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ABSTRACT Fermatean fuzzy hesitant sets provide a flexible and powerful tool for decision making,
allowing decision makers to incorporate uncertainty and hesitation into their decision making process, and
enabling them to make more informed and effective decisions in complex and uncertain environments.
Considering that many factors are interdependent in reality while existingmethods cannot solve this problem,
we propose Fermatean hesitant fuzzy Choquet integral ordered aggregation operators based on the Fermatean
hesitant fuzzy set and Choquet integral, and establish their related properties. These operators including
averaging and geometric operators not only handle situations where decision criteria or preferences are
interdependent, but also provides the decision under ideal and non-ideal situation. Additionally, we present
a multi-attribute decision-making method for Fermatean hesitant fuzzy information using these operators.
We have validated the proposed method, and its practicality and effectiveness are demonstrated through
numerical examples from previous research regarding Fermatean hesitant fuzzy set, including sensitivity
analysis and comparison.

INDEX TERMS Fermatean hesitant fuzzy set, Choquet integral, Choquet integral aggregation operators,
multi-attribute decision making.

I. INTRODUCTION
A. BACKGROUND
Fuzzy set theory, introduced by Zadeh [1], is a valuable tool
for addressing uncertainty problems and has been success-
fully applied in various fields [2], [3], [4], [5], [6]. However,
when dealing with ambiguous information sources, fuzzy sets
have limitations. To overcome these limitations, researchers
have proposed several extended models of fuzzy sets [7],
[8], [9]. One such extension is the intuitionistic fuzzy set
(IFS) [10], which takes the degree of membership, non-
membership, and hesitation into account. However, the sum
of membership and non-membership degrees must be less
than or equal to 1, restricting the range of applications for
fuzzy sets. To address this issue, Yager proposed two new
types of fuzzy sets: the Pythagorean fuzzy set (PFS) and the
Fermatean fuzzy set (FFS) [11], [12], [13]. PFS and FFS only

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

require the sum of squares and sum of cubes, respectively,
of the membership and non-membership degrees to be less
than or equal to 1, expanding the range of applications for
fuzzy sets.

In the decision-making process, every decision maker
needs to judge alternatives based on various attributes. How-
ever, due to subjective consciousness, decision results are
often indecisive. To address this issue, Torra proposed the
hesitant fuzzy set (HFS) [14], which has been effective in
dealing with ambiguity. Based on the advantages of HFS and
PFS, Khan et al. proposed the Pythagorean hesitant fuzzy set
(PHFS) [15], which expands the fuzzy set model. Further-
more, the Fermatean hesitant fuzzy set (FHFS) was proposed
by Kirişci in order to further handle ambiguities [16]. How-
ever, obtaining a good decision result is not solely based
on the decision information provided by a single expert
or one type of decision attribute. Therefore, it is crucial
to study the aggregation of multiple decision information.
Grabisch introduced the fuzzy integral and its applications
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in decision-making problems [17]. Xia and Xu proposed
a set of aggregation operators for hesitant fuzzy informa-
tion and discussed their correlations [18]. In 2014, Wang
proposed the extended hesitant fuzzy linguistic term sets
and their aggregation operators, which can be applied to
group decision making [19]. In 2019, Senapati et al [20]
proposed Fermatean fuzzy weighted averaging and geomet-
ric operators(FFWA,FFWG) which can be used in multi-
attribute decision-making(MADM) under Fermatean fuzzy
condition. In 2021, Shahzadi et al. [21] presented group
decision-making for the selection of an antivirus mask under
fermatean fuzzy soft information. In 2022, Akram [22] pro-
posed complex fermatean fuzzy N-soft sets which can pro-
cess two-dimensional information related to levels of satis-
faction and dissatisfaction implicit in the nature of human
decision-making. At the same time, Mishra et al. [23] pro-
posed the COPRASmethod based on interval-valued hesitant
Fermatean fuzzy sets and its application in selecting desali-
nation technology.

It is significant to note that the aggregation operators men-
tioned above assume that decision conditions are indepen-
dent, which is not always the case. In many decision-making
problems, the interdependence of decision conditions is often
overlooked.

B. LITERATURE REVIEW
In 1974, Sugeno [24], [25] first proposed the concept of
a fuzzy measure, which is a regular, monotone, continu-
ous, non-negative set function. Fuzzy measure is a con-
tinuation and extension of classical additive measure. The
Choquet integral for fuzzy measures was originally proposed
by Murofushi and Sugeno [26], [27], [28]. In 1989, they
first combined the fuzzy measure with Choquet integral
in [29]. Using these ideas, the problem of mutual depen-
dence of decision criteria can be solved well. In 2000,
Marichal [30] proposed an axiomatic method of the discrete
Choquet integral as a tool to aggregate interacting criteria.
In 2011, Tan and Chen [32] proposed the induced intuitionis-
tic fuzzy Choquet integral operator and gave a corresponding
method to solve the multiple criteria decision-making prob-
lem. In [33], Tan extended the multi-criteria interval-valued
intuitionistic fuzzy decision-making technology to group
decision-making environment. Considering the interdepen-
dence between criteria and decision makers’ preferences,
he proposed a TOPSIS-based Choquet integral for multi-
criteria interval-valued intuitionistic fuzzy group decision-
making. In 2012, Wei et al. [31] proposed the hesitant
fuzzy Choquet integral aggregation operator and studied the
MADM problem of attribute values in the form of hesitant
fuzzy information. In 2016, Peng and Yang [34] proposed
the Pythagorean Fuzzy Choquet Integral Operator, which
not only considers the importance of its elements or their
ordered positions, but also reflects the correlation between
its elements or their ordered positions. In 2018, Khan et al.
[35], [36] proposed the information aggregation and hybrid

aggregation operator based on Pythagorean hesitant fuzzy
sets, respectively, and studied their applications in group
decision making.

In recent years, there have been increasing studies on
the MADM problem. In 2020, Akram et al. [37] extended
Dombi aggregation operators to handle uncertainty in
m-polar fuzzy information and investigates their properties.
In 2023, Akram et al. [38] proposed a new hybrid model
called Pythagorean fuzzy n-soft expert sets, which combines
Pythagorean fuzzy sets and n-soft expert sets, to handle
uncertain parameterized information in multi-attribute group
decision-making problems. Meanwhile, Sarwar et al. [39]
presents a novel linguistic assessment model,which integrates
rough fuzzy numbers with cloud model theory to handle
uncertainties.

C. MOTIVATION AND INNOVATION
In this paper, we present an extended approach to the Choquet
integral operator based on the Fermatean hesitant fuzzy set,
which offers several significant improvements. Our motiva-
tion and innovations can be summarized as follows:
(1) Although numerous studies have been conducted to

solve Multiple Attribute Decision Making MADM)
problems [38], [39], [40], there is a lack of research on
the Fermatean hesitant fuzzy set. In Fermatean fuzzy
environments, where high ambiguity and uncertainty
make it difficult for experts to make decisions, it is
common to describe a problem using two sets of possi-
ble values denoting membership and non-membership,
respectively. Therefore, we propose a method that is
adapted to the Fermatean hesitant fuzzy condition.

(2) One of the main drawbacks of the recent existing
methods for solving MADM problems is the failure to
consider the correlation and interdependence between
different attributes. The latest research on the Choquet
integral has been effective in addressing this issue, such
as the Pythagorean hesitant fuzzy Choquet integral
aggregation operators proposed by Khan et al. [41].
However, research on the Choquet integral remains
limited. Therefore, we provide a systematic system of
Fermatean hesitant fuzzy Choquet integral aggregation
operators to address this gap in the literature.

D. STRUCTURE
The paper is organized as follows. In Section II, we intro-
duce the basic concepts of the Fermatean hesitant fuzzy
set accompanied with fuzzy measure and Choquet integral.
In Section III, we define the Fermatean hesitant fuzzy Cho-
quet integral aggregation operators, and prove their related
properties. In Section IV, we develop MADM based on
the Fermatean hesitant fuzzy Choquet integral aggregation
operators. In Section V, we give a numerical example with
sensitivity analysis and comparison to verify the validity and
practicality of the aggregation operators proposed in this
paper. In Section VI, we present some concluding remarks
and future research.
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II. PRELIMINARY
In this section, we introduce some basic concepts of Fer-
matean hesitant fuzzy set and Choquet integral operator.

A. FERMATEAN HESITANT FUZZY SET
Definition 1 [15]: Let X be a fixed set. A Fermatean

hesitant fuzzy set abbreviated as FHFS FH in X is an object
with the following notion:

FH = {⟨x, 3FH (x), 0FH (x)⟩|x ∈ X}, (1)

where 3FH (x) and 0FH (x) are mappings from X to
[0, 1], denoting a possible degree of membership and
non-membership degree of element x ∈ X in FH respec-
tively, and for each element x ∈ X , ∀hFH (x) ∈ 3FH (x),
∃h′

FH (x) ∈ 0FH (x), such that, and ∀h′
FH (x) ∈ 0FH (x),

∃hFH (x) ∈ 3FH (x), such that 0 ≤ h3FH (x) + h′3
FH (x) ≤ 1. For

any FHFS FH = {⟨x, 3FH (x), 0FH (x)⟩|x ∈ X} and for all x ∈

X , 5FH (x) = ∪hFH (x)∈3FH (x),h′
FH

(x)∈0FH (x)
3
√
1 − h3FH − h′3

FH
is said to be the degree of indeterminacy of x to FH , where
1 − h3FH − h′3

FH > 0.
Moreover, FHFS(X ) denotes the set of all elements of

FHFSs. If X has only one element ⟨x, 3FH (x), 0FH (x)⟩ is
said to be Fermatean hesitant fuzzy number and is denoted
by ĥ = ⟨3FH (x), 0FH (x)⟩ for convenience. We denoted the
set of all FHFNs by FHFNS.

Remark for all x ∈ X if 3FH (x) and 0FH (x) have only
one element, then the FHFS become a PFS. If the non-
membership degree is {0}, then the FHFS become a HFS.
Definition 2 [15]: Let ĥ = ⟨3ĥ, 0ĥ⟩, ĥ1 = ⟨3ĥ1

, 0ĥ1
⟩,

ĥ2 = ⟨3ĥ2
, 0ĥ2

⟩ are three FHFNs and λ > 0, then the
following operational laws are valid.
(1) ĥ1 ∪ ĥ2 = ⟨max{3ĥ1

, 3ĥ2
},min{0ĥ1 , 0ĥ2}⟩,

(2) ĥ1 ∩ ĥ2 = ⟨min{3ĥ1
, 3ĥ2

},max{0ĥ1 , 0ĥ2}⟩,
(3) ĥ = ⟨0ĥ, 3ĥ⟩,

(4) ĥ1 ⊕ ĥ2 = ⟨∪hĥ1
∈3ĥ1

,hĥ2
∈3ĥ2

{ 3
√
h3
ĥ1

+ h3
ĥ2

− h3
ĥ1
h3
ĥ2

},

∪h′

ĥ1
∈0ĥ1

,h′

ĥ2
∈0ĥ2

{h′

ĥ1
h′

ĥ2
}⟩,

(5) ĥ1 ⊗ ĥ2 = ⟨∪hĥ1
∈3ĥ1

,hĥ2
∈3ĥ2

{hĥ1hĥ2},

∪h′

ĥ1
∈0ĥ1

,h′

ĥ2
∈0ĥ2

{ 3
√
h′3
ĥ1

+ h′3
ĥ2

− h′3
ĥ1
h′3
ĥ2

}⟩,

(6) λĥ = ⟨∪hĥ∈3ĥ
{ 3
√
1 − (1 − (hĥ)

3)λ}, ∪h′

ĥ
∈0ĥ

{(h′

ĥ
)λ}⟩,

λ > 0,
(7) ĥλ

= ⟨∪hĥ∈3ĥ
{hλ

ĥ
}, ∪h′

ĥ
∈0ĥ

{ 3
√
1 − (1 − (h′

ĥ
)3)λ}⟩,

λ > 0,
To compare two FHFNs, in following [15], the score func-

tion, accuracy function, and some basic laws on the basis of
the score function are defined.
Definition 3 [15]: Let ĥ = ⟨3ĥ, 0ĥ⟩ be a FHFN. Then,

we defined the score function of ĥ as follows:

S(ĥ) = (
1

lhĥ∈3ĥ

∑
hĥ∈3ĥ

hĥ)
3
− (

1
lh′

ĥ
∈0ĥ

∑
h′

ĥ
∈0ĥ

h′ĥ )3 (2)

where S(ĥ) ∈ [−1, 1]. lhĥ denotes the number of elements in
3ĥ and lh′

ĥ
denotes the number of elements in 0ĥ.

Definition 4 [15]: Let ĥ = ⟨3ĥ, 0ĥ⟩ be a FHFN. Then,
we defined the accuracy function of ĥ as follows:

σ̄ (ĥ) = (
1

lhĥ∈3ĥ

∑
hĥ∈3ĥ

hĥ − S(ĥ))3

+ (
1

lh′

ĥ
∈0ĥ

∑
h′

ĥ
∈0ĥ

h′ĥ − S(ĥ))3 (3)

Here, we can see that S(ĥ) is just the mean value in statis-
tics, and σ̄ (ĥ) is just the standard variance, which reflects the
accuracy degree between all values in the FHFN ĥ and their
mean value. Let ĥ1 and ĥ2 be two FHFNs, S(ĥ1) be the score
of ĥ1, S(ĥ2) be the score of ĥ2, and σ̄ (ĥ1) be the deviation
degree of ĥ1, σ̄ (ĥ2) be the deviation degree of ĥ2. Then
(1) If S(ĥ1) < S(ĥ2), then ĥ1 < ĥ2.
(2) If S(ĥ1) > S(ĥ2), then ĥ1 > ĥ2.
(3) If S(ĥ1) = S(ĥ2), then ĥ1 ∼ ĥ2.

a) If σ̄ (ĥ1) < σ̄ (ĥ2), then ĥ1 < ĥ2.
b) If σ̄ (ĥ1) > σ̄ (ĥ2), then ĥ1 > ĥ2.
c) If σ̄ (ĥ1) = σ̄ (ĥ2), then ĥ1 ∼ ĥ2.

Definition 5 [35]: Let ĥi = ⟨3ĥi
, 0ĥi

⟩(i = 1, 2, 3, . . . , n)
be a collection of all FHFNs, ĥσ (i) be the largest in them,
and w = (w1,w2, . . . ,wn)T be the weight vector of ĥi(i =

1, 2, 3, . . . , n) with wi ≥ 0(i = 1, 2, 3, . . . , n) such that
wi ∈ [0, 1] and 6n

i=1wi = 1. Then Fermatean hesitant
fuzzy ordered weighted averaging (FHFOWA) operator is a
mapping FHFOWA : FHFN n

→ FHFN can be defined by

FHFOWA(ĥ1, ĥ2, . . . , ĥn)

= w1ĥσ (1) ⊕ w2ĥσ (2)⊕, . . . ,⊕wnĥσ (n)

= ⟨∪hĥσ (1)
∈3ĥσ (1)

,hĥσ (2)
∈3ĥσ (2)

,...,hĥσ (n)
∈3ĥσ (n)

×{ 3

√√√√1 −

n∏
i=1

(1 − h3
ĥσ (i)

)wi},

∪h′

ĥσ (1)
∈0ĥσ (1)

,h′

ĥσ (2)
∈0ĥσ (2)

,...,h′

ĥσ (n)
∈0ĥσ (n)

× × {

n∏
i=1

(hĥσ (i)
)wi}⟩.

Definition 6 [35]: Let ĥi = ⟨3ĥi
, 0ĥi

⟩(i = 1, 2, 3, . . . , n)
be a collection of all FHFNs, ĥσ (i) be the largest in them,
and w = (w1,w2, . . . ,wn)T be the weight vector of ĥi(i =

1, 2, 3, . . . , n) with wi ≥ 0(i = 1, 2, 3, . . . , n) such that
wi ∈ [0, 1] and 6n

i=1wi = 1. Then Fermatean hesitant
fuzzy ordered weighted geometric (FHFOWG) operator is a
mapping FHFOWG : FHFN n

→ FHFN can be defined by

FHFOWA(ĥ1, ĥ2, . . . , ĥn)

= ĥw1
σ (1) ⊗ ĥw2

σ (2)⊗, . . . ,⊗ĥwnσ (n)

= ⟨∪hĥσ (1)
∈3ĥσ (1)

,hĥσ (2)
∈3ĥσ (2)

,...,hĥσ (n)
∈3ĥσ (n)

×{

n∏
i=1

(hĥσ (i)
)wi},

∪h′

ĥσ (1)
∈0ĥσ (1)

,h′

ĥσ (2)
∈0ĥσ (2)

,...,h′

ĥσ (n)
∈0ĥσ (n)

38550 VOLUME 11, 2023



L. Sha, Y. Shao: Fermatean Hesitant Fuzzy Choquet Integral Aggregation Operators

{ 3

√√√√1 −

n∏
i=1

(1 − h′3
ĥσ (i)

)wi}⟩.

B. FUZZY MEASURE AND CHOQUET INTEGRAL OPERATOR
Fuzzy measure, a non-additive measure originally proposed
by Sugeno [24], has become an essential tool for solving
Multiple Attribute Decision Making (MADM) problems.
However, since decision criteria or a decision maker’s pref-
erences are often interdependent, traditional weighted arith-
metic average operators are often inadequate for addressing
this issue. The Choquet integral model [26], [27] has been
shown to be effective in addressing this problem by allowing
for interdependence among multiple criteria. In this subsec-
tion, we present the definitions of fuzzy measure, λ-fuzzy
measure, and discrete Choquet integral as follows:
Definition 7 [24]: A fuzzy measure on X is a set func-

tion µ : P(X ) → [0, 1], satisfying the following conditions:
(1) µ(∅) = 0, µ(X ) = 1 (boundary conditions);
(2) If A,B ∈ X and A ⊆ B, then µ(A) ≤ µ(B)

(monotonicity).
While adding the axiom of continuity is necessary when X

is infinite, for practical purposes, it is sufficient to consider
a finite universal set. In this context, µ(x1, x2, . . . , xn) can
be interpreted as the degree of subjective importance of the
decision criteria set x1, x2, . . . , xn. Furthermore, by assigning
separate weights to each criterion, it is possible to define the
weights of any combination of criteria. It is worth noting that
some remarks pertain to any pair of criteria sets A,B ∈ X
with the condition A ∩ B ∈ ∅:
(i) A and B are independent (without interaction) if µ(A∪

B) = µ(A) + µ(B). It is called an additive measure.
(ii) Positive interaction between A and B is exhibited

if µ(A∪B) > µ(A)+µ(B). It is called a super-additive
measure.

(iii) Negative interaction between A and B is exhibited
if µ(A ∪ B) < µ(A) + µ(B). It is called a sub-additive
measure.

Given the difficulty in determining the fuzzy measure
as per Definition (2), Sugeno [24] proposed the following
λ-fuzzy measure to establish a fuzzy measure in MAGDM
problems:

µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B),

λ ∈ [−1, ∞),A ∩ B = ∅ (4)

λ plays a crucial role in determining the interaction
between the criteria. Specifically, in Equation 6, when λ = 0,
the λ-fuzzy measure is reduced to a simple additive measure.
However, when λ is negative or positive, the λ-fuzzy mea-
sure is reduced to a sub-additive or super-additive measure,
respectively. Furthermore, in cases where all elements in X
are independent, and we have:

µ(A) =

∑
xi∈A

µ({xi}). (5)

Definition 8 [24]: Let X be a finite set which satisfies⋃n
i=1 {xi} = X and xi ∩ xj = ∅ for all i, j = 1, 2, . . . , n

while i ̸= j. If XS is a subset of X, then

µ(XS ) =


1
λ
(
∏n

i=1
[1 + λµ(xi)] − 1) if λ ̸= 0∑n

i=1
µ(xi) if λ = 0

(6)

especially when XS contains only two elements, the equation
is equal to (4).

According to the (6), if we let XS = X , as µ(X ) = 1,
we obtain

1 =
1
λ
(
n∏
i=1

[1 + λµ(xi)] − 1)

⇔ λ + 1 =

n∏
i=1

[1 + λµ(xi)] (7)

formula (7) shows that λ is uniquely determined by set X
Definition 9 [25]: Let f be a positive real-valued function

on X and µ be a fuzzy measure on X . The discrete Choquet
integral of f with respect to µ is defined by

Cµ(f ) =

n∑
i=1

fσ (i)[µ(Aσ (i))−µ(Aσ (i−1))], (8)

where σ (i) indicates a permutation on X such that fσ (1) ≥

fσ (2) ≥ · · · ≥ fσ (n), Aσ (i) = {1, 2, . . . , i}, Aσ (i) = ∅.

III. FERMATEAN HESITANT FUZZY CHOQUET ORDERED
AVERAGING/GEOMETRIC OPERATOR
In this section, we present Fermatean hesitant fuzzy Choquet
ordered operators based on Fermatean hesitant fuzzy set and
Choquet integral. Then their idempotency, boundedness and
monotonicity are proved respectively.
Definition 10: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be

a collection of all FHFNs on X , and ϕ is a fuzzy measure
on X . Then, the Fermatean hesitant fuzzy Choquet ordered
averaging (FHFCOA) operator is a mapping FHFCOA :

FHFN n
→ FHFN can be defined by

FHFCOA(p1, p2, . . . , pn)

=

n⊕
i=1

(ϕ(Aσ (i)) − ϕ(Aσ (i−1)))pσ (i) (9)

where (σ (1), σ (2), . . . , σ (n)) is a permutation of (1, 2, . . . , n),
such that pσ (i−1) ≥ pσ (i) for all i = 1, 2, . . . , n, Aσ (k) =

{xσ (i)|i ≤ k} for k ≥ 1 and Aσ (0) = ∅.
Theorem 11: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be a

collection of all FHFNs on X , and ϕ is a fuzzy measure on X .
Then, the aggregation result using FHFCOA operator is also
a FHFN and

FHFCOA(p1, p2, . . . , pn)

=

n⊕
i=1

(ϕ(Aσ (i)) − ϕ(Aσ (i−1)))pσ (i)

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (n)∈0pσ (n)
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{ 3

√√√√1 −

n∏
i=1

(1 − γ 3
σ (i))

(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (n)∈9pσ (n)

{

n∏
i=1

(τσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩ (10)

Proof: By mathematical induction we prove that Equa-
tion (10) holds for all n. For this first we show that Equation
(10) holds for n = 2.

Since,

(ϕ(Aσ (1)) − ϕ(Aσ (0)))pσ (1)

= ⟨∪γσ (1)∈0pσ (1)
{

3
√
1 − (1 − γ 3

σ (1))
ϕ(Aσ (1))−ϕ(Aσ (0))},

∪τσ (1)∈9pσ (1)
{(τσ (1))ϕ(Aσ (1))−ϕ(Aσ (0))}⟩,

and

(ϕ(Aσ (2)) − ϕ(Aσ (1)))pσ (2)

= ⟨∪γσ (2)∈0pσ (2)
{

3
√
1 − (1 − γ 3

σ (2))
ϕ(Aσ (2))−ϕ(Aσ (1))},

∪τσ (2)∈9pσ (2)
{(τσ (2))ϕ(Aσ (2))−ϕ(Aσ (1))}⟩.

So,

FHFCOA(p1, p2)

= (ϕ(Aσ (1)) − ϕ(Aσ (0)))pσ (1)

⊕(ϕ(Aσ (2)) − ϕ(Aσ (1)))pσ (2)

= ⟨∪γσ (1)∈0pσ (1)
{

3
√
1 − (1 − γ 3

σ (1))
ϕ(Aσ (1))−ϕ(Aσ (0))},

∪τσ (1)∈9pσ (1)
{(τσ (1))ϕ(Aσ (1))−ϕ(Aσ (0))}⟩

⊕⟨∪γσ (2)∈0pσ (2)
{

3
√
1 − (1 − γ 3

σ (2))
ϕ(Aσ (2))−ϕ(Aσ (1))},

∪τσ (2)∈9pσ (2)
{(τσ (2))ϕ(Aσ (2))−ϕ(Aσ (1))}⟩

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2)

{
3

√√√√1 −

3∏
i=1

(1 − γ 3
σ (i))

ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2)

{

3∏
i=1

(τσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

Thus, the Equation (8) is hold for n = 2. Suppose the equation
is hold for n = k , i.e.,

FHFCOA(p1, p2, . . . , pk )

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k)∈0pσ (k)

{
3

√√√√1 −

k∏
i=1

(1 − γ 3
σ (i))

ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k)∈9pσ (k)

{

k∏
i=1

(τσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

We show that the equation is hold for n = k + 1, i.e.,

FHFCOA(p1, p2, . . . , pk , pk+1)

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k)∈0pσ (k)

{
3

√√√√1 −

k∏
i=1

(1 − γ 3
σ (i))

ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k)∈9pσ (k)

{

k∏
i=1

(τσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

⊕⟨∪γσ (k+1)∈0pσ (k+1)

{
3
√
1 − (1 − γ 3

σ (k+1))
ϕ(Aσ (k+1))−ϕ(Aσ (k))},

∪τσ (k+1)∈9pσ (k+1)
{(τσ (k+1))ϕ(Aσ (k+1))−ϕ(Aσ (k))}⟩

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k+1)∈0pσ (k+1)

{
3

√√√√1 −

k+1∏
i=1

(1 − γ 3
σ (i))

ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k+1)∈9pσ (k+1)

{

k+1∏
i=1

(τσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

Hence the equation is hold for n = k + 1. Therefore, the
equation is hold for all n.
Example 12: Let ϕ be a fuzzy measure on X ,X =

{x1, x2, x3} in which
ϕ({x1}) = 0.5, ϕ({x2}) = 0.2, ϕ({x3}) = 0.3.
Parameter λ = 0.5 is obtained using Equation (4), and

the following are obtained. ϕ({x1, x2}) = 0.75, ϕ({x1, x3}) =

0.875, ϕ({x2, x3}) = 0.53, ϕ({x1, x2, x3}) = 1.
Suppose there are three experts who invited to evaluate

some decision alternatives. The evaluation of the expert is
denoted by FHFNs. p1 = ⟨{0.5, 0.6, 0.9}, {0.3, 0.6}⟩, p2 =

⟨{0.3, 0.4, 0.7, 0.9}, {0.2, 0.8, 0.9}⟩, p3 = ⟨{0.3, 0.6, 0.8},
{0.2, 0.7, 0.9}⟩, To calculate the comprehensive evaluation of
the three experts on the decision alternation through using the
FHFCOA operator, we have

FHFCOA(p1, p2, p3)

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,γσ (3)∈0pσ (3)

{
3

√√√√1 −

3∏
i=1

(1 − γ 3
σ (i))

(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,τσ (3)∈9pσ (3)

{

3∏
i=1

(τσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩

First, we calculate the score functions of p1, p2 and p3 by
equation (2). For this, we have

S(p1) = 0.205, S(p2) = −0.064, S(p3) = −0.034.
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Thus, S(p1) > S(p3) > S(p2). Then we rearrange the three
FHFNs in descending order as follows,

pσ (1) = p1 = ⟨{0.5, 0.6, 0.9}, {0.3, 0.6}⟩,

pσ (2) = p3 = ⟨{0.3, 0.4, 0.7, 0.9}, {0.2, 0.8, 0.9}⟩,

pσ (3) = p2 = ⟨{0.3, 0.6, 0.8}, {0.2, 0.7, 0.9}⟩.

Now,

FHFCOA(p1, p2, p3)

= ⟨{0.426, 0.467, 0.5355, 0.4492, 0.4861, 0.5493,

0.5883, 0.6081, 0.6459, 0.754, 0.7628, 0.7807, 0.5021,

0.5312, 0.5836, 0.5183, 0.5453, 0.5947, 0.6267, 0.6433,

0.6757, 0.7715, 0.7795, 0.7958, 0.7865, 0.7938, 0.8087,

0.7905, 0.7976, 0.8122, 0.8227, 0.8285, 0.8403, 0.8802,

0.8839, 0.8914},{0.2449, 0.2865, 0.2956, 0.412, 0.4818,

0.4972, 0.4306, 0.5035, 0.5196, 0.3464, 0.4051, 0.4181,

0.5826, 0.6814, 0.7031, 0.6089, 0.7121, 0.7348}⟩

Theorem 13: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be a
collection of all FHFNs on X , and ϕ is a fuzzy measure on X .
Then
(1) (Idempotency) If all pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n)

are equal, i.e. pi(i = 1, 2, 3, . . . , n) = p, then

FHFCOA(p1, p2, . . . , pn) = p. (11)

(2) (Boundedness)

p−
≤ FHFCOA(p1, p2, . . . , pn) ≤ p+, (12)

where p−
= ⟨∪γi∈0pi

mini{γi}, ∪τi∈9pi
maxi{τi}⟩,

p+
= ⟨∪γi∈0pi

maxi{γi}, ∪τi∈9pi
mini{τi}⟩.

(3) (Monotonicity) If pi > p∗
i , then

FHFCOA(p1, p2, . . . , pn, )

≤ FHFCOA(p∗

1, p
∗

2, . . . , p
∗
n, ). (13)

Proof: (1) By Theorem (11), we have

FHFCOA(p1, p2, . . . , pn)

= ⟨∪γpi∈0pi
{ 3

√√√√1 −

n∏
i=1

(1 − γ 3
pi )

(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τpi∈9pi
{

n∏
i=1

(τpi )
(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩

= ⟨∪γp∈0p{
3

√√√√1 −

n∏
i=1

(1 − γ 3
p )

(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τp∈9p{

n∏
i=1

(τp)(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩

= ⟨∪γp∈0p{
3
√
1 − (1 − γ 3

p )
6n
i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τp∈9p{(τp)
6n
i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩

Because of

6n
i=1(ϕ(Aσ (i)) − ϕ(Aσ (i−1)))

= ϕ(Aσ (1)) − ϕ(Aσ (0)) + ϕ(Aσ (2)) − ϕ(Aσ (1))

+ ϕ(Aσ (3)) − ϕ(Aσ (2)) + . . . + ϕ(Aσ (n−1))

− ϕ(Aσ (n−2)) + ϕ(Aσ (n)) − ϕ(Aσ (n−1))

= ϕ(Aσ (i)) − ϕ(Aσ (i)) = 1 − 0 = 1

So

FHFCOA(p1, p2, . . . , pn)

= ⟨∪γp∈0p{
3
√
1 − (1 − γ 3

p )}, ∪τp∈9p{τp}⟩

= ⟨∪γp∈0p{γp}, ∪τp∈9p{τp}⟩ = p

(2) As

∪γi∈0pi
min
i

{γi} ≤ ∪γi∈0pi
{γi} ≤ ∪γi∈0pi

max
i

{γi}, (14)

and

∪τi∈9pi
min
i

{τi} ≤ ∪τi∈9pi
{τi} ≤ ∪τi∈9pi

max
i

{τi}, (15)

Thus, from Equation (14), we have

∪γi∈0pi
min
i

{γi} ≤ ∪γi∈0pi
{γi} ≤ ∪γi∈0pi

max
i

{γi}

⇔ ∪γi∈0pi
3

√
min
i

{(γi)3} ≤ ∪γi∈0pi

3
√

{(γi)3}

≤ ∪γi∈0pi
3

√
max
i

{(γi)3}

⇔ ∪γi∈0pi
3

√
1 − max

i
{(γi)3} ≤ ∪γi∈0pi

3
√
1 − {(γi)3}

≤ ∪γi∈0pi
3

√
1 − min

i
{(γi)3}

⇔ ∪γi∈0pi
3

√
(1 − max

i
{(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi

3
√
(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
(1 − min

i
{(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

⇔ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − max
i

{(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − min
i

{(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

⇔ ∪γi∈0pi
3

√
(1 − max

i
{(γi)3})

∑n
i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))

≤ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
(1 − min

i
{(γi)3})

∑n
i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))

⇔ ∪γi∈0pi
3

√
(1 − max

i
{(γi)3})
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≤ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
(1 − min

i
{(γi)3})

⇔ ∪γi∈0pi
3

√
(−1 + min

i
{(γi)3})

≤ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
(−1 + max

i
{(γi)3})

⇔ ∪γi∈0pi
3

√
(1 − 1 + min

i
{(γi)3})

≤ ∪γi∈0pi
3

√√√√1 −

n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
(1 − 1 + max

i
{(γi)3})

⇔ ∪γi∈0pi
3

√
min
i

{(γi)3}

≤ ∪γi∈0pi
3

√√√√1 −

n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
3

√
max
i

{(γi)3}

⇔ ∪γi∈0pi
min
i

{γi}

≤ ∪γi∈0pi
3

√√√√1 −

n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γi∈0pi
max
i

{γi}

Then, from Equation (15), we have

∪τi∈9pi
min
i

{τi} ≤ ∪τi∈9pi
{τi} ≤ ∪τi∈9pi

max
i

{τi}

⇔ ∪τi∈9pi
min
i

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≤ ∪τi∈9pi
{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≤ ∪τi∈9pi
max
i

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

⇔ ∪τi∈9pi

n∏
i=1

min
i

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≤ ∪τi∈9pi

n∏
i=1

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≤ ∪τi∈9pi

n∏
i=1

max
i

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

⇔ ∪τi∈9pi
min
i

{(τi)
∑n

i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}

≤ ∪τi∈9pi

n∏
i=1

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≤ ∪τi∈9pi
max
i

{(τi)
∑n

i=1(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}

⇔ ∪τi∈9pi
min
i

{τi} ≤ ∪τi∈9pi

n∏
i=1

{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))} ≤ ∪τi∈9pi
max
i

{τi}

According to the score function, we have

FHFCOA(p1, p2, . . . , pn) ≥ p−

if and only if p−
= FHFCOA(p).

Similarly, FHFCOA(p1, p2, . . . , pn) ≤ p+ is with equal-
ity if and only if FHFCOA(p) = p+. Hence, p−

≤

FHFCOA(p1, p2, . . . , pn) ≤ p+.

(3) If pi > p∗
i , we have 0pi ≤ 0p∗

i
and 9pi ≥ 9p∗

i
.

If 0pi ≤ 0p∗
i
, then

∪γi∈0pi
{γi} ≤ ∪γ ∗

i ∈0p∗i
{γ ∗
i }

⇔ ∪γi∈0pi
{(γi)3} ≤ ∪γ ∗

i ∈0p∗i
{(γ ∗

i )
3
}

⇔ ∪γi∈0pi

3
√

{(γi)3} ≤ ∪γ ∗
i ∈0p∗i

3
√

{(γ ∗
i )

3}

⇔ ∪γi∈0pi

3
√
1 − {(γi)3} ≤ ∪γ ∗

i ∈0p∗i

3
√
1 − {(γ ∗

i )
3}

⇔ ∪γi∈0pi

3
√
(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γ ∗
i ∈0p∗i

3
√
(1 − {(γ ∗

i )
3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

⇔ ∪γi∈0pi
3

√√√√ n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γ ∗
i ∈0p∗i

3

√√√√ n∏
i=1

(1 − {(γ ∗
i )

3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

⇔ ∪γi∈0pi
3

√√√√1 −

n∏
i=1

(1 − {(γi)3})ϕ(Aσ (i))−ϕ(Aσ (i−1))

≤ ∪γ ∗
i ∈0p∗i

3

√√√√1 −

n∏
i=1

(1 − {(γ ∗
i )

3})ϕ(Aσ (i))−ϕ(Aσ (i−1)) (16)

Now, if 9pi ≥ 9p∗
i
, then

∪τi∈9pi
{τi} ≥ ∪τ∗

i ∈9p∗i
{τ ∗
i }

⇔ ∪τi∈9pi
{(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≥ ∪τ∗
i ∈9p∗i

{(τ ∗
i )

ϕ(Aσ (i))−ϕ(Aσ (i−1))}

⇔ ∪τi∈9pi
{

n∏
i=1

(τi)ϕ(Aσ (i))−ϕ(Aσ (i−1))}

≥ ∪τ∗
i ∈9p∗i

{

n∏
i=1

(τ ∗
i )

ϕ(Aσ (i))−ϕ(Aσ (i−1))} (17)

Let p = FHFCOA(p1, p2, . . . , pn) and p∗
= FHFCOA

(p∗

1, p
∗

2, . . . , p
∗
n). Then, from Equation (14) and (15), we have

S(p) ≤ S(p∗).
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If S(p) < S(p∗), then FHFCOA(p1, p2, . . . , pn <

FHFCOA(p∗

1, p
∗

2, . . . , p
∗
n). If S(p) = S(p∗), then

(
1

lγp∈0p

∑
γp∈0p

γp)3 − (
1

lτp∈9p

∑
τp∈9p

τp)3

= (
1

lγ ∗

p∗∈0p∗

∑
γ ∗

p∗∈0p∗

γ ∗
p∗ )3 − (

1
lτ∗

p∗∈9p∗

∑
τ∗

p∗∈9p∗

τ ∗
p∗ )3

⇔ (
1

lγp∈0p

∑
γp∈0p

γp)3 = (
1

lγ ∗

p∗∈0p∗

∑
γ ∗

p∗∈0p∗

γ ∗
p∗ )3 and

(
1

lτp∈9p

∑
τp∈9p

τp)3 = (
1

lτ∗

p∗∈9p∗

∑
τ∗

p∗∈9p∗

τ ∗
p∗ )3

⇔
1

lγp∈0p

∑
γp∈0p

γp =
1

lγ ∗

p∗∈0p∗

∑
γ ∗

p∗∈0p∗

γ ∗
p∗ and

1
lτp∈9p

∑
τp∈9p

τp =
1

lτ∗

p∗∈9p∗

∑
τ∗

p∗∈9p∗

τ ∗
p∗

As

σ̄ (p)

= (
1

lγp∈0p

∑
γp∈0p

γp − S(p))3 + (
1

lτp∈9p

∑
τp∈9p

τp − S(p))3

= (
1

lγ ∗

p∗∈0p∗

∑
γ ∗

p∗∈0p∗

γ ∗
p∗ − S(p∗))3

−(
1

lτ∗

p∗∈9p∗

∑
τ∗

p∗∈9p∗

τ ∗
p∗ − S(p∗))3

= σ̄ (p∗),

therefor,

FHFCOA(p1, p2, . . . , pn) = FHFCOA(p∗

1, p
∗

2, . . . , p
∗
n).

So, if pi > p∗
i , then

FHFCOA(p1, p2, . . . , pn, ) ≤ FHFCOA(p∗

1, p
∗

2, . . . , p
∗
n, ).

Definition 14: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be
a collection of all FHFNs on X , and ϕ is a fuzzy measure
on X . Then, the Fermatean hesitant fuzzy choquet ordered
geometric (FHFCOG) operator is a mapping FHFCOG :

FHFN n
→ FHFN can be defined by

FHFCOG(p1, p2, . . . , pn) =

n⊗
i=1

(pσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))

(18)

where (σ (1), σ (2), . . . , σ (n)) is a permutation of (1, 2, . . . , n),
such that pσ (i−1) ≥ pσ (i) for all i = 1, 2, . . . , n, Aσ (k) =

{xσ (i)|i ≤ k} for k ≥ 1 and Aσ (0) = ∅.
Theorem 15: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be a

collection of all FHFNs on X , and ϕ is a fuzzy measure on X .

Then, the aggregation result using FHFCOG operator is also
a FHFN and

FHFCOG(p1, p2, . . . , pn)

=

n⊗
i=1

(pσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (n)∈0pσ (n)

{

n∏
i=1

(γσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (n)∈9pσ (n)

{ 3

√√√√1 −

n∏
i=1

(1 − τ 3σ (i))
(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩ (19)

Proof: By mathematical induction we prove that Equa-
tion (19) holds for all n. For this first we show that Equation
(19) holds for n = 2.
Since,

(pσ (1))(ϕ(Aσ (1))−ϕ(Aσ (0)))

= ⟨∪γσ (1)∈0pσ (1)
{(γσ (1))ϕ(Aσ (1))−ϕ(Aσ (0))},

∪τσ (1)∈9pσ (1)
{

3
√
1 − (1 − τ 3σ (1))

ϕ(Aσ (1))−ϕ(Aσ (0))}⟩,

and

(pσ (2))(ϕ(Aσ (2))−ϕ(Aσ (1)))

= ⟨∪γσ (2)∈0pσ (2)
{(γσ (2))ϕ(Aσ (2))−ϕ(Aσ (1))},

∪τσ (2)∈9pσ (2)
{

3
√
1 − (1 − τ 3σ (2))

ϕ(Aσ (2))−ϕ(Aσ (1))}⟩,

So,

FHFCOG(p1, p2)

= (pσ (1))(ϕ(Aσ (1))−ϕ(Aσ (0))) ⊗ (pσ (2))(ϕ(Aσ (2))−ϕ(Aσ (1)))

= ⟨∪γσ (1)∈0pσ (1)
{(γσ (1))ϕ(Aσ (1))−ϕ(Aσ (0))},

∪τσ (1)∈9pσ (1)
{

3
√
1 − (1 − τ 3σ (1))

ϕ(Aσ (1))−ϕ(Aσ (0))}⟩

⊗⟨∪γσ (2)∈0pσ (2)
{(γσ (2))ϕ(Aσ (2))−ϕ(Aσ (1))},

∪τσ (2)∈9pσ (2)
{

3
√
1 − (1 − τ 3σ (2))

ϕ(Aσ (2))−ϕ(Aσ (1))}⟩

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2)

{

3∏
i=1

(γσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2)

{
3

√√√√1 −

3∏
i=1

(1 − τ 3σ (i))
ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

Thus, the Equation (19) is hold for n = 2. Suppose the
equation is hold for n = k , i.e.,

FHFCOG(p1, p2, . . . , pk )

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k)∈0pσ (k)
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{

k∏
i=1

(γσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k)∈9pσ (k)

{
3

√√√√1 −

k∏
i=1

(1 − τ 3σ (i))
ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

We show that the equation is hold for n = k + 1, i.e.,

FHFCOG(p1, p2, . . . , pk , pk+1)

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k)∈0pσ (k)

{

k∏
i=1

(γσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k)∈9pσ (k)

{
3

√√√√1 −

k∏
i=1

(1 − τ 3σ (i))
ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

⊗⟨∪γσ (k+1)∈0pσ (k+1)
{(γσ (k+1))ϕ(Aσ (k+1))−ϕ(Aσ (k))},

∪τσ (k+1)∈9pσ (k+1)

{
3
√
1 − (1 − τ 3σ (k+1))

ϕ(Aσ (k+1))−ϕ(Aσ (k))}⟩

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,...,γσ (k+1)∈0pσ (k+1)

{

k+1∏
i=1

(γσ (i))ϕ(Aσ (i))−ϕ(Aσ (i−1))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,...,τσ (k+1)∈9pσ (k+1)

{
3

√√√√1 −

k+1∏
i=1

(1 − τ 3σ (i))
ϕ(Aσ (i))−ϕ(Aσ (i−1))}⟩

Hence the equation is hold for n = k + 1. Therefore, the
equation is hold for all n.
Example 16: [Continued Example (12)] To calculate the

comprehensive evaluation of the three experts on the decision
alternation through using the FHFCOG operator, we have

FHFCOG(p1, p2, p3)

= ⟨∪γσ (1)∈0pσ (1) ,γσ (2)∈0pσ (2) ,γσ (3)∈0pσ (3)

{

3∏
i=1

(γσ (i))(ϕ(Aσ (i))−ϕ(Aσ (i−1)))},

∪τσ (1)∈9pσ (1) ,τσ (2)∈9pσ (2) ,τσ (3)∈9pσ (3)

{
3

√√√√1 −

3∏
i=1

(1 − τ 3σ (i))
(ϕ(Aσ (i))−ϕ(Aσ (i−1)))}⟩

By Example (12), we know S(p1) > S(p3) > S(p2), and

pσ (1) = p1, pσ (2) = p3, pσ (3) = p2.

Thus, we have

FHFCOG(p1, p2, p3)

= ⟨{0.3873, 0.4224, 0.4378, 0.4314, 0.4705,

0.4877, 0.5322, 0.5803, 0.6016, 0.5847, 0.6377, 0.661,

0.4243, 0.4627, 0.4796, 0.4726, 0.5154, 0.5342, 0.5829,

0.6357, 0.659, 0.6406, 0.6985, 0.7241, 0.5196, 0.5666,

0.5874, 0.5788, 0.6312, 0.6543, 0.714, 0.7786, 0.8071,

0.7845, 0.8555, 0.8868}, {0.2599, 0.4059, 0.5481,

0.6275, 0.658, 0.7112, 0.7344, 0.7527, 0.7865, 0.4906,

0.5456, 0.6301, 0.6869, 0.7101, 0.752, 0.7708, 0.7857,

0.8139, 0.8070}⟩.

Theorem 17: Let pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n) be a
collection of all FHFNs on X , and ϕ is a fuzzy measure on X .
Then
(1) (Idempotency) If all pi = ⟨0pi , 9pi⟩(i = 1, 2, 3, . . . , n)

are equal, i.e. pi(i = 1, 2, 3, . . . , n) = p, then

FHFCOG(p1, p2, . . . , pn) = p. (20)

(2) (Boundedness)

p−
≤ FHFCOG(p1, p2, . . . , pn) ≤ p+, (21)

where p−
= ⟨∪γi∈0pi

mini{γi}, ∪τi∈9pi
maxi{τi}⟩, p+

=

⟨∪γi∈0pi
maxi{γi}, ∪τi∈9pi

mini{τi}⟩.
(3) (Monotonicity) If pi > p∗

i , then

FHFCOG(p1, p2, . . . , pn, )

≤ FHFCOG(p∗

1, p
∗

2, . . . , p
∗
n, ). (22)

Proof: Proof of this theorem is similarly as the proof of
Theorem (13).
Lemma 18: [34] Let ϕ be a fuzzy measure, A ∈ X , and

{σ (1), σ (2), . . . , σ (n)} is a permutation of {1, 2, . . . , n}, then

n∑
i=1

(ϕ(Aσ (i)) − ϕ(Aσ (i−1))) = 1.

Lemma 19: Let pi > 0, ϕ(Aσ (i)) − ϕ(Aσ (i−1)) > 0(i =

1, 2, . . . , n) and
∑n

i=1(ϕ(Aσ (i)) − ϕ(Aσ (i−1))) = 1. Then

n∏
i=1

(pi)ϕ(Aσ (i))−ϕ(Aσ (i−1)) ≤

n∑
i=1

(ϕ(Aσ (i)) − ϕ(Aσ (i−1)))pi,

where the equality holds if and only if p1 = p2 =

p3 = . . . = pn.
Theorem 20: Let pi =< 0pi , 9pi > (i = 1, 2, . . . , n) be a

collection of FHFNs. Then

FHFCOG(p1, p1, . . . , pn) ≤ FHFCOA(p1, p2, . . . , pn),

where ϕ(Aσ (i)) − ϕ(Aσ (i−1)) > 0(i = 1, 2, . . . , n) and∑n
i=1(ϕ(Aσ (i)) − ϕ(Aσ (i−1))) = 1.
Proof: We can easily prove this Theorem based on

Lemma (19).
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IV. MULTI-ATTRIBUTE DECISION MAKING WITH
FERMATEAN HESITANT FUZZY INFORMATION
In multi-attribute decision making (MADM) problems, mul-
tiple decision experts and multiple decision criteria are often
needed to obtain optimal decision results. However, due to
the subjectivity of decision experts and the interdependence
of decision criteria, the decision results will be affected.
The Fermatean hesitant fuzzy Choquet integral aggregation
operators proposed in this paper can solve this problem well.

Consider a MADM with anonymity where there is a dis-
crete set of m alternatives X = {x1, x2, . . . , xm}. Suppose
D = {d1, d2, . . . , dl} be a set of l decision makers (DMs)
that have the important degree of λ = {λ1, λ2, . . . , λl}, and
λk , (k = 1, 2, . . . , l) is a fuzzy number which is not required
that 6n

k=1λk = 1. Let A = {A1,A2, . . . ,An} be a collection
of n attributes. To evaluate the performance of the alternative
xi under the attributes Aj, the decision maker is required
to provide not only the information that the alternative xi
satisfies the attributes Aj, but also the information that the
alternative xi does not satisfy the attributes Aj. This two-part
information can be expressed by 0ij and 9ij, which denote
the degrees that the alternative xi satisfy the criterion Aj
and does not satisfy the criterion Aj, then the performance
of the alternative xi under the criteria Aj can be expressed
by a FHFN pij = ⟨0ij, 9ij⟩ with the condition that for all
γij ∈ 0ij, ∃τij ∈ 9ij such that 0 ≤ (γij)3 + (τij)3 ≤ 1, and
for all τij ∈ 9ij, ∃γij ∈ 0ij such that 0 ≤ (γij)3 + (τij)3 ≤

1, (i = 1, 2, . . . ,m, j = 1, 2, . . . , n). To obtain the ranking of
the alternatives, We give the steps as follows.

Step 1. In this step, we construct the Fermatean hesitant
fuzzy decision matrices C = (pij)m×n for the decision where
pij = ⟨0ij, 9ij⟩(i = 1, 2, . . . ,m, j = 1, 2, . . . , n).
If the attribute has two types, such as cost and benefit

attributes, then the Fermatean hesitant decision matrix can
be converted into the normalized Fermatean hesitant fuzzy
decision matrix

DN = (κij)m×n,

whereκij =

{
pij if the attribute is of benefit type
pcij if the attribute is of cost type

where pcij = ⟨9ij, 0ij⟩(i = 1, 2, . . . ,m, j = 1, 2, . . . , n). If all
the attributes have the same type, then there is no need to
normalize the decision matrix.

Step 2. Reorder the pij(j = 1, 2, . . . , n) for each alter-
native xi(i = 1, 2, . . . ,m) in a descending order by
Equation (2) or (3).

Step 3. Confirm the fuzzy measure of attribute sets of A.
We take Equation (4) for determining the fuzzy measure.

Step 4. Utilize the proposed aggregation operators (Equa-
tion (8) or (17)) to obtain the FHFNs pi(i = 1, 2, . . . ,m) for
the alternatives xi, that is the proposed operators to derive the
collective overall preference values pi(i = 1, 2, . . . ,m) of the
alternatives xi.

Step 5. By using Equation (2), we calculate the scores
S(pi)(i = 1, 2, . . . ,m) and the deviation degree σ̄ (pi)(i =

1, 2, . . . ,m) of all the overall values pi(i = 1, 2, . . . ,m).
Step 6. Rank all the alternatives xi(i = 1, 2, . . . ,m) and

then select the most preferred alternative.
Step 7. End.

V. ILLUSTRATIVE EXAMPLE
In this section, we utilize the aggregation operators proposed
in this paper to solve a practical problem. First, we employ
data from [16] to address medical decision-making in the
context of Fermatean hesitant fuzzy conditions. We con-
duct a sensitivity analysis on the parameter λ which deter-
mines whether the problem is super-additive or sub-additive.
Additionally, we compare the effectiveness of our proposed
methodwith existingmethods in Fermatean fuzzy conditions.

A. PRACTICAL CALCULATION
Example 21: [16] Let the diseases be given by the set

Di(i = 1, 2, 3, 4, 5) = {viral fever, malaria, typhoid, stom-
ach problem, chest problem}, which are available for selec-
tion, and the symptoms by the set Si(i = 1, 2, 3, 4) =

{temperature, headache, stomach pain, cough}.
The Fermatean hesitant fuzzy decision matrix C is given

in Table (1).
Then, we utilize the developed method to get the most

suitable disease.
Step 1. We know that, the Fermatean hesitant fuzzy deci-

sion matrix C = (pij)5×4 for the decision where pij =

⟨0ij, 9ij⟩(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) in Table (1). No nor-
malization is performed due to the identical measurement.

Step 2. By Equation (2), we have

S(p11) = 0.2555, S(p12) = −0.4480,

S(p13) = −0.1270, S(p14) = 0.5230.

Thus, S(p14) > S(p11) > S(p13) > S(p12). So, we can
reorder p11, p12, p13, p14 as follows,

p1σ (1) = p14, p1σ (2) = p11, p1σ (3) = p13, p1σ (4) = p12.

Similarly, we can reorder pi1, pi2, pi3, pi4(i = 2, 3, 4, 5) as
follows,

p2σ (1) = p23, p2σ (2) = p24, p2σ (3) = p22, p2σ (4) = p21.

p3σ (1) = p32, p3σ (2) = p33, p3σ (3) = p31, p3σ (4) = p34.

p4σ (1) = p41, p4σ (2) = p42, p4σ (3) = p43, p4σ (4) = p44.

p5σ (1) = p54, p5σ (2) = p52, p5σ (3) = p53, p5σ (4) = p51.

Step 3. Kirişci defined the weight vector ω =

0.15, 0.27, 0.33, 0.22, whereas the interdependence between
factors is not defined. We make a supplement using λ and
observing the impact of different values of lambda on the
decision result. Let ϕ be a fuzzy measure on Di, (i =

1, 2, 3, 4, 5) in which ϕ({d1}) = 0.15, ϕ({d2}) = 0.27,
ϕ({d3}) = 0.33, ϕ({d4}) = 0.22.
We calculate by (7) and the parameter λ = 0.09 is

obtained. The followings are obtained using Equation (4).
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TABLE 1. Fermatean hesitant fuzzy decision matrix C .

ϕ({d1, d2}) = 0.42, ϕ({d1, d3}) = 0.48, ϕ({d1, d4}) =

0.37, ϕ({d2, d3}) = 0.61, ϕ({d2, d4}) = 0.50,
ϕ({d3, d4}) = 0.56, ϕ({d1, d2, d3}) = 0.77, ϕ({d1, d2, d4}) =

0.65, ϕ({d1, d3, d4}) = 0.71, ϕ({d2, d3, d4} = 0.84,
ϕ({d1, d2, d3, d4} = 1.
Step 4.Weutilize the FHFCOAoperator to obtain the over-

all preference values pi of the disease Di(i = 1, 2, 3, 4, 5).
We have

p1 = ⟨{0.6811, 0.6562, 0.7484, 0.7311, 0.6976,

0.6748, 0.7601, 0.7440}, {0.5640, 0.5478, 0.5845,

0.5677, 0.6029, 0.5856, 0.6001, 0.5829, 0.6220,

0.6041, 0.6415, 0.6231, 0.6128, 0.5952, 0.6351,

0.6168, 0.6551, 0.6363, 0.6520, 0.6333, 0.6757,

0.6563, 0.6970, 0.6770}⟩.

p2 = ⟨{0.6981, 0.7059, 0.6863, 0.6945, 0.7158,

0.7229, 0.7605, 0.7660, 0.7520, 0.7579, 0.7732,

0.7784, 0.7380, 0.7443, 0.7284, 0.7351, 0.7524,

0.7582, 0.7895, 0.7942, 0.7825, 0.7874, 0.8003,

0.8047}, {0.5013, 0.5138, 0.5334, 0.5467, 0.573,

0.5873, 0.6097, 0.6249}⟩.

p3 = ⟨{0.547, 0.5568, 0.5822, 0.5905, 0.7023,

0.7070, 0.5885, 0.5966, 0.6178, 0.6249, 0.7229,

0.7271, 0.6207, 0.6277, 0.6461, 0.6523, 0.7401,

0.7439, 0.6508, 0.6568, 0.6729, 0.6784, 0.7570,

0.7606}, {0.4930, 0.5133, 0.5271, 0.5487, 0.5341,

0.5560, 0.5710, 0.5944, 0.5519, 0.5745, 0.5900,

0.6142, 0.5236, 0.5451, 0.5598, 0.5827, 0.5672,

0.5905, 0.6064, 0.6312, 0.5861, 0.6101, 0.6265,

0.6522}⟩.

p4 = ⟨{0.7569, 0.7510, 0.7651, 0.7595, 0.7516,

0.7456, 0.7724, 0.7670, 0.7799, 0.7747, 0.7676,

0.7620}, {0.5180, 0.5343, 0.5696, 0.5875, 0.6511,

0.6716}⟩.

p5 = ⟨{0.6219, 0.6259, 0.6472, 0.6508, 0.6700,

0.6732, 0.6903, 0.6932, 0.6779, 0.6810, 0.6974,

0.7002, 0.7154, 0.7179, 0.7317, 0.7340, 0.7565,

0.7586, 0.7696, 0.7715, 0.7819, 0.7836, 0.7932,

0.7948}, {0.5623, 0.5730, 0.5828, 0.5939, 0.6175,

0.6292, 0.6400, 0.6521}⟩.

Step 5. Calculate the scores S(pi)(i = 1, 2, 3, 4, 5) of the
overall FHFNs pi(i = 1, 2, 3, 4, 5) as follows,

S(p1) = 0.1226, S(p2) = 0.2469, S(p3) = 0.0957,

S(p4) = 0.2397, S(p5) = 0.1411.
Step 6. Rank all the alternatives Di(i = 1, 2, 3, 4, 5) in

accordance with the scores S(pi)(i = 1, 2, 3, 4, 5) of the over-
all Fermatean hesitant fuzzy preference numbers. We have
S(p2) > S(p4) > S(p5) > S(p1) > S(p3), which shows that
D2 > D4 > D5 > D1 > D3. That is, the most appropriate
disease is D2.
Step 7. End.
Similarly, we apply the FHFCOG operator to get the med-

ical decision. The step 1 to step 3 is not change, we start from
step 4.

Step 4. We utilize the FHFCOG operator to obtain the
overall preference values pi of the medical decision Di(i =

1, 2, 3, 4, 5). We have

p1 = ⟨{0.5414, 0.5300, 0.5594, 0.5476, 0.6408,

0.6273, 0.6622, 0.6482}, {0.6065, 0.5937, 0.6335,

0.6224, 0.6724, 0.6632, 0.6193, 0.6073, 0.6448,

0.6343, 0.6818, 0.6730, 0.7489, 0.7427, 0.7625,

0.7568, 0.7832, 0.7781, 0.7552, 0.7493, 0.7683,

p2 = ⟨{0.6642, 0.6839, 0.6367, 0.6556, 0.6884,

0.7088, 0.6863, 0.7066, 0.6579, 0.6774, 0.7113,

0.7324, 0.6941, 0.7147, 0.6654, 0.6851, 0.7194,

0.7407, 0.7173, 0.7385, 0.6875, 0.7079, 0.7434,

0.7654}, {0.6016, 0.6211, 0.6147, 0.6330, 0.6400,

0.6564, 0.6510, 0.6665}⟩.

p3 = ⟨{0.5295, 0.5487, 0.5488, 0.5687, 0.5817,

0.6029, 0.5527, 0.5728, 0.5728, 0.5936, 0.6072,

0.6293, 0.5917, 0.6132, 0.6132, 0.6355, 0.6500,

0.6737, 0.6176, 0.6400, 0.6401, 0.6633, 0.6785,

0.7032}, {0.5530, 0.6533, 0.5610, 0.6583, 0.6477,

0.7165, 0.6528, 0.7202, 0.7253, 0.7738, 0.7288,

0.7764, 0.5835, 0.6728, 0.5905, 0.6773, 0.6677,

0.7309, 0.6723, 0.7343, 0.7390, 0.7843, 0.7423,

0.7868}⟩.

p4 = ⟨{0.6575, 0.6386, 0.6859, 0.6662, 0.6243,

0.6064, 0.6863, 0.6666, 0.7159, 0.6954, 0.6516,

0.6329}, {0.6307, 0.6701, 0.6386, 0.6766, 0.6713,

0.7040}⟩.
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p5 = ⟨{0.5368, 0.5621, 0.5898, 0.6176, 0.5571,

0.5834, 0.6121, 0.6409, 0.5610, 0.5874, 0.6164,

0.6454, 0.5822, 0.6097, 0.6397, 0.6698, 0.5833,

0.6107, 0.6408, 0.6710, 0.6053, 0.6338, 0.6650,

0.6964}, {0.6065, 0.6641, 0.6335, 0.6849, 0.6562,

0.7027, 0.6778, 0.7200}⟩.

Step 5. Calculate the scores S(pi)(i = 1, 2, 3, 4, 5) of the
overall FHFNs pi(i = 1, 2, 3, 4, 5) as follows,

S(p1) = −0.1347, S(p2) = 0.0856, S(p3) = −0.1014,

S(p4) = −0.0060, S(p5) = −0.0677.

Step 6. Rank all the alternatives Di(i = 1, 2, 3, 4, 5) in
accordance with the scores S(pi)(i = 1, 2, 3, 4, 5) of the over-
all Fermatean hesitant fuzzy preference numbers. We have
S(p2) > S(p4) > S(p5) > S(p3) > S(p1), which shows that
D2 > D4 > D5 > D3 > D1. That is, the most appropriate
disease is D2.

Step 7. End.
As we can see from the results, although both FHFCOA

and FHFCOG produce the same final decision, there are sig-
nificant differences in the score values. This is because FHF-
COA tends to prioritize membership information, resulting
in a forecast in better situation, while FHFCOG emphasizes
non-membership information, leading to a forecast in worse
situation.

B. SENSITIVITY ANALYSIS
The above process of decision is based on the fact that the
problem is super-additive since the value of λ > 0.

We try another weight vector in which ϕ({d1}) = 0.2,
ϕ({d2}) = 0.35, ϕ({d3}) = 0.4, ϕ({d4}) = 0.3. The
ordering of weights is the same as in the first exper-
iment, whereas we calculate by (7) and the parameter
λ = −0.48 is obtained which demonstrate the problem
is sub-additive. Similarly, the followings are obtained using
Equation (4). ϕ({d1, d2}) = 0.52, ϕ({d1, d3}) = 0.56,
ϕ({d1, d4}) = 0.47, ϕ({d2, d3}) = 0.68, ϕ({d2, d4}) = 0.60,
ϕ({d3, d4}) = 0.64, ϕ({d1, d2, d3}) = 0.82, ϕ({d1, d2, d4}) =

0.74, ϕ({d1, d3, d4}) = 0.78, ϕ({d2, d3, d4} = 0.88,
ϕ({d1, d2, d3, d4} = 1.
Step 1. to Step 3. is identical.
Step 4. Use FHFCOA operator and the overall preference

values pi are as follows:

p1 = ⟨{0.6637, 0.6444, 0.7373, 0.7242, 0.6852,

0.6680, 0.7523, 0.7402}, {0.5690, 0.5572, 0.5870,

0.5748, 0.6030, 0.5904, 0.6061, 0.5935, 0.6252,

0.6122, 0.6423, 0.6289, 0.6292, 0.6161, 0.6491,

0.6355, 0.6668, 0.6529, 0.6702, 0.6562, 0.6913,

0.6769, 0.7102, 0.6954}⟩.

p2 = ⟨{0.7067, 0.7121, 0.6969, 0.7026, 0.7215,

0.7266, 0.7675, 0.7714, 0.7605, 0.7646, 0.7782,

0.7819, 0.7522, 0.7564, 0.7445, 0.7490, 0.7638,

0.7678, 0.8008, 0.8040, 0.7951, 0.7984, 0.8096,

0.8126}, {0.4821, 0.4907, 0.5135, 0.5227, 0.5670,

0.5771, 0.6039, 0.6147}⟩.

p3 = ⟨{0.5472, 0.5543, 0.5780, 0.5842, 0.6876,

0.6913, 0.5893, 0.5951, 0.6149, 0.6201, 0.7101,

0.7133, 0.6336, 0.6384, 0.6546, 0.6589, 0.7357,

0.7386, 0.6625, 0.6666, 0.6808, 0.6846, 0.7533,

0.7559}, {0.4937, 0.5083, 0.5232, 0.5387, 0.5356,

0.5514, 0.5676, 0.5843, 0.5537, 0.5700, 0.5868,

0.6041, 0.5311, 0.5467, 0.5628, 0.5794, 0.5761,

0.5931, 0.6105, 0.6285, 0.5956, 0.6132, 0.6312,

0.6498}⟩.

p4 = ⟨{0.7808, 0.7771, 0.7870, 0.7834, 0.7768,

0.7730, 0.7945, 0.7911, 0.8002, 0.7969, 0.7909,

0.7874}, {0.4849, 0.4982, 0.5441, 0.5589, 0.6399,

0.6573}⟩.

p5 = ⟨{0.6396, 0.6423, 0.6601, 0.6625, 0.6848,

0.6870, 0.7014, 0.7034, 0.7010, 0.7030, 0.7163,

0.7181, 0.7352, 0.7368, 0.7480, 0.7495, 0.7840,

0.7852, 0.7937, 0.7949, 0.8060, 0.8071, 0.8145,

0.8156}, {0.5477, 0.5552, 0.5650, 0.5727, 0.6023,

0.6106, 0.6214, 0.6299}⟩.

Step 5. Calculate the scores S(pi)(i = 1, 2, 3, 4, 5) of the
overall FHFNs pi(i = 1, 2, 3, 4, 5) as follows,

S(p1) = 0.0948, S(p2) = 0.2761, S(p3) = 0.0951,

S(p4) = 0.3074, S(p5) = 0.1903.

Step 6. Rank all the alternatives Di(i = 1, 2, 3, 4, 5) in
accordance with the scores S(pi)(i = 1, 2, 3, 4, 5) of the over-
all Fermatean hesitant fuzzy preference numbers. We have
S(p4) > S(p2) > S(p5) > S(p3) > S(p1), which shows that
D4 > D2 > D5 > D3 > D1. That is, the most appropriate
disease is D4.
Step 7. End. We utilize FHFCOG to obtain the preference

values pi which are as follows: Step 1. to Step 3. is identical
Step 4. Use FHFCOA operator and the overall preference

values pi are as follows:

p1 = ⟨{0.5099, 0.5021, 0.5272, 0.5191, 0.6255,

0.6159, 0.6467, 0.6368}, {0.6144, 0.6057, 0.6373,

0.6295, 0.6709, 0.6643, 0.6270, 0.6187, 0.6486,

0.6412, 0.6805, 0.6742, 0.7725, 0.7687, 0.7829,

0.7793, 0.7991, 0.7958, 0.7782, 0.7744, 0.7882,

0.7847, 0.8039, 0.8007}⟩.

p2 = ⟨{0.6778, 0.6922, 0.6534, 0.6673, 0.6992,

0.7141, 0.7008, 0.7157, 0.6755, 0.6899, 0.7229,

0.7383, 0.7150, 0.7302, 0.6892, 0.7039, 0.7376,
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TABLE 2. Sensitivity analysis of λ.

0.7533, 0.7392, 0.7550, 0.7125, 0.7277, 0.7626,

0.7788}, {0.5807, 0.5964, 0.5954, 0.6100, 0.6307,

0.6431, 0.6423, 0.6541}⟩.

p3 = ⟨{0.5323, 0.5462, 0.5491, 0.5634, 0.5776,

0.5927, 0.5560, 0.5705, 0.5735, 0.5885, 0.6034,

0.6191, 0.6090, 0.6249, 0.6282, 0.6446, 0.6608,

0.6781, 0.6361, 0.6527, 0.6562, 0.6733, 0.6903,

0.7083}, {0.5447, 0.6241, 0.5519, 0.6292, 0.6438,

0.6967, 0.6483, 0.7002, 0.7238, 0.7603, 0.7269,

0.7628, 0.5825, 0.6508, 0.5886, 0.6552, 0.6682,

0.7157, 0.6722, 0.7189, 0.7404, 0.7740, 0.7432,

0.7763}⟩.

p4 = ⟨{0.6802, 0.6660, 0.7056, 0.6909, 0.6502,

0.6367, 0.7105, 0.6957, 0.7371, 0.7217, 0.6792,

0.6651}, {0.6029, 0.6420, 0.6137, 0.6510, 0.6571,

0.6879}⟩.

p5 = ⟨{0.5670, 0.5861, 0.6153, 0.6361, 0.5888,

0.6087, 0.6390, 0.6606, 0.5981, 0.6183, 0.6491,

0.6710, 0.6211, 0.6421, 0.6740, 0.6968, 0.6269,

0.6481, 0.6804, 0.7034, 0.6511, 0.6731, 0.7066,

0.7304}, {0.5848, 0.6321, 0.6109, 0.6532, 0.6401,

0.6773, 0.6605, 0.6944}⟩.

Step 5. Calculate the scores S(pi)(i = 1, 2, 3, 4, 5) of the
overall FHFNs pi(i = 1, 2, 3, 4, 5) as follows,

S(p1) = −0.1763, S(p2) = 0.1277, S(p3) = −0.0818,

S(p4) = 0.0585, S(p5) = −0.0017.

Step 6. Rank all the alternatives Xi(i = 1, 2, 3, 4, 5) in
accordance with the scores S(pi)(i = 1, 2, 3, 4, 5) of the over-
all Fermatean hesitant fuzzy preference numbers. We have
S(p2) > S(p4) > S(p5) > S(p3) > S(p1), which shows that
X2 > X4 > X5 > X3 > X1. That is, the most appropriate
disease is X2.
Step 7. End.
We tried other weight vectors and the corresponding results

are presented in Table (2).
The table reveals that the value of λ has a notable impact

on the decision outcome. However, the robustness of the
results is demonstrated by the consistency in the rankings of

alternatives. Specifically, alternatives D2 and D4 are consis-
tently ranked at the top, while alternatives D1 and D3 are
consistently ranked at the bottom, regardless of the value
of λ. Therefore, the result of the decision-making process is
considered to be robust, despite the effect of the parameter λ

on the outcome.

C. COMPARISON ANALYSIS
In this subsection, we compare our proposed approach with
two existing methods which are specifically designed for
solving decision-making problems in Fermatean Fuzzy envi-
ronment: FHFWA and FHFWG by Kirişci [16] and FFWA,
FFWG, FFWPA, and FFWPG by Senapati [20].

It is noted that the four operators proposed by Senapati [20]
only consider that both the degree of membership and the
degree of non-membership have only one value. Therefore,
we computing the average of the Table (1) and the new table
is depicted in Table (3). Moreover, it is required that the sum
of weight vector must equal to 1 when using FFWA, FFWG,
FFWPA and FFWPG, therefore, we must make propotional
adjustment.

TABLE 3. Fermatean fuzzy decision matrix C .

The outcome of the decision-making process is presented
in Table(4). The table illustrates that while most of the meth-
ods regard D2 as the most appropriate decision, our approach
judges D4 as the next best option, which happens to be the
last one in the other methods. The reason for this is that our
method takes into account the interdependence between each
factor.

Furthermore, FHFWA and FHFWG do not allow the
weight vectors to sum up to 1, which leads to the problem
of super-additivity and sub-additivity. Therefore, it is recom-
mended to use the Choquet Integral to solve the impact of
super-additivity and sub-additivity. On the other hand, Fer-
matean fuzzy aggregation operators have several restrictions,
such as requiring the weight vector sum to 1, and not being
able to deal effectively with problems where experts have
more than one value.
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TABLE 4. Comparison between different method.

VI. CONCLUSION
In multi-attribute decision making problems, decision-
makers tend to pay more attention to the optimal decision
scheme, and thus ignore the alternatives.

In light of the fact that alternative evaluation often involves
incomplete and uncertain information, this paper adopts
the Fermatean hesitant fuzzy set to describe such infor-
mation. Moreover, it is crucial to consider the interdepen-
dence of decision criteria and decision maker’s preferences in
multi-attribute decision making problems, as ignoring these
factors may lead to decision errors.

To address these challenges, this paper proposes the Fer-
matean hesitant fuzzy Choquet ordered averaging (geomet-
ric) operators, which utilize fuzzy measures and Choquet
integrals to aggregate hesitant fuzzy information. These oper-
ators not only effectively handle incomplete and uncertain
evaluation information, but also account for the interdepen-
dence between decision criteria and decision maker’s prefer-
ences while giving the decision in both good situation and bad
situation at the same time.

To demonstrate the validity and practicality of the pro-
posed approach, numerical examples and sensitivity analysis
are presented. We also compare our proposed methods with
existing methods, which indicates that our approach outper-
forms these methods in terms of rationality, practicality and
robustness.

As wemove forwardwith our research, we place a high pri-
ority on extending the FHFS methodology to address a wider
range of constraints and practical examples that may arise
in real-world applications. By doing so, we aim to enhance
the versatility and effectiveness of the FHFS approach and
establish its practical applicability in various categories.
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