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ABSTRACT In recent years, there has been an increase in the use of edge-cloud continuum solutions to
efficiently collect and analyze data generated by IoT devices. In this paper, we investigate to what extent
these solutions can manage tasks related to urban mobility, by combining real-time and low latency analysis
offered by the edge with large computing and storage resources provided by the cloud. Our proposal is
organized into three parts. The first part focuses on defining three application scenarios in which geotagged
data generated by IoT objects, such as taxis, cars, and smartphones, are collected and analyzed through
machine learning-based algorithms (i.e., next location prediction, location-based advertising, and points of
interest recommendation). The second part is dedicated to modeling an edge-cloud continuum architecture
capable of managing a large number of IoT devices and executing machine learning algorithms to analyze
the data they generate. The third part analyzes the experimental results in which different design choices
were evaluated, such as the number of devices and orchestration policies, to improve the performance of
machine learning algorithms in terms of processing time, network delay, task failure, and computational
resource utilization. The results highlight the potential benefits of edge and cloud cooperation in the three
application scenarios, demonstrating that it significantly improves resource utilization and reduces the task
failure rate compared to other widely adopted architectures, such as edge- or cloud-only architectures.

INDEX TERMS Edge-cloud architecture, IoT infrastructure, edge computing, urban computing, smart cities,
urban mobility.

I. INTRODUCTION
The rapid spread of Internet of Things (IoT) devices is gener-
ating huge volumes of data at the network edge [1]. Managing
this data flow using highly centralized solutions, such as those
based on cloud platforms, is extremely ineffective in terms
of response time, network traffic management, power con-
sumption, and scalability [2]. Uploading such huge volumes
of data directly to the cloud leads to significant consumption
of bandwidth and requires the use of high-power computing
solutions to manage the resulting workload. Furthermore,
in many application fields such as medicine and security,
it is essential to offer low-latency and privacy-preserving
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services, as data transfer delay ormalicious datamanipulation
can cause significant disservices and even loss of life [3].

In recent years, researchers and IT companies have pro-
posed the adoption of the edge computing paradigm for
processing data closer to where they are generated [4].
In this way, the following advantages can be achieved: i) low
latency, since the computation takes place close to the data
source; ii) energy saving, as battery-limited devices could
offload computing tasks to edge servers for reducing energy
consumption; iii) privacy preserving, since data are not
necessarily uploaded to the cloud, but are processed and ana-
lyzed locally; and iv) scalability, as a strongly decentralized
and distributed approach allows to manage increasing work-
loads efficiently. The benefits deriving from solutions based
on edge computing can be complemented by using those
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provided by the cloud, as the latter allows to aggregate large
amounts of data persistently and perform compute-intensive
analyzes using scalable computational resources.

For all these benefits, edge-cloud continuum solutions
are increasingly being proposed for new frontier applica-
tion scenarios such as smart cities, industrial IoT and smart
healthcare [5], [6]. Particularly, in the field of urban mobil-
ity, the process of collecting, integrating and analyzing data
generated from many sources can greatly benefit from scal-
able architectures and proximity solutions [7]. For example,
tasks like driver assistance, collision avoidance and traffic
sign recognition, which require real-time analysis and low
response times, can benefit from edge computing [8]. Dif-
ferently, tasks like diagnostic data collection and analysis,
route calculations and targeted advertising, which require a
lot of computational resources and access to large datasets,
can benefit from the use of cloud computing.

In this paper we analyze how the compute continuum can
be exploited to efficiently manage tasks related to urban
mobility in large-scale computing environments. In partic-
ular, an edge-cloud continuum architecture is exploited to
analyze geotagged data generated at the network edge by
the movements of IoT objects such as taxis, cars, and smart-
phones. Once collected, these data can be analyzed through
machine learning algorithms in real-time to provide solutions
to different problems in our daily life. For example, i) for
taxis, discovering the location to which they will have to
move to more likely find new passengers; ii) for cars, deliver-
ing targeted advertising based on the positions and interests
of drivers; and iii) for tourists, recommending new points of
interest to visit based on what they like. The main contribu-
tions of this work are (i) the description of three application
scenarios, in which geotagged data, generated during the
movements of IoT objects (e.g., taxis, cars, smartphones),
are collected and processed by machine learning algorithms
(i.e., next location prediction, location-based advertising, and
points of interest recommendation); (ii) a modeling part
that defines an edge-cloud continuum architecture able to
manage a large number of IoT devices and to efficiently
execute machine learning algorithms to analyze the data
they generate; (iii) an experimental part in which different
design choices are evaluated (e.g., number of devices, type
of task, orchestration policies) to improve the performance
of machine learning algorithms in terms of processing time,
network delay, task failure and computational resource uti-
lization. By evaluating different application scenarios in a
real-world environment (the city of Rome) and using set-
tings derived from actual data, we provide a complete and
advanced understanding of the benefits of edge-cloud archi-
tectures for urban mobility management.

The achieved results showed that the use of an edge-cloud
continuum architecture, supported by efficient orchestra-
tion policies (e.g., network- or utilization-based), improves
resource utilization and ensures a lower task failure rate
in comparison to the traditional cloud- or edge-only con-
figurations, where data are entirely processed at the cloud

or the edge respectively. Specifically, for all the considered
application scenarios, the orchestration policies were able to
obtain a significant reduction in processing time (up to 87%
compared to the edge-only configuration), a drastic reduction
of the number of failed tasks (up to 40% compared to both
cloud- and edge-only configurations), and a good lowering
of resource utilization (up to 38% compared to the edge- and
cloud-only configurations).

The structure of the paper is as follows. Section II dis-
cusses related work and introduces the problem statement.
Section III describes the proposed edge-cloud continuum
architecture. Section IV presents three application scenarios
as case studies and a performance evaluation by using two
orchestration policies. Finally, Section V concludes the paper.

II. RELATED WORK
Urban computing is a research field that focuses on the study
and development of systems and methods for supporting
decision-making in urban environments using data generated
in cities [9]. In particular, urban mobility is a sub-field of
urban computing that refers to the mobility of people and
vehicles within cities, including the challenges and oppor-
tunities associated with the planning, management and opti-
mization of urban transport systems [10]. The analysis of
large amounts of geotagged data generated by IoT devices
installed on means of transport and road infrastructures can
be used for many purposes, including traffic flow monitoring
and transport route planning, decision-making to improve
the quality of urban life and the provision of location-based
services to citizens [11].

In this scenario, the edge-cloud compute continuum has
emerged as a solution to process and analyze the data
generated by IoT devices efficiently and in real-time [12],
[13]. However, effective resource allocation and orchestra-
tion strategies are critical for maximizing the benefits of
edge-cloud computing, and for this reason, researchers have
focused on optimizing the placement of tasks and data in
edge-cloud systems, considering factors such as performance,
energy efficiency, cost and reliability [14], [15]. To this end,
in the literature different techniques have been proposed that
make use of supervised/unsupervised machine learning, deep
learning and reinforcement learning [16].

Designing and testing large-scale and multi-layer edge-
cloud architectures are still open issues, especially for archi-
tectures composed of several components based on different
technologies and software stacks [17], [18]. Using a large
number of hardware devices for prototyping could be very
expensive, as well as setting up real-world experiments could
be logistically challenging [19]. For these reasons, simulat-
ing edge-cloud continuum solutions is important because it
allows testing and evaluating system performance to identify
and resolve problems or limitations before the deployment in
a real context [20]. In particular, the simulation of edge-cloud
architectures allows evaluating many aspects including i) the
scalability of the system and its ability to manage large
amounts of data generated by IoT devices; ii) the latency
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of the system, i.e., the time between data collection and
processing, ensuring that the system provides results in real-
time; iii) the ability to exploit both edge and cloud resources
efficiently, to optimize data processing and transmission and
to ensure energy sustainability as well. The main issues of
modeling IoT systems and how simulation approaches can
assist the design and validation of edge-cloud architectures
are discussed in different research papers [21], [22], [23].

In terms of tools and software solutions, different
open-source simulators have been proposed in recent years
to simulate IoT environments, such as iFogSim [24], IoT-
Sim [25] and EdgeCloudSim [26]. Several research works
have made use of simulators to test the behavior of specific
IoT applications on edge-cloud architectures [27], [28], [29],
[30]. Unlike these, our work analyzes how a large-scale
edge-cloud architecture can be leveraged to efficiently man-
age urban mobility applications based on machine learning.
Through three application scenarios, we show how the data
generated by different IoT devices can be efficiently managed
and processed using an edge-cloud continuum architecture.

A. APPLICATION SCENARIOS
Urban mobility data can be used in multiple ways to improve
people’s quality of life andmake cities more efficient and sus-
tainable. For example, they can be used for trafficmonitoring,
route planning and transportation management, among oth-
ers. We have decided to focus our attention on three different
use cases where the geotagged data generated by three differ-
ent types of IoT objects (i.e., taxis, cars and smartphones) are
analyzed through machine learning algorithms. Specifically,
the following cases are considered: i) the location to which
taxis will have to move to more likely find new passengers;
ii) targeted advertising based on the positions and interests of
car drivers; and iii) suggestion of the next points to visit based
on tourist preferences and behaviors.

Geotagged data generated by taxis can be used to predict
their next destination, reducing route costs and traffic con-
gestion. Unlike other forms of public transportation, taxis
do not have fixed routes and plan their routes after a pas-
senger is dropped off [31]. GPS trackers in taxis allow for
real-time monitoring of the vehicle’s location and trajectory
analysis can be used to predict where a taxi will move next,
known as the next location prediction problem [32], which
can be modeled as a short-term or long-term prediction task.
There are several methods in the literature for this prob-
lem, such as frequent patterns and association rules [33],
[34], or machine learning-based methods like clustering and
Markov chain-based framework [35] or neural network-based
models [36].

Geotagged data from vehicles can be leveraged for
location-based advertising, which can provide car drivers
with relevant products, services and offers based on their
habits while they are on the road. Popular approaches include
using GPS data [37] from the driver’s in-car navigation sys-
tem to deliver location-based ads and offers (e.g., a driver
passing by a restaurant might receive a coupon for a dis-

counted meal), as well as using contextual data [38] such as
time of day and traffic conditions (e.g., a driver stuck in traffic
might receive an ad for a nearby coffee shop).

Similarly, geotagged data generated by people during their
movements can be used to provide insights for destination
planning, service design and marketing [39]. To achieve
this, data mining algorithms are used to discover frequent
patterns in user trajectories across interesting locations fre-
quently visited by users, commonly referred to as Points-
of-Interest (PoIs) [40]. A common application is related to
PoIs recommendation to suggest places to visit based on a
tourist’s route collected from the smartphone during a trip
for improving touristic services [41], [42]. Machine learning
and data mining models have been used in previous work to
solve this problem, such as using a bidirectional LSTMneural
network [43] or sequential pattern analysis [44].

B. MACHINE LEARNING SOLUTIONS FOR LARGE URBAN
AREAS
With the growth of urban areas and the number of IoT devices,
there is an increasing need to develop machine learning algo-
rithms that can scale efficiently on distributed architectures
such as those of the edge-cloud continuum. Federated learn-
ing, through the hierarchical aggregation of learning mod-
els, has emerged as a promising paradigm for overcoming
the limitations of traditional centralized approaches, such
as those related to bandwidth, latency, and centralized data
processing and storage. In federated learning, data are kept
on local devices and only model updates are shared, ensuring
greater scalability and efficiency but also privacy preserva-
tion of sensitive data, making it suitable for large-scale IoT
environments such as those of the Internet of Vehicles (IoV)
and Intelligent Transportation Systems (ITS) [45].

Recently, several frameworks have been proposed
in the IoV that use federated learning. For instance,
Balasubramanian et al. [46] proposed a cooperative edge
intelligence framework that uses a hybrid stacked autoen-
coder model called VeNet to perform anomaly detection
and classification tasks among multiple edge devices in a
decentralized manner. It consists of a local autoencoder that
is trained on data collected by each edge device, and a global
autoencoder that is trained on a subset of the data from all
the edge devices. Similarly, Zhou et al. [47] introduced a
novel two-layer federated learning framework for IoV that
allows for aggregating models with different architectures
and hyperparameters. This approach allows for more flexibil-
ity in model selection and greater performance of federated
learning frameworks. Overall, the experimental evaluations
on real-world and large-scale datasets demonstrate the scal-
ability, efficiency, and potential benefits of using federated
learning in urban computing contexts, making it suitable in
large-scale IoT environments.

III. SYSTEM ARCHITECTURE
Although cloud computing provides high scalability with
dynamic resource allocation, it may raise performance issues
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as a result of the centralization of data collection and process-
ing [48], [49]. On the other hand, an edge-cloud continuum
architecture might address these issues by enabling efficient
and fast management of themassive volume of data generated
by IoT devices. In particular, these architectures enhance
computation capabilities and scalability while reducing net-
work congestion and failed tasks. For these reasons, such
architectures can also have a significant impact on urban
mobility applications. Figure 1 shows a three-layer edge-
cloud continuum architecture for supporting urban mobility.

The edge-cloud continuum leverages all the resources from
the edge of the network (e.g., IoT devices) to the core
(e.g., cloud data centers) [50]. Specifically:
• The device layer includes the components that are lever-
aged by vehicles and humans to share information dur-
ing their movements across different urban cells, which
define a partitioning of an urban area. These compo-
nents (e.g., GPS, infotainment devices, on-board cam-
eras) produce a very high volume of data in different
formats and in real-time, which is sent to the edge server
of the current cell. This data can be combined with
the personal data of the users (e.g., preferences and
behaviors) and information about the surrounding envi-
ronment, to deliver advanced, customized and context-
aware services.

• The edge layer includes heterogeneous hardware com-
ponents (e.g., gateways, micro data centers), which serve
as elements of the infrastructure that collect and partially
process raw data generated at the device layer.

• The cloud layer provides access to a large set of com-
puting and storage resources, which can be dynamically
allocated for executing tasks that cannot be performed
by edge servers. From the client’s perspective, the cloud
is an abstraction for remote and infinitely scalable com-
puting and storage resources. For these reasons, it has
emerged as an effective computing paradigm to meet the
challenge of processing big data in a limited time and to
provide an efficient data analysis environment.

The edge layer includes a key component called Edge
Orchestrator (EO), which is responsible for managing and
coordinating the execution of tasks, determining whether
each task will run on the edge or cloud. It can be programmed
to apply different orchestration policies to optimize the over-
all performance of the architecture. These policies can take
into consideration many parameters, such as network conges-
tion, data volume to be processed, and status and load level of
both edge nodes and cloud. Two orchestration policies were
employed in this work, namely network-based (edge/cloud-
NB) and utilization-based (edge/cloud-UB), whose pseu-
docode is shown in Algorithm 1. In particular, for each task
to be scheduled, the cell and the associated edge server are
identified from the coordinates of the IoT object generating
that task (lines 3-4). Then, the desired orchestration policy
(i.e. utilization-based or network-based) is applied to decide
where the incoming task must be executed. Specifically, the
utilization-based policy schedules tasks based on the utiliza-

Algorithm 1 Edge Orchestrator
1: Initializing EO and orchestration policy p.
2: procedure GetServer(task, coord, θ1, θ2)
3: cell ← getCell(coord)
4: edgeS ← getEdgeServer(cell)
5: layer ← null
6: if p == Utilization_Based then
7: edgeUtilization← getEdgeUtilization()
8: if edgeUtilization>θ1 then
9: layer ← CLOUD

10: else
11: layer ← EDGE
12: end if
13: else
14: wanDelay← getUpDelay(task.getDevice(), CLOUD)
15: wanUBW ← getBandwidthUtilization(wanDelay)
16: if wanUBW<θ2 then
17: layer ← CLOUD
18: else
19: layer ← EDGE
20: end if
21: end if
22: return (layer == EDGE)?edgeS : cloud
23: end procedure

tion of edge nodes (lines 6-12). If the average edge utiliza-
tion is greater than a fixed threshold (i.e., θ1), the incoming
task is offloaded to the cloud (lines 8-9); otherwise, it is
assigned to the edge layer (lines 10-11). The network-based
orchestration policy (lines 14-21)measures the network delay
from the device that generated the task to the cloud (line 14).
For deciding where it must be executed, a dummy task that
uploads and downloads 1 MB of data is exploited. In detail,
the algorithm measures the upload delay which includes both
the transmission delay (i.e., the time required to transmit the
data over the network) and the processing delay (i.e., the time
required for the cloud to process the request). Particularly, the
transmission delay includes both the time required to transmit
the request and response over the network, which depends
on the size of the data being transmitted and the available
transmission rate, and propagation delay, which is due to the
distance between the server and the cloud. Then, this delay
is leveraged to determine the percentage of used bandwidth
compared to the maximum bandwidth (line 15). If it is less
than a fixed threshold (i.e., θ2), the incoming task is offloaded
to the cloud (lines 16-17); otherwise, it is assigned to the edge
layer (lines 18-19). In the end, according to the chosen layer,
the task is assigned to the cloud or the edge server of the
current cell (line 22).

In the experimental section, the values of thresholds were
chosen according to conventions often used on cloud plat-
forms. Indeed, in different technical reports [51], [52], [53],
a threshold value is used to determine when to scale the
computing resources (e.g., 80% of the total resources). This
is because, if the percentage of resource utilization reaches
the threshold value, it can indicate that such resources are
under pressure and may not be able to handle any further
requests.
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FIGURE 1. The edge-cloud continuum architecture.

TABLE 1. Description of the main EdgeCloudSim simulation parameters.

IV. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed edge-cloud
continuum architecture, we used the EdgeCloudSim sim-
ulator and considered three different urban mobility sce-
narios (taxis, cars and tourists with smartphones). Among
the open-source simulators discussed in Section II, we have
chosen EdgeCloudSim, which is particularly well-suited for
modeling urban mobility scenarios, since it supports differ-
ent architectures, devices, and device mobility [26]. Table 1
reports the main parameters required by the simulator along
with their description.

The three different applications are concerned with urban
mobility in which machine learning algorithms are used to
analyze large sets of geotagged data generated during the
movements of IoT objects. In particular:

1) Application scenario 1 is about the taxi destination pre-
diction problem, aimed at establishing the next position
where taxis will have to move to have a better chance
of finding new customers.

2) Application scenario 2 models the problem of deliv-
ering location-based and targeted advertising to car
drivers based on the position of the car and the interests
of the driver.

3) Application scenario 3 concerns the next location rec-
ommendation problem applied to tourists, aimed at
suggesting new points of interest to visit based on their
movements collected by their smartphones.

For each scenario, we considered three common tasks:

• Data collection task: it consists in collecting and prepro-
cessing the data generated at the device layer (e.g., data
generated by IoT objects).

• Training task: it consists in training a machine learning
model, which is regularly updated with new mobility
patterns. In these experiments, we used a centralized
approach for model update. This turns out to be an
appropriate choice according to the size of the urban area
and the number of devices considered, in contrast to the
approaches based on federated learning which are more
suitable for larger urban areas scenarios.

• Prediction task: it exploits the trainedmodel for suggest-
ing the next location where a taxi should move to find
new passengers or to provide location-based advertising
and suggestions to car drivers and tourists.

Table 2 reports the main parameters used to configure the
simulations, which have been extracted from official reports
of public administrations or scientific papers. In particular,
we used Rome in Italy as the reference city, and according to
the official report [54] we have defined the number of taxis,
cars and tourists, i.e. 10K, 100K and 100K respectively. The
city has been divided into 100 cells covering about 1km2 each.
The infrastructure is composed of an edge layer with 100 edge
servers configured as a virtual machine (VM) having 4 cores,
4 GB of RAM and 64 GB of storage memory, and a cloud
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layer configured as a VM equipped with 8 cores, 32 GB of
RAM and 1 TB of storage memory. In our simulations, IoT
devices follow a Nomadic Mobility Model, in which the time
a device remains in a cell before moving to a nearby one is
taken from an exponential distribution. The mean value of
the exponential distribution is set to 140 seconds for appli-
cation scenarios 1 and 2, and at 900 seconds for application
scenario 3. In fact, considering that the average speed of a
vehicle in the center of Rome is estimated at 26 km/h [55]
and that the city area has been divided into cells covering
areas of 1km2, vehicles at this speed cross a cell on average
in about 2.3 minutes (i.e., 140 seconds). Instead, the average
speed of a pedestrian walking at a slow pace is 4 km/h [56],
therefore the time taken to pass from one cell to another is
about 15 minutes (i.e., 900 seconds).

The training and inference times together with the infor-
mation on the hardware characteristics reported in [35], [40],
and [44], have been used to determine the type of tasks
and their average length for application scenario 1, 2 and
3 respectively. Moreover, for each task (i.e., data collection,
training and prediction) in each application scenario, a set of
parameters are required, including the Poisson interarrival,
the active/idle period time of tasks, and the amount of data
that is downloaded and uploaded. The Poisson interarrival
time is used to define the rate at which the devices generate
the different types of tasks. Overall, for data collection and
prediction tasks modeling, the interarrival times were set
to low values to reflect the high level of devices’ activity
in the urban area under consideration. Conversely, higher
values were chosen for the training tasks to model that they
are less recurring (e.g., periodic retraining of the machine
learning model might occur once a day). The active and idle
periods are used to control the amount of time a device spends
actively generating or not generating a specific task, while
the upload/download data sizes control the amount of data
generated and transmitted by devices in the simulation. For
example, large upload and download data sizes indicate a
task with high data transmission requirements, such as the
prediction and data collection tasks that involve significant
data exchange.

Among all the parameters described, the number of IoT
objects, the Poisson interarrival time and the task length
are the ones that mostly drive the results of our simu-
lations and, for this reason, we mainly focused on them
to define the different tasks in the application scenarios.
Other parameters required to configure and run the simula-
tions (e.g., active/idle period and download/upload data size)
were defined differently for each task but uniformly across
scenarios.

A. PERFORMANCE EVALUATION
We carried out a large number of experiments to evaluate
the edge-cloud continuum architecture. To make the simu-
lation results more significant, we repeated the experiments
10 times for each input configuration and reported the mean

TABLE 2. Simulation parameters for the three scenarios.

values. The experiments are used to assess the behavior of
the edge-cloud continuum solution compared to centralized
ones that exploit only cloud or edge resources. Specifically,
the four configurations we evaluated are the following:
• Cloud-only: tasks are performed exclusively on the
cloud.

• Edge-only: tasks are performed directly on the edge.
• Edge/cloud-UB and edge/cloud-NB: tasks are performed
locally on edge servers or remotely in the cloud based on
the policy of the edge orchestrator (i.e., network-based
and utilization-based).

Regarding the edge/cloud configurations, as discussed in
Algorithm 1, the decision whether to offload a task to the
cloud or perform it on the edge server is driven by two main
parameters, i.e. the two thresholds θ1 and θ2. In the experi-
mental evaluation of all application scenarios, the threshold
for the utilization- and network-based policies was set at 80%
[51], [52], [53], which means that the computing and network
resources are preserved from being used no more than 80%
of their capacity to avoid their saturation.

The configurations were evaluated and compared on
four different metrics, which are the average processing
time, percentage of failed tasks, network delay and VM
utilization.

1) APPLICATION SCENARIO 1: NEXT LOCATION PREDICTION
FOR TAXIS
In this section, we present the main results we obtained for
the scenario related to taxi destination prediction. Figure 2
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FIGURE 2. Performance results for the different configurations (cloud-only, edge-only, edge/cloud-UB and
edge/cloud-NB) for application scenario 1.

reports the performance metrics for each of the four con-
figurations (i.e., cloud-only, edge-only, edge/cloud-NB, and
edge/cloud-UB). As stated before, the application is modeled
to simulate the city of Rome, which has around 10k taxi
licenses according to official data [54]. However, we consid-
ered a variable number of taxis, ranging from 5k to 12.5k ,
to investigate how a different number of taxis can impact the
performance metrics in the different configurations.

The average processing time obtained by the different
configurations is shown in Figure 2(a). The achieved results
are stable and consistent over the different runs and exhibit
low variance. On average, the relative standard deviation is at
most 4% compared to the mean value over the 10 runs. In par-
ticular, the edge-only showed the worst results, with a signifi-
cant drop in performance as the number of vehicles increased
(the processing time increases from around 10 seconds with
5k vehicles up to around 70 seconds with 12.5k vehicles).
Instead, the cloud-only configuration achieved a very low
average processing time. However, it dramatically increases
the number of failed tasks as the number of vehicles increases.
In fact, as shown in Figure 2(b), the percentage of failed
tasks for the cloud- and edge-only architectures increases
rapidly as the number of vehicles increases. In particular,
a steep increase can be observed when using more than 7.5k
vehicles: this means that, as long as there are few vehicles, the
cloud-only architecture can handle the incoming workload
better than the other configurations, but as the number of

devices increases it leads to a higher percentage of failed
tasks. On the other hand, the use of the edge orchestrator leads
to a lower task failure rate (on average 6.8% for edge/cloud-
NB and 1.3% for edge/cloud-UB). This is a crucial aspect to
be considered since in many contexts having a high number
of failed tasks can compromise the usability of the IoT appli-
cation. Also for this metric, the results obtained show a low
variance, with a relative standard deviation that is at most 2%
with respect to the mean value.

Figure 2(c) shows the average network delay. In particular,
it emerges how the cloud-only configuration generates a very
high network delay because of data transfer from the edge
layer to the cloud, resulting in a significant increase in com-
munication delay (up to around 98% higher than the edge-
only solution), while processing data locally at the edge does
not produce significant effects. For the network delay, simu-
lation results showed a negligible relative standard deviation
below the 1%.

Figure 2(d) illustrates the average VM utilization obtained
by the different simulated configurations, with a relative devi-
ation from the mean value being at most 7%. The edge/cloud-
NB achieved the best result showing a low utilization of
resources while keeping, as discussed, a low processing time
and a low percentage of failed tasks. Reducing the use of
VMs is a crucial aspect in large-scale applications that involve
large computational resources because it allows for optimiz-
ing costs and energy consumption. Additionally, reducing the

38870 VOLUME 11, 2023



L. Belcastro et al.: Edge-Cloud Continuum Solutions for Urban Mobility Prediction and Planning

FIGURE 3. Average VM utilization on both cloud and edge with the two
orchestration policies for application scenario 1.

risk of saturating computational resources allows for handling
any unexpected workload peak that may occur. It should
be also noted that the edge-only configuration produces a
significant increase in the VM utilization for a high number
of vehicles, but it still achieves a lower task failure rate
than the cloud-only one (see Figure 2(b)). If we analyze in
detail the percentage of VM utilization for the two edge/cloud
configurations, we can get more details about the behavior
of the edge orchestrator. In particular, Figure 3 shows the
percentage of VM utilization on both cloud and edge when
considering 12.5k vehicles. In this case, the utilization-based
policy results in a higher utilization of the edge resources
(73% compared to 49% of cloud), while the network-based
policy produces a higher utilization of cloud resources (57%
compared to 12% of edge).

It is worth noting that a task can fail for one of three
reasons: VM capacity, low network bandwidth or due to
mobility. In particular, if the utilization of a VM is too high,
it may reject incoming tasks. Similarly, if too many vehicles
connect to the same edge server, the network may become
congested and tasks may fail. Finally, a task may fail due
to the vehicle moving from one cell to another, according to
the Nomadic Mobility Model. As an example, if we analyze
the percentage of failed tasks in the cloud-only configuration,
we find out that only the 0.02% fails due to low computation
capacity, as the cloud has enough computational resources,
while almost all failed tasks are due to network congestion.
On the other hand, the edge/cloud-NB is able to balance data
traffic between cloud and edge, avoiding sending traffic over
the WAN when it is congested.

Overall, the edge/cloud-UB and edge/cloud-NB showed
the best results, outperforming the conventional cloud- or
edge-only architectures. Compared to the edge-only archi-
tecture, the use of the edge orchestrator leads to a dras-
tic reduction in processing time, which ranges from 30%
for edge/cloud-UB to 87% for edge/cloud-NB. In addition,
compared to both cloud- and edge-only architectures, it per-
mits to reduce the number of failed tasks (up to 38% for
edge/cloud-UB and 40% for edge/cloud-NB) and the VM
utilization (up to 29% for edge/cloud-UB and 38% for
edge/cloud-NB).

2) APPLICATION SCENARIOS 2 AND 3: LOCATION-BASED
ADVERTISING FOR CAR DRIVERS AND POI
RECOMMENDATION FOR TOURISTS
In this section we present the main results obtained by simu-
lating application scenarios 2 and 3, whichmodel the problem
of location-based advertising for car drivers and points of
interest recommendation for tourists. For the sake of brevity,
we have not considered a variable number of IoT objects
(i.e., vehicles and people), but only the one closest to the real
one. In particular, we considered 100k IoT objects for both
scenarios, which is about the number of cars and tourists that
move around the city of Rome every day [54].

Figure 4 reports the performance metrics for each of the
four configurations, i.e., cloud-only, edge-only, edge/cloud-
UB and edge/cloud-NB. Specifically, Figures 4(a), 4(b), 4(c)
and 4(d) report the average processing time, percentage of
failed tasks, network delay and VM utilization, respectively.

In both simulated scenarios, the edge/cloud-NB configu-
ration shows a better processing time than both edge-only
and edge/cloud-UB (up to 81% and 76% lower respec-
tively). It should be noted that the computational resources
of the cloud allow for a lower processing time. However,
as for application scenario 1, the cloud-only configuration is
affected by a high percentage of failed tasks and high network
delay. Indeed, leveraging both edge and cloud resources,
as long as the network is not congested and the WAN delay
is negligible, reduces the time required to complete a task.

Concerning failed tasks, the edge/cloud configurations
obtain very low failure rates (less than 4%). Particularly,
Figure 5 details the percentage of failed tasks due to network
congestion, VM capacity and mobility for both configura-
tions. In these two scenarios, mobility from one cell to another
is the main cause of task failure. However, especially in
application scenario 2, an important part of the tasks fails due
to a lack of resources at the edge layer.

Regarding network delay, the simulation results did not
reveal significant differences between the two orchestration
policies in the edge-cloud continuum, while the cloud-only
configuration is heavily affected by data transfer from the
edge layer.

Finally, regarding VM utilization, the edge/cloud-NB and
edge/cloud-UB showed a lower percentage than the cloud-
and edge-only configurations, reducing the risk of saturating
computational resources and allowing for better management
of the incoming workload. In particular, the average VM
utilization of the edge/cloud-NB is up to 22% and 48% lower
than the edge/cloud-UB for the two simulated scenarios.
Overall, the edge/cloud-NB configuration performed better
than the edge/cloud-UB configuration, reducing the process-
ing time by 76%, the number of failed tasks by 3%, and the
VM utilization by 27% on average.

V. CONCLUSION AND FUTURE WORK
With the pervasive diffusion of IoT devices, the edge-cloud
continuum has been proposed to combine the advantages
of edge computing in processing data closer to where
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FIGURE 4. Performance results for the different configurations (cloud-only, edge-only, edge/cloud-UB and
edge/cloud-NB) for application scenarios 2 and 3.

FIGURE 5. Percentage of failed tasks due to network congestion, VM capacity and mobility for application
scenarios 2 and 3.

they are generated with those of the cloud in supporting
compute-intensive tasks. In this paper, we explored the use of
edge-cloud architectures for supporting three urban mobility
scenarios (i.e., next location prediction, location-based adver-
tising, and of points of interest recommendation), in which
machine learning algorithms are used to analyze large sets
of geotagged data generated during the movements of IoT
objects (e.g., taxis, cars, smartphones).

Several experiments have been carried out for assess-
ing the benefits of the edge-cloud continuum over the tra-
ditional cloud- or edge-only architectures. In particular,

we exploited a simulation-based approach for designing and
testing IoT applications by using an edge-cloud simulator and
two orchestration policies, based on network (edge/cloud-
NB) and computational resources (edge/cloud-UB) utiliza-
tion. The achieved results demonstrated that the edge-cloud
continuum architecture, coupled with the defined orches-
tration policies, outperforms traditional cloud- or edge-only
architectures, obtaining a significant reduction in processing
time, task failure rate, and resource utilization.

Future research efforts will be devoted to developing
advanced orchestration policies that can exploit machine and
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deep reinforcement learning to improve task scheduling in the
edge-cloud continuum. Such policies can be further tested
using emulators instead of simulators to evaluate how soft-
ware interacts with the underlying hardware. Furthermore,
in ever-growing urban areas with ever-increasing numbers
of IoT devices, it will also be necessary to think about
how algorithms can scale efficiently on edge-cloud archi-
tectures. Hence, future work should evaluate how machine
learning paradigms such as federated learning can overcome
the limitations of centralized solutions in large-scale IoT
environments.

DATA AND CODE AVAILABILITY STATEMENT
In order to reproduce the experiments reported in the
paper, the open-source version of EdgeCloudSim is avail-
able on https://github.com/CagataySonmez/EdgeCloudSim,
while all the parameters required to run the simulations are
reported in the paper.
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