
Received 23 March 2023, accepted 13 April 2023, date of publication 17 April 2023, date of current version 21 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3267717

Content Disarm and Reconstruction of PDF Files
RAN DUBIN , (Member, IEEE)
Department of Computer Science, Ariel University, Ariel 4070000, Israel
Ariel Cyber Innovation Center, Ariel University, Ariel 4070000, Israel

e-mail: rand@ariel.ac.il

ABSTRACT Content Disarm and Reconstruction (CDR) is a zero-trust file methodology that proactively
extracts threat attack vectors from documents andmedia files.While extensive literature on CDR emphasizes
its importance, a detailed discussion of how the CDR process works, its effectiveness, and its drawbacks is
not presented. Therefore, this paper presents PdfCDR, the first PDF CDR system in which the validation,
the prevention rate, and the received visual similarity effect of disarming and reconstruction are presented
and measured. Furthermore, PdfCDR suggests for the first time a novel method dealing with new emerging
exploits by automatically converting detection rules to disarm and reconstruction rules. As a result, PdfCDR
can prevent evasive attacks without any software upgrades and utilize the cyber security community
knowledge to prevent cyber attacks as soon as they are advertised. The effectiveness of the novel PdfCDR
against well-known PDF datasets shows that it disarmed not only the malicious components, but the
reconstructed file is also usable and functional. However, since CDR relies on understanding the file format,
any CDR solution should handle each supported file type separately due to the vast difference in each file
format. Hence, this paper focuses on the Portable Document Format (PDF) file type that attackers commonly
exploit. The results indicate that PdfCDR successfully CDR 90% of the malicious files while the remaining
10% were encrypted or had abnormal structures compared to the standard and were quarantined.

INDEX TERMS Adobe PDF, attack prevention, CDR, malware, sensitization, threat disarm, zero-trust.

I. INTRODUCTION
In recent years, Portable Document Format (PDF) position-
ing is a standard for document exchange and dissemina-
tion. PDF [1] is flexible, easy to customize, and portable
across platforms. However, the characteristics of PDF moti-
vated hackers to exploit various types of vulnerabilities
and file features to overcome security safeguards [2], [3].
It was reported [4] that about 30% of malicious web down-
loads in 2020 were delivered through documents such as
Rich Text Format (RTF), Portable Document Format (PDF),
Microsoft Office Word, Excel, and PowerPoint [5]. Further-
more, a report based on Checkpoint threat cloud data [6]
collected between January 1st and December 31st 2020, indi-
cates that PDF is the third most common malicious file type
responsible for 8% of the file-based attacks coming fromWeb
browsing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

Several detection analysis techniques have been proposed
in the literature that use signature-based detection [7], behav-
ioral heuristic [8] (dynamic), sandboxing (dynamic) [9], and
Artificial Intelligence (AI) [10]. All these methods are detec-
tion mechanisms that rely on file detection or file behavior
detection, meaning file/ behavior trust. However, it is still
possible that evasive malware will not be detected. For exam-
ple, a recent Snake Keylogger attack used a malicious PDF
with an embedded Microsoft Office DocX file to lure the
user into clicking on the malicious embedded object [11] and
evade detection. Recent antivirus detection tests show that
the best solution achieves a 96.3% online detection rate [12],
which is insufficient. Therefore, a zero-trust prevention layer
is needed.

Content Disarm and Reconstruction (CDR) [13], [14],
[15], [16], [17] is a zero-trust file security that is currently
gaining more popularity in Industrial Control Systems (ICS),
file upload protection, and email security. CDR’s ability to
disarm and reconstruct relies on understanding the file format
specification and being aware of its weakness. Therefore,

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 38399

https://orcid.org/0000-0002-2055-2211
https://orcid.org/0000-0002-7194-3159

R. Dubin: Content Disarm and Reconstruction of PDF Files

CDR should handle each supported file type separately and
validate the effectiveness. The CDR utilizes in-depth under-
standing of the file structure to break down any file type
into its discrete components. The CDR strips away anything
that does not conform to the file type’s original specification,
International Organization for Standardization (ISO) stan-
dard, company policy, and after rebuilds a ‘‘clean’’ version
that has a high safety level against zero/one-day attacks.

CDR works by following the file format specification and
sanitizing/ disarming or removing all attack vectors found
in the file [3] and increasing user security. An attack vector,
or threat vector, is a way for attackers to enter a network or
cause a denial-of-service (DoS) [18], [19]. Common attack
vectors include social engineering attacks [20], credential
theft [21], vulnerability exploits [22], and insufficient pro-
tection against insider threats [23]. A significant part of
information security is closing off attack vectors whenever
possible. In the scope of our work, PDF may contain lure
images with instructions to execute the attack, hyperlinks,
active components, and exploits. All the attack vectors must
be handled to secure the users. Further information about PDF
attack vectors is found in the Appendix Section.

CDR is not a new solution in the cybersecurity industry
and is mainly used in Industrial Control Systems (ICS) that
cannot rely only on antivirus detection [12] and need the
most accurate prevention. However, CDR is not limited to
ICS, and the technology adaptation has been increasing and
is expected to be very significant in the upcoming years
in the IT sectors [24]. Furthermore, Gartner’s analysts [24]
identify CDR technology as particularly useful where files
cross organizational boundaries on platforms such as email,
web, and file content-sharing sites. Therefore, our goal is to
increase the research depth in the CDR area.

CDR has many advantages, such as zero-trust, speed, and
risk reduction, and it can be added as another defense level
before or after the Antivirus (AV) /sandbox detection. How-
ever, some inherent limitations exist with CDR, such as:

• a decrease in document usability caused by the removal
of active code and functionality

• inappropriate handling of signed documents
• failure to disarm an encrypted document (unknown pass-
word)

• limited understanding of how the evasivemalware attack
vectors work (new zero-day or new attack vectors) [25]

• not suitable for disarming code files, executable, and
scripts. This is because disarming will affect those files’
ability to operate. However, documents and multimedia
files could disarm safely due to their defined structure
and lack of dependencies between the different file
sections.

In light of the above, we can conclude that CDR is not a
silver bullet: however, it can significantly reduce risks since
it does not rely on antivirus signatures or AI detection, which
malware can bypass [26], [27], [28].

Though there is vast literature on CDR (e.g., [13], [14],
[16]) that emphasizes the need for the technology at a high

level, it does not discuss how the CDR process works in
detail, does not demonstrate the method’s effectiveness, and
does not present the drawbacks in terms of usability and
user-perceived visible quality. These details are essential for
adopting the technology and increasing the research in this
area.

Closing this gap is this paper’s main novelty, which
expands the in-depth research by measuring the effectiveness
of the prevention and exploring the limitations of CDR. This
paper is not about protecting the organization from attacks
due to failed sanitization/privacy of files going from the
organization or malware threat detection. Instead, this paper
is focused on zero-trust prevention by file CDR. To the best
of our knowledge, this is the first work on the PDF file type
that proposes a researchmethodology, validates file zero-trust
disarm effectiveness, and evaluates the disarm effect on the
user-perceived visible quality/similarity to the original file.

The PDF file type is commonly exploited. For example,
there are hundreds of CommonVulnerabilities and Exposures
(CVE) for PDF readers and almost 300 known vulnerabilities
for Adobe Acrobat Reader alone [29]. A significant novelty
of this work is the ability to create disarm and reconstruction
rules from detection rules. Detection rules such as Yara [7] are
used by researchers to stop emerging threats and CVEs. The
rules are shared by social media and other Internet channels
once a threat is discovered [30]. By automatically using
detection rules and converting them to disarm and recon-
struction rules, we stop evasive threats as soon as they are
discovered. As a result, we do not need to wait for expensive
and slow software updates, and prevent them as soon as an
attack is discovered. The above gave us the motivation to start
with the PdfCDR system.

The rest of this paper is organized as follows. First, sec-
tion II describes the related works. Section III presents the
PDF structure and summarizes the different attack vectors
in the PDF file. Section IV offers the PdfCDR solution
architecture, and Section VI provides our dataset. In Sec-
tion V, we present our research evaluation and validation
methodology. Section VII discusses our disarm prevention
results and reconstruction measured image similarity. Then in
SectionVIII, we present PdfCDR limitations and futurework.
Finally, Section IX provides our conclusions and directions
for future work. Detailed information about our disarm and
reconstruction steps are found in the Appendix Section.

II. RELATED WORK
CDR technologies are typically deployed at a network edge
where their primary focus is to extract and disarm threats in
the file. In this section, we begin by reviewing the general
works related to CDR (section II-A) and then those related to
PDF CDR (section II-B).

A. GENERAL CDR RELATED WORK
Sim et al. [14] and Sunshine et al. [16] present the need
for CDR for different uses but do not discuss how to

38400 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

build and validate the technology and do not present its
effectiveness.

Han et al. [15] present CDR technology for PDF and
Microsoft Office files by saving the original document and
converting it to a JPEG image file. This method provides a
100% prevention rate, but the usability and the file format,
which is changed to an image, make the document impossible
to edit and work on. Furthermore, their methods rely on
screen capturing and should be done in an isolated and safe
environment since the document is opened and may contain
evasive malware.

Wiseman [13] presents the value of CDR combined with
Content Threat Removal (CTR) that also acts as a Data
Leakage Protection (DLP) by preventing unseen sensitive
information from leaking out. However, the author does not
discuss how this is done and does not provide algorithms,
datasets, methodology, or prevention rate, and doesn’t discuss
the CDR similarity changes effect.

General CDR solutions lack up-to-date open-source
projects, free cloud solutions, and prevention benchmarks of
industry-grade solutions. Open-source projects exist, such as
DocBleach [31], a Java tool for CDR that supports Microsoft
Office, RTF, PDF, and Zip Archive. A recent initiative [32]
suggested a proof of concept for CDR file protection that
supports Excel, PowerPoint, Word, PDF, and several image
file formats. However, it has limited PDF disarm support and
focuses only on JavaScript and embedded objects. Currently,
both projects are archived and outdated. Furthermore, the
effectiveness of zero-trust disarm technology was not vali-
dated, and the effects on the image similarity to the origi-
nal document after CDR were not measured. Our previous
work suggested a novel CDR solution for RTF files [22]
and described how to prevent malicious attack vectors in
detail. However, this work is the first CDRwork that provides
a solution for updating CDR engines from detection rules
shared in the community.

B. PDF CDR
Many works in the past have focused on malicious PDF file
detection [3], [26], [33], [34], [35], [36], [37], [38], [39].
Others focus on specific PDF attack vectors such as Mali-
cious URL detection [40], and PDF JavaScript detection [41].
However, all the above are trust-based solutions where the
anomaly, static signature, or AI can detect the malicious file.
However, this work is zero-trust prevention and not detection.
Our goal is to disarm any threat in any file without prior
knowledge if the file is malicious. The same disarm and
reconstruction actions are always done on every file.

Others focus on privacy content in the file or sanitiza-
tion [42], [43], [44], [45], [46]. Close related works [42], [47]
focus on hidden data detection in PDF that can be used to
collect threat intelligence on the entity that created the file.
The extracted knowledge, such as printer names [47], internal
domain names, operating systems, and personal informa-
tion can be used against the organization. However, those

did not focus on disarming the attacks in the PDF file and
focus on removing sensitive data from files going out of the
organization.

The NSA [48] reviewed the attack vector focused on the
PDF. Inspired by the NSA guidelines, this work is the first
work that suggests a zero-trust disarm and reconstruction
method, validates the prevention rate (disarming malware),
usability (reconstruction), and measures the document’s
visual changes caused by the CDR based on well-known
image visual similarity metrics.

The full description of our CDR steps is found in the
Appendix Section. Our proposed solution is different from
all previous related works because it enables the user to work
on the same file type as the original after the disarming
process while ensuring that the user can continue to work on
it. In other words, the disarmed document is similar to the
original one in our solution, but it is safe to use.

We do not trust the detection ability to detect and stop
the malware. Therefore, our zero-trust focus is on attack
prevention by always disarming and reconstructing the file
regardless of whether it is malicious.

III. BACKGROUND
As mentioned above, this paper focuses on the PDF file type.
Consequently, we first explain the PDF file type and survey
the different attack vectors for PDF files before we present
our novel CDR architecture. Note that, because CDR systems
rely on understanding the file format, any CDR solution
should handle each supported file type separately.

In general, malicious attacks could be concealed in the
different file components such as scripts, images, videos,
embedded objects, forms, and links, which illustrates the
standard generic discrete components that should be dis-
armed. It is important to note that some objects should be dis-
armed recursively since they contain nested objects. Nested
objects are objects embedded in a file, whereas each can
consist of additional embedded objects. For example, a PDF
can have an embedded object, such as a Word document
containing an additional embedded object (nested) with a
malicious macro. CDR should aim to remove the parent
object or recursively remove all possible child objects that are
threats. The complexity and running time of the CDR increase
when handling all nested objects compared to removing the
root object.

PDF is a versatile file format, created by Adobe in 1992.
PDF gives people an easy, reliable way to present and
exchange documents regardless of the software, hardware,
or operating systems used by anyone who views the docu-
ment. PDF was standardized as ISO 32000 in 2008 [49] the
last edition as ISO 32000-2:2020, also named PDF 2.0 [50].

The PDF file structure comprises four sections: the header,
the body, the cross-reference table, and the trailer. Figure 1
illustrates the PDF representation and basic contents that exist
in each section, while Table 1 presents the list of abbreviations
for important PDF suspicious and evasive content.

VOLUME 11, 2023 38401

R. Dubin: Content Disarm and Reconstruction of PDF Files

TABLE 1. PDF common keywords in relation to malware list of
abbreviations. For the full list please review the standard [51].

PDF docs can contain links and buttons, form fields, audio,
video, and business logic. They can be signed electronically
and easily viewed on Windows or macOS using the free
Adobe Acrobat Reader software. PDF can include hidden and
potentially dangerous data while still appearing as legitimate-
looking documents. As a result, it is essential to investigate
the PDF file format and standard for data hiding and disclos-
ing vulnerabilities.

The first line of a PDF (Header) file specifies the docu-
ment’s version number of the used PDF specification. The
following section is the body of the PDF document, and
some objects typically include text streams, images, and other
multimedia elements. The body section holds all the doc-
ument’s data being shown to the user. The cross-reference
(Xref) table contains the references to all the objects in the
document. A cross-reference table allows random access to
objects in the file, so we do not need to read the whole
PDF document to locate the particular object. In the example
above, in the first line, we can see that the first number
in those lines corresponds to the object number, while the
second line (column in that line) states the number of objects
in the current subsection (in this example 271 objects).

The following line presents each object and is represented
by one entry, 20 bytes long (including the CRLF). The first

FIGURE 1. PDF file format.

10 bytes are the object’s offset from the start of the PDF
document to the beginning of that object. Then, a space
separator with another number specifying the object’s gen-
eration number follows. After that, another space separator is
followed by a letter ‘‘f’’ or ‘‘n’’ to indicate whether the object
is free or in use.

The PDF trailer specifies how the application reading the
PDF document should find the cross-reference table and other
special objects. All PDF readers should start reading a PDF
from the end of the file. The last line of the PDF document
contains the end of the ‘‘%%EOF’’ file string. Before the
end of the file tag, a line with a \startxref string specifies the
offset from the beginning of the file to the cross-reference
table. The PDF structure understanding is important and can
discover different anomalies that can be a sign of malicious
activity [34].

NSA provides a list of hidden data, and embedded content
that may be found in PDF files [48]. Based on NSA recom-
mendations, our reverse engineering research, known threat
research, and the standard, we established PdfCDR disarm
capabilities. Table 2 summarizes our recommended disarm
and reconstruction steps for the different PDF attack vectors
and their effect on the user. The full detailed description per
attack vector can be found in the Appendix Section. After all
the attack vectors are handled and detection signatures are
removed, the PDF file will be safe from malware.

IV. PdfCDR ARCHITECTURE
In this section, we present the PdfCDR system architecture.
The user can upload a file using HTTP Rest Application Pro-
gramming Interface (API). The file or files will be uploaded
to PdfCDR backend architecture illustrated in Fig.2.

In step (1), the user selects the folder/file to disarm using
the desktop application. Then, using Rest API, step (2),
the backend application receives the files and inserts them
into the RabbitMQ [52] queue containers, step (3), one for
the detection worker container (4) and one for the PdfCDR
worker container (6). The detection container has three tasks:
PDFiD, Yara, and VirusTotal reputation (all are described in
Section V). The output of this step is written in the shared
volume log file (5) per incoming file and will be used to

38402 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

TABLE 2. Summary of PDF attack vectors, disarm steps, and their effect on the user.

FIGURE 2. PdfCDR general architecture overview.

compare the results at the end of the analysis. The PdfCDR
worker (6) receives the file, detects its actual file type, and
applies the CDRmethodology to the file. Since each file type
is different, there is a need for a CDRworker to use the correct
disarm function per file type. Any file that fails to be disarmed
is Zip compressed with password protection andmoved to the
quarantine folder in the shared volume. The PdfCDR steps are
discussed in the Appendix Section and Fig. 3.

Files successfully disarmed are sent to the detection and
quality queues (7). One queue is for the detection after the
CDR process, and one queue is for the image quality compar-
ison (8). Finally, the detection docker worker pulls a file from
the detection and quality queue (7) and verifies the success of
the disarming process. If the file is found to be malicious, it is
Zip compressed with password protection and moved to the
quarantine folder in the shared volume (5). If the file is secure,

VOLUME 11, 2023 38403

R. Dubin: Content Disarm and Reconstruction of PDF Files

meaning the disarming was successful, the file is transferred
to the CDR out folder located in the shared volume (5).

The image quality worker (8) pulls the file from the queue
(7) and fetches the original file (not depicted in Fig. 2 for
simplicity reasons). The first pages of the original and the
CDR constructed file are converted to a JPEG file. Then the
image quality metrics are calculated and stored in the shared
volume, as explained in the Results section. After the file
analysis is complete, the application receives (9) the status.
It receives the log with all the disarm and reconstruction
steps and the detection status (4 before and after PdfCDR to
validate the correctness of the proposed solution, including
the image quality metrics (8), which were calculated for the
file.

The research and validation methodology presented in
Fig. 2 is essential since it validates the file’s capabilities
before PdfCDR and after comparing the original file simi-
larity to the PdfCDR output. In addition, Yara validation and
VirusTotal ensure the file is safe for the user. As far as we
know, this is the first work that validates the correctness and
safety of CDR, and none of the previous work benchmarks
the disarm and reconstruction rate, which limits the adoption
of CDR solutions.

Fig. 3 illustrates the PdfCDR steps from detection rules
and is designed to enhance the CDR’s ability to remove
new exploits and attacks unrelated to the file structure and
focus on vulnerabilities in the file reader. For example, Cisco
Talos [53] recently detected four Foxit Reader PDF viewer
exploits with high severity that could lead to arbitrary code
execution. In those attacks, a specially crafted PDF document
can trigger the reuse of previously freed memory, leading to
arbitrary code execution. An attacker must trick a user into
opening a malicious file to trigger these vulnerabilities.

The steps illustrated in Fig. 3 are additional steps inside
the CDR worker (step 6) in Fig. 2. The PdfCDR is done after
the CDR worker steps (defined in the Appendix Section) are
done and enhance PdfCDR to disarm the PDF from detection
capabilities against file exploits that are detected or will be
detected in the future.

The CDR worker receives the input file (1) (step (1) in
Fig. 3), and the File Detector(2) is responsible for detecting
the file type of the file and making sure it is supported and
has a valid structure file type. The CDR Yara Engine (3) first
checks for new and updated signatures (4); if it is updated,
it runs each Yara rule against the file. Next, the CDR Yara
engine (5) return offsets for the detected rules in the original
file. In the next phase, we map each detected rule offset in
the file and map it to the correct PDF file object. Then we
create Disarm rules from the detected objects, which can
be seen in step (6), and, based on the defined policy (7),
we decide per PDF object type what the disarm rules and
reconstruction rules for the object and the file are. Based on
this step, we are disarming the detection rules(8). Finally,
in step (9), we create reconstruction rules, also affected by
the user policy (7), and enforce the reconstruction (10). The
result is a clean, disarmed file that is usable, editable, and

similar to the original source file, as we will demonstrate in
the Evaluation Result Section VII.
The novel contribution of Fig. 3 is the ability to leverage the

malware research community, social media, and commercial
security companies’ fast detection and response [54]. Yara
rules are the de facto standard for newly detected vulnera-
bility detection sharing. By using Yara detection rules and
converting them to disarm and reconstruction rules, PdfCDR
can stop threats as soon as they are discovered without code
updates. Product code update takesmuchmore time to release
and install in the organization, while Yara rules in our solution
work similarly to automated anti-virus signature updates,
which are fast and straightforward.

V. EVALUATION METHODOLOGY
The malware research community uses well-known
open-source tools and commercial solutions to research and
validate if a file is malicious. Our evaluation methodology
illustrated in Fig. 2 describes the entire flow from receiving
the file to the resulting clean CDR output of PdfCDR. In this
section, we explain the different evaluation components we
are using.

First, we describe Fig. 2 Detection worker (4) components:
Yara [7] engine in SectionV-A, PDFiD [55] in Section V-B,
and VirusTotal [56]. The Detection worker is used on the
original document and the output of PdfCDR.

Then we turn to describe our visual similarity metrics in
Section V-D that are used in Fig. 2 in image worker (8).
The similarity engine receives the document pages, converts
them to images per input file, and estimates the average
similarity between the matching input and output document
image pages.

A. YARA
Yara [7] is a static tool that can help malware researchers to
identify and classify malware samples and emphasize their
abilities. Yara provides a flexible language for creating data
signatures. Yara is used extensively in the industry and the
research community and enables descriptions of malware
families and behavioral attributions. Many open-source rules
exist; we found that the following provides good visibility
of the detected behaviors [57], [58], [59], [60], [61] for
PDF files. The Yara signatures include common CVEs and
common attacks, and suspicious behaviors. The final file we
used is available in our GitHub repo [62].

B. PDFiD
PDFiD [55] is a Python module to detect specific PDF
keywords, allowing researchers to identify PDF documents
that contain interesting behavior that may be exploited, such
as JavaScript, or execute an action when opened. PDFiD
can handle name obfuscation. PDFiD is a good validation
tool that helps develop and verify evasive objects’ existence
and enables a simple illustration of the file’s capabilities.
Fig. 4 illustrates a malicious file PDFiD analysis. We can
observe that the file has two pages containing OpenAction

38404 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

FIGURE 3. PdfCDR disarm and reconstruction steps from detection rules architecture overview.

and JavaScript, a common attack combination that alerts
researchers that this document may be malicious. In addition,
the file comprises AcroFrom and XFA, which are known to
hide malicious intent. However, PDFiD is a visibility tool and
not a detection tool. As a result, we will regard it in the result
section as removed objects visibility that helps to learn more
about the datasets.

C. VirusTotal
VirusTotal [56] combines the knowledge of many antivirus
vendors (static scans), online scan engines, and dynamic anal-
ysis (malware sandbox). The service continuously updates
and currently contains more than 74 antivirus vendors.
We used VirusTotal to verify the correctness of PdfCDR.

D. IMAGE SIMILARITY
PDF disarm changes the fonts and images and removes active
and evasive content. The question is how much this change
affects the user-perceived quality/similarity. We saved the
original (reference) and the disarmed (modified) documents
as JPEG images to validate this. The disarming process may
cause an essential loss of information or quality. Image sim-
ilarity evaluation methods can be subdivided into objective
and subjective methods [63].

Subjective methods are based on human judgment and
operate without reference to explicit criteria [64], and they
are out of the scope of this work. On the other hand, objective
methods are based on comparisons using explicit numeri-
cal criteria [65] and a ground truth image. In this work,
we explore three objective methods: Mean Squared Error
(MSE), Peak Signal to Noise Ratio (PSNR) [66], and Struc-
tural Similarity Index Measure (SSIM) [66]. In our compari-
son, we use the original document’s first-page image and its
equivalent disarm PDF image from the first page to calculate
the objective criteria. All images are scaled to the same size
MxN. MSE is calculated as follows where f is the original
image, and g is the disarmed image.

MSE(f , g) =
1
MN

m−1∑
i=0

n−1∑
j=0

(f (i, j) − g(i, j))2 (1)

The PSNR is calculated as follows:

PSNR(f , g) = 10 log10(255
2/MSE(f , g)) [dB] (2)

The PSNR value approaches infinity as the MSE approaches
zero; this shows that a higher PSNR value provides a
higher image similarity. On the other hand, a small value of
the PSNR emphasizes high numerical differences between
images. Please note that for identical images, we will receive
∞.

SSIM is used to measure the similarity between two
images, and it is correlated with the quality perception of the
Human Visual System (HVS). SSIM can model the image
distortion based on three factors: loss of correlation, lumi-
nance distortion, and contrast distortion, as can be seen: 3.

SSIM (f , g) = l(f , g)c(f , g)s(f , g) (3)

where the terms l(f , g), c(f , g), s(f , g) appear in Eq. 4, the
first term describes the luminance comparison function that
expresses the closeness of the two images; when µf = µg
the maximum value will be 1. The second term describes the
closeness of the contrast of the two images; when σf = σg
the maximal value will be 1. The last term measures the
correlation coefficient between the two images; the positive
constantsC1,C2, andC3 are used to avoid a null denominator.

l(f , g) =
(2µf µg + C1)

µ2
f µ

2
g + C1

c(f , g) =
(2σf σg + C2)

σ 2
f σ 2

g + C2

s(f , g) =
(σf g+ C3)
σf σg + C3

(4)

VI. DATASET
We used two datasets to validate PdfCDR disarm capabilities
and measure the reconstruction usability and similarity to the
original file:

• The benign pdf files - LOC [67] which con-
tains 1002 PDF benign/clean files,

• The malicious PDF files - VirusTotal dataset for
academia was collected between 2018-2021 and

VOLUME 11, 2023 38405

R. Dubin: Content Disarm and Reconstruction of PDF Files

FIGURE 4. PDFiD analysis of object indicators for md5: 35ab21dd2409385f154ba2caaadf3bdc.

contained 11246 malicious PDF files provided by
Google VirusTotal service [56].

Please note that VirusTotal is available for academic
researchers upon request. Please refer to our GitHub [62]
repository for hash and further information.

In this section, we will review the VirusTotal dataset
detected threat types in Table 3 and review the differences
between the content of the two datasets using PDFiD in
Table 4.
Table 3 illustrates the common threats in the VirusTo-

tal dataset. The dataset contains 373 different threat types.
We decided to group all threats from the malicious dataset
with fewer than four detected samples as threats named
‘‘Other’’ in the table for simplification purposes. The mali-
cious dataset covers most of the PDFmalicious file behaviors
described in the Appendix Section.

From Table 4 we can observe the PDFiD object compar-
ison between the VirusTotal and LOC datasets. The Norm
VirusTotal column is the normalized quantities since the
dataset sizes are imbalanced, which helps to emphasize the
object differences between the malicious and benign datasets.
We can observe that the number of pages in legitimate files
on average is 14 in this LOC dataset, while in the malicious
files, most of the PDF files have a single page. We can
observe that JS, JavaScript, and OpenAction are much higher
and more common in the VirusTotal dataset and are usually
connected. The EmbeddedFiles, AcroForm/XFA, and URI

are much more prevalent in malware, although they are used
in legitimate files as well.

VII. EVALUATION RESULTS
This section is structured as follows: the Yara detection
results are described in Section VII-A. We present VirusTotal
detection results in Section VII-B, and PdfCDR run time
analysis in SectionVII-C, andwe conclude the visual changes
PdfCDR causes in Section VII-D based on image similarity
metrics.

A. YARA RULES RESULTS
In this section, we will evaluate the LOC and VirusTotal
datasets with the detection capabilities of Yara and VirusTotal
multi-antiviruses and malware sandboxes. Table 5 illustrates
the Yara rule detection rate before and after PdfCDR on the
LOC dataset. We found that Yara detected 19 different types
of signatures before our PdfCDR. The most common Yara
rules show that 24.85% had a suspicious attack indicator,
meaning some active component exists in the file. This indi-
cation is not necessarily malicious but shows that the dataset
contains abilities that can be used for malicious activity.
A surprising fact is that 16.68% of the LOC dataset before
PdfCDR presents an invalid PDF structure. Our research
found that deviations in the structure are common in legit-
imate PDFs. We can see that 2% of the data contain Ope-
nAction activity. When the document is open, the action is
executed. OpenAction is a known attack vector in malicious
PDFs but is also used legitimately in many files.

38406 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

TABLE 3. VirusTotal detected threat name histogram. We show only threats that have four samples and more. The full description is found on our GitHub.

TABLE 4. Comparison of PDFiD results between the LOC and VirusTotal
datasets. Since the VirusToal is more than 11 times bigger, the Norm
VirusTotal aligns the quantities between the dataset, so the malicious
objects are emphasized more.

After our PdfCDR, we can observe that all indicators
except one Oldversion in PDF were left with 214 detected
files, which is a small increase compared to the original files.
However, this does not indicate an issue, and the files are
opened and functional. We plan to improve the reconstruction
validation in future work.

Yara rule detection rate before and after PdfCDR on Virus-
Total dataset is illustrated in Table 6. Yara’s detection over
the VirusTotal dataset has 102 unique types of signatures
detected. The Table presents the most common signature
detected in more than 1% of the VirusTotal dataset. The full
analysis is found in our GitHub repository. Before PdfCDR,
we can conclude that 15.4% of the files contain a suspicious
attack indicator signature consisting of a mixture of signa-
tures like embedded files, OpenActions, and javascript.

We can observe that after PdfCDR, Yara detected only two
signatures out of 102 previously detected before PdfCDR,
meaning the disarm was successful. All the detected sig-
natures after PdfCDR existed before the CDR and none of
them are malicious. The suspicious version signature count
has slightly decreased after CDR, while Oldversion in PDF
was found 1546 times, which is a slight decrease compared
to the 1557 detected files before PdfCDR. We leave that for
future optimization work. All documents are functional after
PdfCDR, and we measure the similarity to the original files
in Section VII-D.

B. VALIDATION USING VirusTotal SERVICE
Weused theVirusTotal service to validate the LOC andVirus-
Total datasets before and after PdfCDR. The LOC dataset
had one file with one engine, indicating it was a malicious
file before PdfCDR, and after PdfCDR, the engine stopped
detecting the file.

For the VirusTotal dataset, Fig. 5 illustrates the histogram
of the number of detected engines per file before PdfCDR.

VOLUME 11, 2023 38407

R. Dubin: Content Disarm and Reconstruction of PDF Files

TABLE 5. Yara rule detection rate before and after PdfCDR on LOC dataset.

FIGURE 5. VirusTotal dataset histogram of detected engines before
PdfCDR.

We can see that most of the VirusTotal dataset files were
detected by 30 to 41 engines before PdfCDR.

Fig. 6 illustrates the histogram of the number of detected
engines per file after PdfCDR.After PdfCDR,we can observe
that the histogram changes, and most of the files after
PdfCDR are detected with four engines (3806 files) and by
zero engines. The low detection indicates that most engines
think the file is clean.

When examining files that were detected based on four
antivirus engines, we see that most of them have the same
detection engines in all of them. The VirusTotal engine detec-
tion similarities lead us to think that the files are detected
based on the same heuristics. Fig. 7 illustrates one of those
files (md5: cff765b34c09b8c373ae86ca772ede68). We can
see that the original file was detected by 45 engines and
had the following signatures: invalid-Xref, autoaction, and
js-embedded from VirusTotal analysis. At the same time, the
PdfCDR result had no Yara detection signatures or suspicious
objects left in the file, and the attack couldn’t be executed.
We tried several files in a sandbox and found no malicious
activity while monitoring them.

We can observe from Analyzing md5:
c07436906953f1bb3f81bd73aa8bfe19 in Fig. 8 that the

original file had 33 detections and contained the following

TABLE 6. Yara rule detection rate before and after PdfCDR on VirusTotal
dataset.

FIGURE 6. VirusTotal dataset histogram of detected engines after PdfCDR.

capabilities: javascript, auto action, invalid-Xref, acroform,
and CVE-2010-2883. After PdfCDR, VirusTotal detected the
file with 31 engines. From our analysis, we successfully
removed all the signatures except for the CVE-2010-2883
signature, for which we do not have the specific signature
used to detect the file. However, the detected exploit can’t
be executed without the capabilities that PdfCDR removed.
Therefore CDR action was successful in preventing the
attack.

From analyzing the result, we can see that files that
received a high detection rate after PdfCDR are SPAM.
For example, md5: bf53d5def67420fad1a72c71b1ea1f50 is
illustrated in Fig. 9 where 27 engines detected the original
file in VirusTotal and after PdfCDR 17 engines detected it
in VirusTotal platform. The different engines indicate this
is SPAM. Since PdfCDR removed the hyperlink, the file is
no longer a threat. However, different artifacts that engines
are using as a signature are left. We should be aware of the

38408 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

FIGURE 7. Example of one of the files detected by four engines after
PdfCDR without any suspicious objects detected. The original file on the
left had 45 detections and contained malicious objects. Note: to reduce
space, we cut only the visible part of the document.

FIGURE 8. CVE-2010-2883 example, the original file on the left had
33 detections and contained malicious objects, while 31 engines detected
the disarmed file without malicious active objects to execute the CVE
attack. Note that we cut only the visible part of the document to reduce
space.

FIGURE 9. SPAM example: the original file on the left had 27 detections,
and the disarmed file had 17 detected engines after PdfCDR (the link
behind the button was successfully removed). Note that we cut only the
visible part of the document to reduce space.

signature they are using to remove the remaining VirusTotal
engine-detected heuristics and use our Yara detection to CDR
engine to remove the indicators.

C. RUN TIME RESULTS
Speed is important when handling large-scale services that
receive thousands of files. Some PDF files can have a com-
plex nested structure and contain many pages. The disarming
of a complex file structure takes longer. Table. 7 summarizes
the LOC dataset PdfCDR run-time in seconds. We can see
that the mean duration of disarming a file was 4.65 seconds,
and the median was 0.73 seconds. The 90% percentile is
9.34 seconds, while the 95% increased to 31.1 seconds.When
we examine the maximum value, we see anomalies in large
and complex files. For example, the maximum duration for
the LOC dataset was 221 seconds. The anomaly was caused
by a complex file containing 1178 pages with 20117 objects
and 2441 streams and PdfCDR handled each one of the com-
ponents. We believe that we can further improve the timing
of complex files in the future, but from the 75% percentile,
most of the files are PdfCDR in less than 0.35 seconds. When
analyzing the LOC CDR file complexity versus the number
of pages (Fig. 10) and the number of objects and streams
(Fig. 11), we can conclude that large files with more than
540 pages and 6000 objects take a long time to CDR. After
investigating the root cause of the problem, we can conclude
it is not due to the regular disarm and reconstruction flow
(found in the Appendix Section). However, it is due to a less
efficient implementation of our disarm-by-detection rules.
We are sure this can be optimized in the future.

When examining the VirusTotal dataset in Table 8 the
maximum file analysis duration recorded was 1837 seconds.

TABLE 7. Summary of analysis duration for the LOC dataset.

FIGURE 10. LOC dataset PdfCDR analysis duration compared to the
number of pages in the dataset.

FIGURE 11. LOC dataset PdfCDR analysis duration compared to the
number of objects and streams in the dataset.

The file contains 15404 objects, 1173 streams, multiple suspi-
cious indicators, and 168 pages. But we can see that the 95%
percentile is 0.14 and the median is 0.027, which indicates
that overall the malicious dataset takes significantly less time
compared to the LOC dataset due to the lower number of
pages and objects in the VirusTotal dataset. We conclude that
the detected time anomalies are rare and can be time reduced
with software engineering steps.

When analyzing the VirusTotal CDR file complexity ver-
sus the number of pages (Fig. 12) and the number of objects
and streams (Fig. 13), we can conclude that similar to the
LOC dataset here, most of the files contain a low number of
pages and the effect of the number of pages is not significant.
However, the number of objects that need to be disarmed
affects our implementation. The root cause of the problem
is the same as the LOC dataset. Since the VirusTotal contains
fewer objects, their analysis duration is shorter, and objects
contribute to a higher analysis complexity.

D. OBJECTIVE IMAGE COMPARISON
Besides the detection rate, we want to check the reconstruc-
tion and similarity of the PdfCDR output to the original file.
Therefore we are using image comparison similarity metrics

VOLUME 11, 2023 38409

R. Dubin: Content Disarm and Reconstruction of PDF Files

TABLE 8. Summary of analysis duration for the VirusTotal dataset.

FIGURE 12. VirusTotal dataset PdfCDR analysis duration compared to the
number of pages in the dataset.

FIGURE 13. VirusTotal dataset PdfCDR analysis duration compared to the
number of objects and streams in the dataset.

to see if the disarm affects the page visualization. At the same
time, the functionality is verified by first opening the PDF
files, saving them as images, and validating their similarity
before and after PdfCDR.

Table 9 summarizes the LOC dataset image similarity.
We can see that the SSIM, MSE, and PSNR indicate that the
resulting image is similar in 100% of the cases. Some files
contain significant differences, such as was reported with a
maximum MSE of 39.15. Overall, the differences could be
more negligible. Note that the Inf value in PSNR was caused
due to the MSE values equal to zero (divided in zero). MSE
equal to zero also affects the PSNRSTD and other parameters
equal to Nan.

It is important to note that we assert that CDR changes the
file appearance. However, in most cases, the disarm overall
visual changes are insignificant compared to the security-
added value.

Table 10 demonstrates that some images were identical,
yielding a PSNR with ∞. The SSIM was close to 1, and the
maximum MSE was very low compared to the clean dataset.
There are two explanations for these results. The first is
because most malicious files are based on exploits and do not
contain highly detailed perceptual information. The second

TABLE 9. Comparison of clean file images dataset.

TABLE 10. VirusTotal malicious dataset image similarity comparison.

FIGURE 14. Phishing PDF file that contains link before PdfCDR. Due to
the size, we cropped the image without empty white background.

reason is that the malicious PDF attacks are hidden and are
not visible in the original and disarm versions, which also
explains the results. The similarity results in the LOC dataset
were better, but the dataset is smaller. We believe that the
diversity will be higher in a larger dataset like the VirusTotal
dataset. Therefore, this is why the similarity metrics are lower
(less similar) in the VirusTotal dataset, but we can see both
show excellent similarity results.

To emphasize the above results, Fig. 14 illustrates a
phishing PDF (md5: 43eb32086cbc695c3dd62bc07e9a06d7)
which was detected by the VirusTotal platform by 30 detec-
tion engines and contains a lure image and a lure link. The
result of the PdfCDR can be seen in Fig. 15, where the
lure link was removed behind the blue link button (yellow
background). As a result, the document can’t risk the user
anymore. Furthermore, the disarmed filewas detected by only
two engines meaning that those engines probably considered
the lure image in their detection methodology and not the
phishing link we removed.

The image similarity metrics for those images were: MSE
was 0, and SSIM was 1. Therefore, we can conclude that
PdfCDR, in this case, removes the threat, but the image
similarity was 100% similar to the source.

38410 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

FIGURE 15. Phishing PDF file after PdfCDR. Due to the size, we cropped
the image without empty white background.

When we examine a different file that uses embedded
javascript and auto-open action

(md5: 479089f4110a9152245bae59df06c367) we can see
it was detected in VirusTotal by 32 engines. After PdfCDR,
all suspicious objects were handled, and only a single engine
caught the file. We will not show the image of the file since
we do not know the source of the original painting (we do not
want to risk the painting infringement copyrights). However,
the image similarity after PdfCDR was SSIM 0.973, and the
MSE was 7.94, which is relatively high. The difference is
black colored string content in the middle of the image that
existed in the picture before PdfCDR removed it. The added
security is much more significant because the current online
detection rate for antivirus engines [12] shows a 96.3% accu-
racy. However, this low detection rate means that the problem
still needs to be solved, and CDR is needed to increase user
security.

VIII. LIMITATIONS AND FUTURE WORK
This research used Yara rules and PDFiD, which are static
analysis solutions. Yara is a rule-based signature that was
created based on known attacks. The limitation of Yara is the
ability to adapt it to new permutations. The rules also may
cause false positives and should be updated regularly. PDfiD
is not a detection tool but is used for visibility and research.
Not all disarm actions will remove a specific PDF section
even after CDR. As a result, PDFiD indicates capabilities and
shouldn’t be regarded as a detection tool since the behavior
may be sanitized.

It is important to note that CDR changes the file. Therefore,
it is different from the original file and it is impossible to sign
the document, which is the drawback of the method for some
enterprise use cases.

Regarding validation, the dataset is from VirusTotal [56],
and the benign dataset was already found in VirusTotal
databases. This work aims to check if PdfCDR managed to
disarm and remove all attack vectors from the PDF dataset.
As a result, testing it against VirusTotal multi-antivirus
engines that are constantly updated is the most accurate
valuation we have available. One may argue that validating
the VirusTotal dataset against VirusTotal is biased. However,
the PdfCDR output is a modified file with different charac-
teristics and hash function representation. As a result, it is
unknown to VirusTotal when uploading it, and it is scanned
as a new file. As far as we know, this is the most accurate
method of validating the CDR output in terms of detection.

This work measures the effect of PdfCDR using
well-known image similarity metrics. However, it is essential

to emphasize that the functionality may change. For example,
PDF Forms will look similar perception-wise, but the func-
tionality will be altered, and active code components will be
disabled. Therefore, the user experience and usability may
be decreased and not considered at the moment. We plan
to extend the image similarity to subjective user experience
evaluation in our future work [68].

IX. CONCLUSION
In this work, we investigated the Adobe PDF file format
and reviewed the different attack vectors that it may contain.
We proposed a novel zero-trust CDR solution named PdfCDR
designed to protect users from files entering the organization.
We shared our research methodology, which includes a static
examination of the file using PDFiD, Yara detection, and
VirusTotal service that contains multiple antivirus detection
and malware sandboxes. We also confirmed that the mali-
cious files are not detected in the malware sandbox and that
all files are usable. Furthermore, the PdfCDR methodology
enables verification that the threats were removed as part of
the development and operation cycles.

While our methodology can be extended to other file for-
mats, we decided to focus on PDF due to its popularity and
cross-platform support. As a result, PDFs are exploited by
malware and phishing campaigns. As far as we know, this is
the first work focusing on zero-trust malware disarm for PDF
files, allowing us to continue working on the resulting file
after the disarming process. Research concerning CDR for
PDF-type files has been conducted primarily in the industry,
and there is a minimal number of previous related works in
academia [15], and in the open-source community [31].

PdfCDR was shown to be effective for large-scale deploy-
ments, and the disarm duration was very low. For the first
time, we investigated the effect of the disarm process based
on professional multi-scan engines (VirusTotal) and based
on objective image similarity metrics that validate that the
files are working and are similar to the original documents.
We found that the overall effect of the disarm can be signif-
icant. However, in most cases, the differences are insignifi-
cant. Therefore, the security benefits of PdfCDR are much
higher than the image similarity changes caused by using it
and removing/sanitizing parts of the documents.

Our solution proposes a novel method that enables updat-
ing PdfCDR to disarm and reconstruct new vulnerabilities
detected and shared via social media or any other sharing
method. The technology does not need to update the dis-
arm or the reconstruction code logic, which is expensive.
Instead, the updates are done only by pushing and updating
the signature database in real-time. The automatic updates
significantly reduce the organization’s ability to prevent eva-
sive malware as soon as the vulnerability is detected with-
out any need for software upgrades. Since new vulnera-
bilities are always found, the PdfCDR method reduces the
vulnerability update gap and offers zero-trust prevention as
soon as a vulnerability detection rule is shared. The results
indicate that PdfCDR successfully CDR 90% of the mali-

VOLUME 11, 2023 38411

R. Dubin: Content Disarm and Reconstruction of PDF Files

cious files and validated they are clean. At the same time,
the remaining 10% of the dataset were encrypted (36 files)
or had abnormal structures compared to the standard, and
all of them were quarantined. PdfCDR was able to CDR
all LOC dataset files except 31 encrypted files that were
quarantined.

APPENDIX
The following sections describe the different attack vectors
found in the PDF file format and discuss how to disarm them
in detail.

A. METADATA
The Metadata section provides information about that docu-
ment that is not directly visible in the PDF reader software and
is used in cataloging and searching for documents in external
databases. Several previous works suggest using the metadata
content as a fingerprintingmechanism [69], and for extracting
private information [70]. This section contains information
such as the document properties, authors, subject, creator
(name of the application software that created the original
document), producer (the name of the application that pro-
duced the PDF), CreationDate, ModDate, and trapped (indi-
cating whether the document has been modified to include
trapping information [48]).

The threat: Metadata fields can’t be trusted and may
contain malicious code.

The solution: Sanitize theMetadata section. Since the data
is not visible, there is no effect on the document’s visual
appearance.

Example: The following malware [71] used JS script and
Metadata Producer section which use three vulnerabilities
inside the Producer information:

1) Collab.collectEmailInfo() uses CVE-2007-5659
2) Util.printf() uses CVE-2008-2992
3) Collab.getIcon() uses CVE-2009-0927

The Producer code was executed as follows:
\JS(var a=this.producer;)
To disarm these groups of CVE attacks, we remove the JS

script from the file and sanitize all Metadata fields by replac-
ing the content with empty strings. However, there could be
other initiators in addition to JS; therefore, our algorithm
sanitizes all Metadata sections.

B. CODE COMMENTS
Code comments can be used and inserted anywhere
in the PDF file. PDF code comment starts with %
symbol.

The threat:PDF file viewers ignore those lines of code, but
they can be used as a source of information about the authors
and also as malicious code hidden in comments that can be
used.

The solution: Code comments are removed. Since the data
is not visible, there is no effect on the document’s visual
appearance.

C. LINKS
The most common PDF attack vectors are malicious links
that can hide under regular-looking buttons inside the PDF
file [72], [73]. The button could be a Fake CAPTCHA,
coupon, file sharing download/request access button, static
picture with a video play button, or any lure trick. When the
non-suspicious users click on the button, they are taken to an
attacker-controlled website.

The threat: Clicking on the URL can lead to various web
attacks, file download, or phishing attacks.

The solution: Removing the link. Since the data is vis-
ible, there is an effect on the document’s visual appear-
ance. Therefore, the link’s removal is a trade-off between
increased security and decreased visual appearance and func-
tionality. Removing the link behind a button will disarm
the malicious activity in phishing attacks. However, the
visual appearance change will not be detected, but the docu-
ment’s functionalitymay be damaged. For legitimate files, the
appearance will stay intact, but some functionality may not
work.

Example: In this example [72], the malicious website uses
different web re-directions that will lead the user to adult
dating and, in other cases, to gambling or adult content.
A different common attack sends the user to a malicious fake
Office 365 domain and asks the user for his email username
and password to send the attached PDF to his email [72]).
Many similar attacks can be used as a lure of well-known
file-sharing fake websites to deceive the user into providing
his username and password for that service.

D. DYNAMIC RESOURCES AND SCRIPTS
JavaScript and ActionScript are two scripting languages
widely adopted in PDF files and websites, due to their high
flexibility and interpreted nature.

The threat: They allow attackers to use them for exploiting
vulnerabilities.

The solution: Remove JavaScript and ActionScript. Since
the data is visible, there is an effect on the document’s
visual appearance. Therefore, the JavaScript and Action-
Script removal is a trade-off between increased security and
decreased visual appearance and functionality, and some
dynamic content will be unavailable.

Example: Initial attacks were reported in 2008 [74] when
PDF files containing JavaScript attacks started to be used
in PDF files. An interesting case is an attack against the
Hacking Team, an Italian security company, which caused
a loss of more than 400 GB of classified data [75]. The
scripting languages can be easily obfuscated and inter-
preted in run time to evade antivirus and AI-based mal-
ware detection. The recommended step is to remove the
script because the static analysis can miss the evasive mali-
cious act. Furthermore, evasive scripts can bypass dynamic
(sandbox) analysis in a never-ending cat and mouse game.
As a result, we recommend removing the script from the
files.

38412 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

E. EMBEDDED CONTENT
A PDF file may contain additional objects or file types,
including JavaScript, SWF, HTML, Microsoft Office, EXE,
PDF, image, video, etc.

The threat: This functionality can be used to embed a
malicious file inside a seamless-looking file and leverage
vulnerabilities of other file types to perform its malicious
activity.

The solution: Recursive CDR for each embedding object
that can be handled and removal of objects that can not be
supported. In this work, we removed the embedded object and
will extend this capability in the future.

Example: An attack can be a simple malicious office file
embedding that lures the user to open it or a more complex
exploit like flash file embedding (CVE-2010-3654). In that
CVE, a malicious Flash movie file (.SWF) was embedded
in the PDF, and JavaScript or PDF commands (/Launch,
/Action, or /EmbeddedFiles) were used combined with social
engineering/image lure [76]. Not only embedded objects are
considered as risk concerns, but also fonts [77] and media
objects. Therefore, we replace the standard fonts. Disarming
the image can be done by using image transcoding [78] or
image format changing. We recommend disarming the image
and focusing multimedia/images on that in our future work.
However, image modification may decrease the user quality
of experience slightly.

F. ENCRYPTION
PDF encryption [48] exists at multiple levels in a PDF docu-
ment. Document-level encryption applies to all strings and
streams in the PDF document, except for the ID entry in
the trailer, strings defined in the Encryption dictionary, and
strings inside content streams and object streams, which are
encrypted. However, the encryption does not include other
object types, such as Integers and Boolean values that illus-
trate the document structure. At the same time, strings and
streams are encrypted and contain the content of the PDF.

The problem: Encryption may contain/hide malicious
content.

The solution: Encryption at the moment is not handled,
and an encrypted file will be marked as unsafe, and we plan
to extend the support in future work.

G. MULTIMEDIA AND IMAGE CONTENT
Sound and Movie objects were the first embedding objects in
PDF, while as embedded objects types, they were deprecated
in PDF version 1.5, and now they are embedded through
Annotation objects.

The problem: Multimedia objects are a concern because
they contain information used for a data attack (malformed
file), particularly for movie files. In addition, movies and
sounds may also contain hidden information embedded
within the file format. Multimedia objects may include addi-
tional metadata such as author or source information subject

to a data disclosure risk or content that can hide evasive
attacks. Image has similar data hidden behavior.

The solution: The solution replaces the multimedia and
image embedded object with re-encoded and harmless con-
tent. However, we plan to extend our PdfCDR platform
to support this activity in the future. Furthermore, current
multimedia and image disarm algorithms are out of this
research scope since each media content needs a dedicated
disarm algorithm since some standards contain various attack
vectors.

H. INTERACTIVE OBJECTS
This part is split into annotations and triggers/actions and
presents them in detail.

1) ANNOTATIONS
Annotations allow a user to interact with the document in
multiple ways, such as inserting comments into the PDF, vis-
ible icons like a paperclip, caret, drawing, etc. An annotation
with a visible icon is called a markup annotation.

The problem: From a security perspective, annotations are
dangerous, contain hidden data/functionality, and sometimes
can be revealed only based on the user’s action.

The solution: Remove the annotations from the document
to avoid zero/one day’s exploits that are evasive and hard to
detect. However, since the data is visible, there is an effect
on the document’s visual appearance. Therefore, the removal
of the annotations is a trade-off between increased security
and decreased visual appearance and functionality, and some
document capabilities will be unavailable.

Example: For example, a mouse hovering over a specific
area to expose functionality. It can also be rendered invisi-
ble to the user. Another concern is that the annotation can
contain media content /objects that contain vulnerabilities in
the software interpreting the file. Researcher [79] found that
annotations can be used to obfuscate malicious JavaScript
code. In addition, recent research [80] found that digitally
signed PDF documents can be altered by the receiver in such a
way that the changes are undetectable, either in all PDF appli-
cations or in a subset of them. One of the methods is called
Evil Annotation Attack (EAA). The researchers found three
types of annotations capable of hiding and adding text and
images. All three can be used to modify a certified document
and inject malicious content stealthily. To execute the attack,
the attacker modifies a certified document by including the
annotation with the malicious content at a position of the
attacker’s choice.

2) TRIGGERS AND ACTIONS
Trigger and action events can invoke actions that will execute
on the user’s system and cause data hiding and data attack
risks [48]. There are many types of triggers, and they are con-
sidered one of the most popular and straightforward attacks
in PDF documents.

VOLUME 11, 2023 38413

R. Dubin: Content Disarm and Reconstruction of PDF Files

PDF actions can cause an event on the system reading the
file through the viewer application. Actions include linking
or resolving to websites, accessing embedded files, launch-
ing applications, and executing scripts [48]. Actions can be
attached to the document, individual pages, annotations, out-
line items, and interactive form fields and triggered through
various events. Similar to triggers, actions can act as a starting
point to execute a chain of actions.

The problem: Common attack vectors are hard to detect
by static and dynamic (sandbox) detections.

The solution: Remove all triggers and actions. How-
ever, since the data is visible, there is an effect on the
document’s visual appearance. Therefore, the triggers and
actions removal is a trade-off between increased security
and decreased visual appearance and functionality, and some
document capabilities will be unavailable.

Example: For example, [81] uses CVE-2018-4993 and
works as follows [81]: a trigger action (/AA) with a child
dictionary with key name /O that specifies that the action
should occur when a document is opened. In the next set, /JS
(JavaScript) comes into action.

I. ACROBAT FORMS
The interactive form is a collection of fields used to collect
information from the user inside a PDF file.

There are two interactive methods:

1) Acrobat Form (AcroForm): It is a simple PDF object
containing form fields that can store objects like but-
tons, images, and code. In addition, the code can be
stored inside other objects or object streams (large
chunks of compressed data), making it a great place to
hide malware attacks.
The problem: Complex attack vectors may contain
hidden evasive data that can be changed dynamically.
The solution:Remove all AcroForm objects. However,
since the data is visible, there is an effect on the
document’s visual appearance. Therefore, AcroForm’s
removal is a trade-off between increased security and
decreased visual appearance and functionality, and
some document capabilities will be unavailable.

2) Adobe XML Forms Architecture (XFA) Form: XFA
is a group of proprietary XML specifications used to
enhance the processing of web forms and dynamic
resize fields within the document. Introduced byAdobe
in PDF v1.5 and was deprecated in PDF V2.0.
The problem: Complex attack vectors may contain
hidden evasive data that can be changed dynamically.
The solution:Remove all XFA objects. However, since
the data is visible, there is an effect on the document’s
visual appearance. Therefore, the XFA’s removal is
a trade-off between increased security and decreased
visual appearance and functionality, and some docu-
ment capabilities will be unavailable.
Example: Researchers have found [82] malicious PDF
with XFA with obfuscated JavaScript inside of it. The

FIGURE 16. XML stylesheet used to initiate a direct connection to a
remote server or SMB share.

disarm algorithm removes the XFA and the associated
JavaScript to prevent this attack.
POC of the XFA attack was suggested [83] and used
a stream that contains an XML stylesheet that can also
be used to initiate a direct connection to a remote server
or SMB share (Fig. 16). The application will parse the
URL and immediately attempt a connection to stop it.

J. PDF FUNCTIONS
Function objects [48] permit the representation of a numerical
transformation and can take multiple values and output any
number of values. There are four categories of functions in
the standard:

1) Type 0 Functions: A sampled function that uses a table
of values to define the function.

2) Type 2 Functions: An exponential interpolation func-
tion that uses a set of coefficients.

3) Type 3 Functions: A stitching function, which is a
combination of other functions, partitioned across a
domain [84].

4) Type 4 Functions: A PostScript calculator function
which uses operators from the PostScript language to
define an arithmetic expression [84].

The problem: The concern with functions is their abil-
ity to manipulate input and generate output and should be
validated in order to make sure no boundaries are crossed
since they present a data attack risk. Furthermore, Function
Type 4 also involves arithmetic operations with the user-
supplied operands. Attacks such as invalid instructions over-
flow, or illegal mathematical operations could be exploited by
attackers.

The solution: Remove the function dictionary and related
data streams and related references to the function dictionary.
The visible drawback is that the removal may break and affect
the visible appearance of the content.

Example: For example, CVE-2019-5042 [85] discovered
a Use-After-Free vulnerability exists in the way Function
Type 0 PDF elements are processed in Aspose.PDF for C++.
A specially crafted PDF can cause a dangling heap pointer,
resulting in a use-after-free. An attacker can send a malicious
PDF to trigger this vulnerability.

ACKNOWLEDGMENT
The author would like to thank Ofek Alon, Amit Dvir, and
Chen Hajaj for their comments and feedback, VirusTotal
for granting them access to their cloud service, malware
collection for educational use, and Aspose for providing an

38414 VOLUME 11, 2023

R. Dubin: Content Disarm and Reconstruction of PDF Files

academic license for their ASPOSE total product libraries for
parsing and manipulating PDF files. This work is based on a
patent pending request 63/408631.

REFERENCES
[1] Adobe. (2021). ISO 32000-2:2020 Document Management—Portable

Document Format—Part 2: PDF 2.0. Accessed: Jan. 15, 2022. [Online].
Available: https://www.iso.org/standard/75839.html

[2] Dark Reading. (2022). New Attack Shows Weaponized PDF Files
Remain a Threat. Accessed: Jan. 15, 2022. [Online]. Available:
https://www.darkreading.com/attacks-breaches/weaponized-pdf-files-
remain-a-threat-research-shows

[3] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici, ‘‘Detection of malicious
PDF files and directions for enhancements: A state-of-the art survey,’’
Comput. Secur., vol. 48, pp. 246–266, Feb. 2015.

[4] What is Content Disarm and Reconstruction (CDR). Accessed: Apr. 18,
2023. [Online]. Available: https://www.checkpoint.com/cyber-hub/threat-
prevention/what-is-content-disarm-and-reconstruction-cdr/

[5] R. Future. (2018). Microsoft Targeted by 8 of 10 Top Vulnera-
bilities. Accessed: Jan. 15, 2022. [Online]. Available: https://www.
recordedfuture.com/top-vulnerabilities-2018/

[6] Statista. (2020). Most Common Malicious File Types Received Globally
Via Web and E-Mail in 2020. Accessed: Sep. 17, 2022. [Online]. Available:
https://www.statista.com/statistics/1238996/top-malware-by-file-type/

[7] VirusTotal. (2022). Yara: The Pattern Matching Swiss Knife, Google
Open Source Project. Accessed: Jan. 15, 2022. [Online]. Available:
https://opensource.google/projects/yara

[8] E. Amer, I. Zelinka, and S. El-Sappagh, ‘‘A multi-perspective malware
detection approach through behavioral fusion of API call sequence,’’Com-
put. Secur., vol. 110, Nov. 2021, Art. no. 102449.

[9] D. Serpanos, P. Michalopoulos, G. Xenos, and V. Ieronymakis, ‘‘Sisyfos:
A modular and extendable open malware analysis platform,’’ Appl. Sci.,
vol. 11, no. 7, p. 2980, Mar. 2021.

[10] A.-A. M. Majid, A. J. Alshaibi, E. Kostyuchenko, and A. Shelupanov,
‘‘A review of artificial intelligence based malware detection using
deep learning,’’ Mater. Today, Proc., 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214785321048586,
doi: 10.1016/j.matpr.2021.07.012.

[11] E. Montalbano. (2022). Snake Keylogger Spreads Through Malicious
PDFs. Accessed: Dec. 3, 2022. [Online]. Available: https://threatpost.
com/snake-keylogger-pdfs/179703/

[12] AV-Comparatives. (2021). Malware Protection Test March 2021
Date. Accessed: Feb. 19, 2022. [Online]. Available: https://www.av-
comparatives.org/tests/malware-protection-test-march-2021/

[13] S. Wiseman, ‘‘Content security through transformation,’’ Comput. Fraud
Secur., vol. 2017, no. 9, pp. 5–10, Sep. 2017.

[14] G. Sim, ‘‘Defending against the malware flood,’’ Netw. Secur., vol. 2018,
no. 5, pp. 12–13, 2018.

[15] H. Jaehyeok, Y. Yoon, G. Hur, J. Lee, J. Choi, S. Hong, and S. Lee, ‘‘Secure
file transfer method and forensic readiness by converting file format in
network segmentation environment,’’ J. Korea Inst. Inf. Secur. Cryptol.,
vol. 29, no. 4, pp. 859–866, 2019.

[16] Y. Sunshine, ‘‘The rise of MSP & CSP vulnerabilities: Storehouses for
secure data,’’Comput. Fraud Secur., vol. 2021, no. 2, pp. 15–19, Jan. 2021.

[17] M. Baker. (2022). Content Disarm and Reconstruction—A Proactive
Stance on Cybersecurity. Accessed: Jan. 15, 2022. [Online]. Available:
https://uktechnews.co.uk/2021/10/28/content-disarm-and-reconstruction-
a-proactive-stance-on-cybersecurity/

[18] X. Cai, K. Shi, K. She, S. Zhong, Y. Soh, and Y. Yu, ‘‘Performance error
estimation and elastic integral event triggering mechanism design for T–S
fuzzy networked control system under DoS attacks,’’ IEEE Trans. Fuzzy
Syst., vol. 31, no. 4, pp. 1327–1339, Apr. 2023.

[19] X. Cai, K. Shi, K. She, S. Zhong, and Y. Tang, ‘‘Quantized sampled-data
control tactic for T-S fuzzy NCS under stochastic cyber-attacks and its
application to truck-trailer system,’’ IEEE Trans. Veh. Technol., vol. 71,
no. 7, pp. 7023–7032, Jul. 2022.

[20] F. Salahdine and N. Kaabouch, ‘‘Social engineering attacks: A survey,’’
Future Internet, vol. 11, no. 4, p. 89, Apr. 2019.

[21] J. M. Esparza, ‘‘Understanding the credential theft lifecycle,’’ Comput.
Fraud Secur., vol. 2019, no. 2, pp. 6–9, Jan. 2019.

[22] R. Dubin, ‘‘Content disarm and reconstruction of RTF files a zero
file trust methodology,’’ IEEE Trans. Inf. Forensics Security, vol. 18,
pp. 1461–1472, 2023.

[23] A. Kim, J. Oh, J. Ryu, and K. Lee, ‘‘A review of insider threat detection
approaches with IoT perspective,’’ IEEE Access, vol. 8, pp. 78847–78867,
2020.

[24] S. Handa and P. Shoard. (2021). Hype Cycle for Network Security.
Accessed: Feb. 19, 2022. [Online]. Available: https://www.gartner.com/en

[25] E. Montalbano. (2020). Hackers Update Age-Old Excel 4.0 Macro Attack.
[Online]. Available: https://threatpost.com/hackers-update-age-old-excel-
4-0-macro-attack/154898/

[26] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik, ‘‘Improv-
ing robustness of ML classifiers against realizable evasion attacks using
conserved features,’’ in Proc. 28th USENIX Secur. Symp. (USENIX Secu-
rity), 2019, pp. 285–302.

[27] A. Ashkenazy and S. Zini. (2019).Cylance, I Kill You! [Online]. Available:
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/

[28] H. Anderson, A. Kharkar, B. Filar, and P. Roth, ‘‘Evadingmachine learning
malware detection,’’ in Proc. Black Hat, 2017, pp. 1–6.

[29] I. Kringel. (2021). PDF as a Weapon of Choice on the Cybersecurity
Battlefield. Accessed: Mar. 15, 2022. [Online]. Available:
https://www.deepinstinct.com/blog/pdf-as-a-weapon-of-choice-on-the
-cybersecurity-battlefield

[30] V. Kropotov and F. Yarochkin. (2019). Hunting Threats on
Twitter: How Social Media Can be Used to Gather Actionable
Threat Intelligence. Accessed: Jan. 15, 2022. [Online]. Available:
https://www.trendmicro.com/vinfo/it/security/news/cybercrime-and-
digital-threats/hunting-threats-on-twitter

[31] DocBleach Open Source CDR. Accessed: Apr. 18, 2023. [Online]. Avail-
able: https://github.com/docbleach/DocBleach

[32] D. Righetto. (2022). Document Upload Protection. Accessed:
Jan. 15, 2022. [Online]. Available: https://github.com/righettod/document-
upload-protection

[33] C. Carmony, M. Zhang, X. Hu, A. Vasisht Bhaskar, and H. Yin, ‘‘Extract
me if you can: Abusing PDF parsers in malware detectors,’’ in Proc. NDSS,
2016, pp. 1–15.

[34] Y. Otsubo,M.Mimura, andH. Tanaka, ‘‘O-checker: Detection ofmalicious
documents through deviation from file format specifications,’’ in Proc.
Black Hat USA, 2016, pp. 1–16.

[35] C. Smutz and A. Stavrou, ‘‘Malicious PDF detection using metadata and
structural features,’’ in Proc. 28th Annu. Comput. Secur. Appl. Conf.,
Dec. 2012, pp. 239–248.

[36] D. Stevens, ‘‘Malicious PDF documents explained,’’ IEEE Secur. Privacy
Mag., vol. 9, no. 1, pp. 80–82, Jan. 2011.

[37] W. Xu, Y. Qi, and D. Evans, ‘‘Automatically evading classifiers: A case
study on PDF malware classifiers,’’ in Proc. NDSS, 2016.

[38] M. A. Munson and J. S. Cross, ‘‘Deep pdf parsing to extract features
for detecting embedded malware,’’ Sandia Nat. Lab. (SNL), Albuquerque,
NM, USA, Tech. Rep. SAND2011-7982, 2011.

[39] D. Maiorca, B. Biggio, and G. Giacinto, ‘‘Towards adversarial malware
detection: Lessons learned from PDF-based attacks,’’ ACM Comput. Surv.,
vol. 52, no. 4, pp. 1–36, Jul. 2020.

[40] N. Hason, A. Dvir, and C. Hajaj, ‘‘Robust malicious domain detection,’’ in
Cyber Security Cryptography and Machine Learning. Be’er Sheva, Israel:
Springer, Jul. 2020, pp. 45–61.

[41] Y. Xue, J. Wang, Y. Liu, H. Xiao, J. Sun, and M. Chandramohan, ‘‘Detec-
tion and classification of malicious Javascript via attack behavior mod-
elling,’’ in Proc. Int. Symp. Softw. Test. Anal., Jul. 2015, pp. 48–59.

[42] S. Adhatarao and C. Lauradoux, ‘‘Exploitation and sanitization of hidden
data in PDF files: Do security agencies sanitize their PDF files?’’ in Proc.
ACM Workshop Inf. Hiding Multimedia Secur., Jun. 2021, pp. 35–44.

[43] T. Aura, T. A. Kuhn, and M. Roe, ‘‘Scanning electronic documents for
personally identifiable information,’’ in Proc. 5th ACM Workshop Privacy
Electron. Soc., Oct. 2006, pp. 41–50.

[44] Y. Feng, B. Liu, X. Cui, C. Liu, X. Kang, and J. Su, ‘‘A systematic method
on PDF privacy leakage issues,’’ in Proc. 17th IEEE Int. Conf. Trust,
Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big Data Sci. Eng.
(TrustCom/BigDataSE), Aug. 2018, pp. 1020–1029.

[45] S. L. Garfinkel, ‘‘Leaking sensitive information in complex document
files- and how to prevent it,’’ IEEE Secur. Privacy, vol. 12, no. 1, pp. 20–27,
Jan./Feb. 2013.

[46] D. Sánchez, M. Batet, and A. Viejo, ‘‘Automatic general-purpose saniti-
zation of textual documents,’’ IEEE Trans. Inf. Forensics Security, vol. 8,
no. 6, pp. 853–862, Jun. 2013.

[47] K. Mendelman, ‘‘Fingerprinting an organization using metadata of public
documents,’’ M.S. thesis, Inst. Comput. Sci. Cyber Secur. Curriculum,
Univ. Tartu, Tartu, Estonia, 2018.

VOLUME 11, 2023 38415

http://dx.doi.org/10.1016/j.matpr.2021.07.012

R. Dubin: Content Disarm and Reconstruction of PDF Files

[48] Inspection and Sanitization Guidance for Portable Document For-
mat, Central Security Service (CSS), NSA, Fort Meade, MD, USA,
2017.

[49] Adobe Systems Incorporated. (2008). PDF, Version 1.7 (ISO 32000-
1:2008). Accessed: Mar. 15, 2022. [Online]. Available: https://
www.loc.gov/preservation/digital/formats/fdd/fdd000277.shtml

[50] Adobe. (2020). PDF, Version 2.0 (ISO 32000-2:2020). Accessed:
Mar. 15, 2022. [Online]. Available: https://www.iso.org/standard/75839.
html

[51] Document Management—Portable Document Format—Part 1: PDF 1.7,
Standard 32000-1:2008, International Organization for Standardization,
Geneva, Switzerland, 2008. Accessed: Jan. 15, 2022. [Online]. Available:
https://www.iso.org/standard/51502.html

[52] VMware. (2021). RabbitMQ Message Broker. Accessed: Jan. 15, 2022.
[Online]. Available: https://www.rabbitmq.com/

[53] K. Dontje. (2022). Vulnerability Spotlight: Use-After-Free Vulnerabilities
in Foxit Reader Could Lead to Arbitrary Code Execution. Accessed:
Jan. 15, 2022. [Online]. Available: https://blog.talosintelligence.
com/vulnerability-spotlight-use-after-free-vulnerabilities-in-foxit-reader-
could-lead-to-arbitrary-code-execution/

[54] S. Gatlan. (2022). Google Releases 165 YARA Rules to Detect
Cobalt Strike Attacks. Accessed: Jan. 15, 2022. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/google-releases-
165-yara-rules-to-detect-cobalt-strike-attacks/

[55] D. Stevens. (2020). PDF Tools by Didier Stevens. Accessed: Sep. 17, 2022.
[Online]. Available: https://blog.didierstevens.com/programs/pdf-tools/

[56] VirusTotal. (2022). Virustotal Website. Accessed: Jan. 15, 2022. [Online].
Available: https://www.virustotal.com/gui/home/upload

[57] Ditekshen. (2022). Detection and Hunting Signatures. Accessed:
Jan. 15, 2022. [Online]. Available: https://github.com/ditekshen/detection

[58] InQuest. (2022). InQuest YARA Rules. Accessed: Jan. 15, 2022. [Online].
Available: https://github.com/InQuest/yara-rules

[59] LPART. (2022). Static Analysis Malicious Files YARA Rules.
Accessed: Jan. 15, 2022. [Online]. Available: https://github.com/
lprat/static_file_analysis/blob/master/yara_rules1/pdf.yar

[60] YARA-Rules. (2022). YARA Rules Project. Accessed:
Jan. 15, 2022. [Online]. Available: https://github.com/Yara-Rules/
rules/blob/master/maldocs/Maldoc_PDF.yar

[61] TyLabs. (2022). Quicksand YARA Rules. Accessed: Jan. 15, 2022.
[Online]. Available: https://github.com/tylabs/quicksand/blob/main/
src/quicksand/quicksand_pdf.yara

[62] R. Dubin. (2022). Ariel-CDRGitHub Repository. Accessed: Sep. 17, 2022.
[Online]. Available: https://github.com/randubin/PDF-CDR

[63] I. Avcıbas, B. Sankur, andK. Sayood, ‘‘Statistical evaluation of image qual-
ity measures,’’ J. Electron. Imag., vol. 11, no. 2, pp. 206–223, Apr. 2002.

[64] J. E. Farrell, ‘‘Image quality evaluation,’’ in Color Imaging: Vision and
Technology, L. W. Macdonald and M. R. Luo, Eds. Hoboken, NJ, USA:
Wiley, 1999, pp. 285–313.

[65] M. Cadik and P. Slavik, ‘‘Evaluation of two principal approaches to
objective image quality assessment,’’ in Proc. 8th Int. Conf. Inf. Vis., 2004,
pp. 513–518.

[66] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
‘‘Image quality assessment: From error visibility to structural
similarity,’’ IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

[67] LOC. (2022). Library of Congress PDF Dataset. Accessed: Jan. 15, 2022.
[Online]. Available: https://www.loc.gov/item/2020445568/

[68] R. Shalala, R. Dubin, O. Hadar, and A. Dvir, ‘‘Video QoE prediction based
on user profile,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC),
Mar. 2018, pp. 588–592.

[69] C. Alonso and J. Palzon, ‘‘Tactical fingerprinting using foca,’’ in Proc.
DEF CON Hacking Conf., 2009, pp. 41–50.

[70] C. Alonso, E. Rando, F. Oca, and A. Guzmán, ‘‘Disclosing private infor-
mation from metadata, hidden info and lost data,’’ in Proc. Black Hat Eur.,
2009, p.102.

[71] Cyren Security Blog, How PDF Files Hide Malware—example—PDF
Scan From Xerox. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.cyren.com/blog/articles/how-pdf-files-hide-malware-
example-pdf-scan-from-xerox-1247

[72] A. Hosseini and A. Chitwadgi. (2021). 2020 Phishing Trends With PDF
Files. [Online]. Available: https://unit42.paloaltonetworks.com/phishing-
trends-with-pdf-files/

[73] M. A. Ivanov, B. V. Kliuchnikova, I. V. Chugunkov, and A. M. Plaksina,
‘‘Phishing attacks and protection against them,’’ in Proc. IEEE Conf. Rus-
sian Young Res. Electr. Electron. Eng. (ElConRus), Jan. 2021, pp. 425–428.

[74] D. Maiorca, P. Russu, I. Corona, B. Biggio, and G. Giacinto, ‘‘Detection
of malicious scripting code through discriminant and adversary-aware API
analysis,’’ in Proc. 1st Italian Conf. Cybersecur. (ITASEC), vol. 1816,
2017, pp. 96–105.

[75] Ars Technica. (2015). Hacking Teams Flash 0-Day: Potent
Enough to Infect Actual Chrome User. [Online]. Available: https://
arstechnica.com/information-technology/2015/07/hacking-teams-flash-
0day-potent-enough-to-infect-actual-chrome-user/

[76] R. Naraine. (2010). Hacker Finds a Way to Exploit PDF Files, Without a
Vulnerability. [Online]. Available: https://www.zdnet.com/article/hacker-
finds-a-way-to-exploit-pdf-files-without-a-vulnerability/

[77] J. Sejtko. (2011). Another Nasty Trick in Malicious PDF. [Online]. Avail-
able: https://blog.avast.com/2011/04/22/another-nasty-trick-in-malicious-
pdf/

[78] B. Ines, J. S. Ben, and Z. Ezzeddine, ‘‘Online multi-sprites based video
watermarking robust to collusion and transcoding attacks for emerging
applications,’’ Multimedia Tools Appl., vol. 77, no. 11, pp. 14361–14379,
Jun. 2018, doi: 10.1007/s11042-017-5033-y.

[79] B. Zdrnja. (2010). Javascript Obfuscation in PDF: Sky is the Limit.
[Online]. Available: https://isc.sans.edu/diary/JavaScript+obfuscation+
in+PDF+Sky+is+the+limit/8587

[80] S. Rohlmann, V. Mladenov, C. Mainka, and J. Schwenk, ‘‘Breaking the
specification: PDF certification,’’ inProc. IEEE Symp. Secur. Privacy (SP),
May 2021, pp. 1485–1501.

[81] P. Stokes. (2019). Malicious PDFs Revealing the Techniques Behind the
Attacks. [Online]. Available: https://www.sentinelone.com/blog/malicious
-pdfs-revealing-techniques-behind-attacks

[82] Complex—PDF Hides Malware Inside XFA Which is Inside PNG—Not
an Image. [Online]. Available: https://www.cyren.com/blog/articles/
complex-pdf-hides-malware-inside-xfa-which-is-inside-png-not-an-
image-1229

[83] (Jan. 2019). Alex Inführ, Adobe Reader—PDF Callback Via
XSLT Stylesheet in XFA. [Online]. Available: https://insert-script.
blogspot.com/2019/01/adobe-reader-pdf-callback-via-xslt.html

[84] Document Management—Portable Document Format—Part 1: PDF 1.7,
Int. Org. Standardization, ISO Central Secretariat, Geneva, Switzerland,
2008. [Online]. Available: https://www.iso.org/standard/51502.html

[85] Cisco. (2019). Aspose.PDF for C++ Remote Code Execution Vul-
nerability. [Online]. Available: https://talosintelligence.com/vulnerability
_reports/TALOS-2019-0809

RAN DUBIN (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees in communication sys-
tems engineering from Ben-Gurion University,
Beer Sheva, Israel. He is currently a Faculty Mem-
ber with the Computer Science Department, Ariel
University, Israel. His research interests include
zero-trust cyber protection, malware disarms and
reconstruction, encrypted network traffic detec-
tion, deep packet inspection (DPI), bypassing AI,
natural language processing, and AI trust.

38416 VOLUME 11, 2023

http://dx.doi.org/10.1007/s11042-017-5033-y

