,
dimensionality reduction methods PCA, ICA and t-SNE have
been applied to extract 8 dimensional, 9 dimensional and
3 dimensional features, respectively. Then, we have applied
five machine learning algorithms and the deep learning ANN
on the preprocessed raw data and the extracted features for
movement classification. Among the ML algorithms, KNN
performs the best in terms of accuracy, dimensionality reduc-
tion and least processing time. Using the extracted t-SNE
features, KNN shows 89.844% inter-subject and 95.04%
intra-subject accuracy while using the preprocessed sEMG
data, KNN shows 93.174% inter-subject and 97.458% intra-
subject accuracy in classifying 53 movements. Using the
preprocessed raw sEMG of 53 movements, ANN can obtain
the highest accuracy of 93.92% for inter-subject and 97.73%
for intra-subject classification. It has also been observed
that using KNN on preprocessed raw data, it is possible to
obtain 98.749% and 97.266% inter-subject accuracy for 7 and
23 movements, respectively while using ANN, it is possible
to obtain 99.367% and 97.899% inter-subject accuracy for
7 and 23 movements, respectively. However, ANN requires
an extensively high computational time of about 43394.59s to
train the preprocessed raw data of 53 movements while KNN
requires only 2.492s training time. Again, KNN can perform
with high accuracy in a reduced computational time of 0.079s
using the t-SNE feature extraction. Thus, it may be concluded
that among the proposed methods, KNN performs the best
with high accuracy in the least computational time. There-
fore, the proposed methods recommend choosing machine
learning-based algorithms for real-time applications such as
controlling prosthetic hands whereas deep learning-based
algorithms can be chosen for offline applications due to their
high accuracy. To improve the quality and impact of the work
in the future, it is recommended to collect adequate datasets
for different types of disabilities of the amputee subjects. The

results should also be verified using datasets transformed into
the time-frequency domain.
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