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ABSTRACT A metaheuristic approach based on the nature-inspired and well-known Grey Wolf Optimiza-
tion algorithm (GWO) was employed in this study to design an approach for retrieving strong designs
of 8 × 8 substitution boxes (S-boxes). The GWO was developed as a novel metaheuristic based on
inspiration from grey wolves and how they hunt. The ability of the GWO to quickly explore the search
space for the near/optimal feature subsets that maximize any given fitness function (in consideration of its
distinctive hierarchical structure) aids in the construction of strong S-boxes that can satisfy the required
criteria. However, when tackling optimization problems, GWO may experience the problem of premature
convergence. Therefore, a variant of GWO called Crossover Grey Wolf Optimizer (XGWO) has been
proposed in this study. The performance of the proposed novel approach was evaluated using numerous
cryptographic performance metrics, including bijective property, bit independence, strict avalanche, linear
probability, and I/O XOR distribution and the result was contrasted with a couple of existing S-box creation
techniques. Overall, the results of the experiment showed that the suggested S-box design had adequate
cryptographic features.

INDEX TERMS Substitution boxes, optimization, nature-inspired algorithms, Grey Wolf Optimizer,
cryptology.

I. INTRODUCTION
In modern cryptographic applications, one of the major com-
ponents is the S-bo; an S-box refers to a ‘‘non-linear substi-
tution mapping function S(x): GF(2n) → GF(2m), that can
be represented as the following Boolean function formulation
f (x) = (f 1(x), f 2(x), . . . , fm(x)). S-boxes are a crucial part
of symmetric-key algorithms and are mostly used to hide the
relationship between the input key and the output. S-boxes are
widely accepted to have a major impact on the algorithm’s
security attributes [1], [2]. Moreover, S-boxes are essential
for establishing the related block cipher’s confusion property,
which increases its resistance to cryptanalysis [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

The creation of appropriate S-boxes that will meet the
requirements for symmetric-key cryptography has never been
easy. This has been the case because the level of secu-
rity of any encryption process is a function of the S-box
quality. In 1977, the Data Encryption Standard (DES) was
introduced based on eight 6 × 4 S-boxes [4; it is a good
example of this scenario. The known susceptibility of DES
to different attacks, such as linear cryptanalysis and parallel
brute-force attacks [5], prompted the development of the
Advanced Encryption Standard (AES) in the year 2000. The
AES relies on the use of S-boxes that have been shown
to be robust in the presence of both differential and linear
cryptanalysis attacks [7, 6]. Currently, the AES is recog-
nized as a secure standard, but uses a static S-box, meaning
that despite changes in key, the S-box remained the same.
Hence, it was shown that the key-dependent S-box enhanced
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the algorithm complexity whereas the static S-box provided
ways for cipher text pair attacks [8], [9]. The fundamental
problem, which had been resolved in [10] and [11], was
the systematic design of dynamic S-boxes, despite the fact
that key-dependent S-boxes improved the strength of the
algorithm. Many unresolved problems still exist in the design
and evaluation of S-boxes for cryptography applications [11],
[12]. It is possible to classify the design of S-boxes that can
withstand cryptanalysis as an NP-hard problem [13]. Because
it is difficult to create an S-box with perfect cryptographic
features, there must be some sort of trade-off [13]. Currently,
the algebraic, random, and metaheuristic-based approaches
are the three generic strategies primarily used in the design
of S-boxes. However, each of these methods has certain ben-
efits and drawback; for instance, the random search method,
while straightforward, typically results in S-boxes with sub-
par cryptographic properties [14]. For the algebraic strategy,
it is not suitable for large-scale S-box generation despite
producing S-boxes with good cryptographic attributes [15].
Thus, the metaheuristic-based technique is a good alternative
for constructing S-box due to its versatility and straight-
forward theoretical foundation. The optimization method in
general, and nature-inspired techniques in particular, have
been adopted for addressing many optimization issues in the
literature, including Engineering & Machine Learning [16],
[17], [18], and Power due to their better performance. The
literature has investigated the combination of numerousmeta-
heuristics and chaotic maps for the design of 8 × 8 S-box
due to their widespread use in cryptosystems. Some of the
recent integrations include the combination of the Jaya algo-
rithm with the Tent map, Logistic map, and Sine map [19],
the hybridization of the chaotic map with the globalized
Firefly algorithm and its variants [20], the combination of
selective chaotic maps with the Tiki-Taka algorithm [21], the
hybridization of Tent map with Agent Cowards and Heroes
algorithm [22], etc.

Recently, Grey Wolf Optimizer (GWO) [23] was devel-
oped as a metaheuristic algorithm that mimics the hunt-
ing style of grey wolfs when they search for prey, then
attack it in a unique way. The standard version of GWO
has been successfully implemented for handling different
global optimization problems [24]. In GWO, the position
updating mechanism depends mainly on the best three can-
didate solutions, namely ‘‘Alpha, Beta, and Delta’’, which
denote the best solution, the second-best solution, and the
third-best solution, respectively. All search agents in the
swarm follow the best solutions, which in some cases,
get stuck in the same position, especially the alpha. This
implies that the positions of all search agents exploit the
search region of alpha for many more iteration; this could
increase the chances of the algorithm being trapped in the
local minima. Therefore, the position updating mechanism
of GWO needs to be modified to enable the best candidate
solutions to explore the search area once they fail to get
optimized.

The major objectives of this study are as follows:

i) To design an approach for avoiding local minima
entrapment by integrating the GWO with a special
crossover operator. The new algorithm that results from
this integration is called ‘‘Crossover Grey Wolf Opti-
mizer’’ (XGWO). In the XGWO, new solutions are
generated based on the already found best solutions
(i.e., Alpha, and Beta) which are combined in a specific
order. The new crossover step ensures the global search
ability of the algorithm and enhances the searching
performance of GWO while the stop condition is not
satisfied.

ii) To design a new initialization step for XGWO based on
the discrete chaotic map instead of the pseudo-random
number generator to ensure high nonlinearity and allow
more diversification.

iii) To test and validate the performance of XGWO against
GWO and other existing metaheuristics. In this study,
the utilized test bed (performance metrics) includes
bijectivity, strict avalanche criteria (SAC), nonlinearity,
bit independence criteria (BIC), linear approximation
probability (LP), and differential probability (DP).

iv) XGWO is the first GWO-based crossover variant con-
sidered for solving the issues of 8× 8 S-boxes genera-
tion and optimization.

The structure of this article is as follows: The relatedworks on
the use of metaheuristics for S-box design are introduced in
Section II of the article. The problem description is detailed
in Section III. The original GWO and the suggested varia-
tion, XGWO, are presented in Section IV. In Section V, the
proposed approach was evaluated, including how well S-box
properties are met and how it compares to existing meta-
heuristics that incorporate chaoticmaps. SectionVI presented
the performance analysis of the proposed S-boxes. The study
is concluded in Section VII, along with recommendations for
further research.

II. RELATED WORKS
Substitution boxes, as earlier mentioned, are typically built
using three general techniques [25] which are the random,
algebraic, and metaheuristic methods. It is difficult to exe-
cute these methods and produce a large collection of strong
S-boxes; hence, only a few studies based on algebraic meth-
ods are covered in this review. However, as noted, the alge-
braic method-based S-boxes tend to exhibit the most superior
cryptographic properties [26]. The study by Nyberg [27]
designed a strong S-box using the finite field inversion arith-
metic method while Daemen and Rijmen [28] proposed an
S-box that uses both the inverse mapping method and the
affine transformation. S-boxes can also be generated using
random computationally based methods; these methods fre-
quently fill S-box entries with random numbers or employ a
pseudo-random generator, and they are easy to implement.
Being that the S-box generation entries in those methods
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rely heavily on chance, these methods frequently produce
S-boxes of poor quality [14]. Some works combine the
chaotic maps with these methods for S-box generation based
on random computing as an upgrade. For instance, a method
for creating S-boxes based on the Logistic and exponential
maps was presented by Jakimoski and Kocarev [29]. Simi-
larly, Tang [30] developed a technique that produced S-boxes
using a discretized, chaotic, two-dimensional Baker map.
Khan [31] created a nonlinear fractional chaos-based method
that relies on a progressive time Lorenz system for S-box
creation. A compositional permutation technique based on a
discrete chaotic map was also used by Lambić [32] for S-box
creation. In the study by Özkaynak and A. B. Özer, [33],
a chaotic Lorenz system-based method of S-box retrieval
was presented. Additionally, Khan andAsghar [34] employed
the Ginger Breadman Chaotic Map with S8 Permutations as
part of their initial S-box generating strategy. The study by
Çavuşoğlu et al. [35], offered a novel way of S-box generation
based on a scaled Zhongtang chaotic system, whereas Zhang
et al. [36] developed S-boxes employing the I-ching opera-
tors. A feasible 4-chaotic map-based S-box design method
was presented byAlshekly et al. [37]. Considering the chaotic
maps’ promising performance in S-box design and genera-
tion, studies have been focusing on the optimization-based
techniques recently.

The S-box design methods based on metaheuristics
make efficient use of the base algorithm to carry out the
search process; this improves the outcomes of such random
computational-based strategies. Metaheuristic-based systems
typically offer internal mechanisms that encourage learning
from previous activities [38], in comparison to random-based
computational methods, thereby delivering better solutions.
This is due to the intensification and diversification operators
that are built into these metaheuristic-based approaches. Fur-
thermore, metaheuristic-based systems are generally used to
provide internal strategies for overcoming local optima trap-
ping. Because of these factors, the literature contains multiple
instances of metaheuristic algorithms for S-box construction
being successfully used.

Numerous studies have demonstrated that adding chaotic
maps to metaheuristic algorithms enhances the nonlinearity
performance of S-boxes. For instance, the study by Chen [39]
employed the single population-based metaheuristic based
on Simulated Annealing (SA) with chaotic-based swapping.
The Wang method [16] was then used in conjunction with
chaotic and genetic algorithms (GA) to produce an optimized
S-box. The Logistic Map and Bacterial Foraging Optimiza-
tion (BFO) algorithms were intertwined by Tian and Lu [40].
BFO is a metaheuristic inspired by the foraging pattern of
bacteria for the generation of robust 8 × 8 S-boxes. Authors
in [13] have presented a 6-D compound hyper-chaotic map
integrated with an artificial bee colony (ABC). The foraging
behaviour of honeybees is mimicked in the ABC to obtain the
appropriate S-box.

Farah and Belazi [41] proposed an integrated new chaotic
map by combining the Jaya algorithmwith Sine, Logistic, and
Tent maps. In another work by [42], the teaching-learning-
based optimization (TLBO) algorithm and the Henon and
Logistic maps were used to create a robust S-box. In this
method, TLBOfinds the best solutions using the teaching and
learning phases.

Ahmad et al [43] utilized an Ant Colonization Optimizer-
basedmetaheuristic with amodulated chaotic variable sample
to transform the initial S-box into a Traveling Salesman
Problem (TSP) through an edge matrix to retrieve a suitable
S-box design. In this ACO-based metaheuristic approach,
a Logistic map and a Tent map were combined. The Stan-
dard Firefly Algorithm (SFA) is used in the work of Ahmed
et al. [44] to generate S-boxes using a discrete chaotic map.
SFA enhances the search results by utilizing the brightness of
biological fireflies. The new approach proposed by Alzaidi
et al. [45] relied on the use of an enhanced chaotic map and
β-Hill Climbing search algorithm. Furthermore, a chaotic
map and the Globalized Firefly Algorithm (GFA) were used
by Alhadawi et al. [20] for S-box generation. The chaos-
based movement of the best firefly was exploited by the GFA
to reach optimal results. In a different study,

Alhadawi et al. [46] combined a chaotic map and the
Cuckoo search method for S-box creation. Recently, Soto
et al [47] proposed a way of evading premature convergence
and improving the non-linearity property during S-box cre-
ation; the proposed method is based on human behaviour
inspired frameworks and supported by self-organizing
maps.

Nafiseh and Sodeif [48] utilized ergodic chaotic maps to
enhance the PSO algorithm’s ability to create cryptographi-
cally robust S-boxes. To arrive at an effective S-box design,
Zamli et al. [21] developed the Selective Chaotic Tiki-taka
Algorithm (SCMTTA), which hybridized TTA and 5 chaotic
maps (Tent map, Logistic map, Chebyshev map, Sine map,
and Singer map). TTA searches for the best solutions using
the populations of balls and players.

Zamli [22] also created strong S-boxes using a combination
of the Tent map and the Adaptive Agent Heroes and Cow-
ards (AAHC). The AAHC dynamically partitions its popu-
lation into heroes and cowards using exponential functions.
An improved multi-swarm PSO (MPSO) method based on
the meeting room approach was proposed by Alhadawi et al.
[49] for the creation of strong 8 × 8 S-boxes. Despite the
existing number of methods for S-box design, none of these
methods could create an S-box that exhibits similar levels
of security to AES based on relevant metrics. Hence, it is
important to address this issue in both practical and academic
settings [13], [43]. Additionally, scholars should endeavour
to come up with novel metaheuristic based S-box strategies
by investigating the applicability of new metaheuristics for
S-box design, given that no single metaheuristic approach
could be said to be superior to other strategies.
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III. PROBLEM DESCRIPTION
Security professionals and researchers have evaluated S-box
strength using a variety of performance metrics [7], [29],
[50]. To evaluate the cryptographic qualities of the created
S-boxes in this study, six key characteristics were considered;
these are nonlinearity, bijectivity, SAC, differential unifor-
mity, BIC, and LP. These well-known performance standards
for S-boxes will be briefly explained in the next subsection.
Definition 3.1: Bijectivity: The confirmation of the bijec-

tive property of S-boxes using this method was first proposed
by [51]. The bijectivity property is said to be satisfied if the
Boolean function fi of an S-box needs to be balanced. This
calls for an equal distribution of 0’s and 1’s in the output of the
S-box. Boolean functions are determined with fi(1 ≤ i ≤ n)
as:

wt

(
n∑
i=1

aifi

)
= 2n−1 (1)

where ai ∈ {0, 1}, (a1, a2, . . . , an) ̸= (0, 0, . . . , 0), and wt()
is the Hamming weight. For an 8 × 8 S-box, bijectivity is
satisfied if the look-up contains different values in the range
of [0, 255].
Definition 3.2: Nonlinearity: To prevent linear cryptanal-

ysis, the nonlinearity score is closely related to plaintext
confusion and block cipher immunity. The Walsh spectrum
(WS) calculates a Boolean function’s nonlinearity to estimate
its minimum separation from all other Boolean functions.

Nf = 2n−1(1 − 2−n max
x∈GF(2n)

|WS ≺ f ≻ (w)|) (2)

The Walsh spectrum of f(x) can be defined as:

S≺f≻ (w) =

∑
x∈GF(2n)

(−1)f (x)⊕x.w (3)

where w ∈ GF(2n) and x.w signifies the dot product of x and
w, which is provided as:

x.w = x1 ⊕ w1 ⊕ . . . ⊕ xn ⊕ wn

Definition 3.3: Strict Avalanche Criteria: Webster and
Tavares [52] defined SAC by highlighting how output bits
might be partially altered by only complementing one input
bit. The S-box was then checked to see if it matched the
SAC requirements using a successful procedure that was
put into place after that. If the dependence matrix served
as the representation of the S-box SAC, the S-box would
satisfy the SAC if each element’s value was close to the
optimal value of 0.5. The study by [53] provides additional
information regarding this calculation, Meanwhile [54],
applies the subsequent equation to obtain the SAC offset
amount.

S (f ) =
1
n2
∑

1≤i≤n

∑
1≤j≤n

∣∣0.5 − Pi,j(f )
∣∣ (4)

Definition 3.4: Bit Independence Criteria: Webster and
Tavares [52] devised the BIC metric as a way of reflect-
ing the pairwise independence of all avalanche vector series

generated by a single plaintext complementation. The pair-
wise independence between such pairings is determined by
measuring the correlation between the items in each pair.
Consider the S-box with Boolean function (h1,h2, . . . ,hn),
an S-box that is said to have met the BIC hj ⊕ hk (j ̸=

k, 1 ≤j,k ≤ n) should be highly nonlinear [55]. Furthermore,
the determination of the BIC of the generated S-box is done
by calculating the nonlinearity and SAC of hj ⊕ hk (j ̸= k).
Definition 3.5: Differential Uniformity: This is a measure

of the robustness of an S-box to withstand a differential
cryptanalysis. To compute DP, 1x i, an input differential is
uniquely mapped to 1yi, an output differential for each i.
The DP is expressed in Eq. 5 as a measure of this differential
uniformity for a given S-box.

DP (1x − 1y) =

(
#{x ∈ X |S (x) ⊕ S (x ⊕ 1x) = 1y|

2m

)
(5)

where set X contains 2m possible input values.
Definition 3.6: Linear Probability: The LP is used as a

criterion for measuring the maximum imbalance value of a
situation because it can serve as a way of determining the
maximum imbalance value of the outcome of an event, with
a and b representing two masks associated with the parity
of the input and output bits, respectively. The LP is also
mathematically defined as [5]

LP = maxa,b̸=0

∣∣∣∣#{x ∈ X |x.a = f (x) .b|
2n

− 0.5

∣∣∣∣ (6)

where set X is composed of all the possible inputs while 2n is
the number of components in X .

IV. THE PROPOSED METHODOLOGY
The suggested modification to GWO is detailed in this sec-
tion, along with a description of the traditional GWO. Addi-
tionally, a discrete chaotic map that is utilized to provide
the required randomness for GWO is explained. These algo-
rithms are the basis for the description of the suggested S-box
generation methods.

A. DISCRETE CHAOTIC MAP
Let K = k0k1 . . . km−2km−1 denote a permutation of the set
{0, 1, . . . ,m−1}. Permutation kr = km−1km−2 . . . k1k0 is the
reverse permutation of the permutation K .

The composition h = f ◦ g of two permutations f and g of
the same set A, is the permutation mapping each z ∈ A into
h (z) = f (g (z)).
Let Sm denote all permutations of the set {0, 1, . . . ,m −

1}. Lehmer code [56] is bijective function l: Sm →

{0, 1, 2, . . . ,m! − 1}. Function l (K ) =
∑

0≤i<m ci ·

(m− 1 − i)! Where K ∈ Sm and ci is the number of elements
of the set {j > i|kj < ki}. Inverse Lehmer code is bijective
function l−1

: {0, 1, 2, . . . ,m! − 1} → Sm.
In [57] defined a 1-D discrete chaotic map as follows:

Zi+1 = Zi ◦ f (Zi,C) (7)
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where Zi,C ∈ Sm and f : Sm → Sm. If zi = l(Zi) and c =

l(C), this map can also represent as

Zi+1 = l[l−1 (Zi) ◦ f
(
l−1 (Zi) , l−1 (c)

)
] (8)

where zi, c ∈ {0, 1, 2, . . . ,m! − 1} and f : Sm → Sm. In [57]
and [58], The specific scenario of a one-dimensional discrete
chaotic map is considered, in which

f (Zi,C) = l−1(
∣∣l(C ◦ Zi − l((C ◦ Zi)r )

∣∣) (9)

Based on (1) and (3) we derive the map Fm :

{0, 1, 2, . . . ,m! − 1} → {0, 1, 2, . . . ,m! − 1} by:

Fm (z) = l(l−1 (z) ◦ l−1
(∣∣∣l (C ◦ l−1 (z)

)
− l

([
C ◦ l−1 (z)

]r)∣∣∣)) (10)

This map can also be presented as

Zi+1 = Zi ◦ l−1(
∣∣l (C ◦ Zi) − l

(
(C ◦ Zi)r

)∣∣) (11)

B. GREY WOLF OPTIMIZER
The social leadership among grey wolves, as well as their
hunting behavior, serve as the inspiration for the GWO.
In GWO, three types of leader wolves (α, β, and δ) are taken
into consideration; they are taken as the best solutions that
will lead the other wolves (referred to as ω) toward finding
the optimal solutions while exploring the global best. The
hunting strategy of grey wolves is comprised of three key
steps - encircling, haunting, and attacking the target.

• Encircling: This is the encircling of the prey by the
hunting grey wolves; it can be modeled as follows:

D =
∣∣C × Xp (t) − X (t)

∣∣ (12)

X (t + 1) = Xp (t) − A× D (13)

where Xp = the position of the target (prey), X = the position
vector of the hunting wolf, t = the current iteration. The
coefficient vectors, C, and A, can be calculated thus:

A = 2 × A× r1 − a(t) (14)

C = 2 × r2 (15)

where r1, r2 are ‘‘random vectors in the range of [0, 1]; the
elements of the vector α decreases linearly from 2 to 0 during
the iteration process by:

a (t) = 2 − (2 × t)|MaxIter (16)

• Haunting: The haunting behavior of the wolves is math-
ematically modeled by assuming that a, β, and δ know
more about the position of the target (prey); hence, the
position of the a, β and δ (best solution) serve as the
guide for the rest of the wolves ω. The hunting behavior
of thewolves is described using the following Equations:

Da = |C1 × Xa − X (t)| ,

Dβ =
∣∣C2 × Xβ − X (t)

∣∣ ,
Dδ = |C3 × Xδ − X (t)| (17)

where C1,C2 and C3 are calculated by

Xi1 (t) = Xa (t) − Ai1 × Da(t),

Xi2 (t) = Xβ (t) − Ai2 × Dβ (t),

Xi3 (t) = Xδ (t) − Ai3 × Dδ(t) (18)

where Xa,Xβ and Xδ are the first three best solutions at
iteration t,A1,A2 and A3 are calculated as in Eq. (14), and
Da,Dβ and Dδ are defined as Eq. (17).

X (t + 1) =
Xi1 (t) + Xi2 (t) + Xi3(t)

3
(19)

• Attacking: The wolves initiate the attacking step as soon
as the hunting step has ended (when the prey no longer
moves). The exploration and exploitation processes can
be mathematically governed by the value of a, which
decreases linearly throughout the iteration process. The
value of a is updated after every iteration within the
range of 2 to 0 using Eq. (16). Exploitation, as per [59],
is dedicated to the other half of iterations after a seamless
transition from exploration.Wolves move to any random
position between their current position and the position
of the prey during this phase.

C. THE PROPOSED XGWO ALGORITHM
The standard version ofGWOhas been implemented success-
fully in developing and solving different types of optimiza-
tion problems [60], [61], [62]. However, the exploitation part
of GWO depends mainly on selecting the best three solutions,
which are called ‘‘Alpha’’, ‘‘Beta’’, and ‘‘Delta’’. The final
best solution found so far is the alpha, which remains the same
every iteration until the algorithm finds a new better current
best solution to be the new alpha. Even though GWO can
be easily implemented for numerous purposes, it still suffers
from the problems of lacking population diversity, premature
convergence, and exploitation-exploration imbalance [63],
[64], [65]. Additionally, while the GWO’s position update
equation is useful for exploitation, it is insufficient to yield
a workable solution.

Scholars have modified numerous algorithms in the litera-
ture using evolutionary operators, i.e., mutation and crossover
[66], [67]. These operators help the search agents to explore
and exploit the search space by updating the solutions based
on specific mechanisms. Due to the enhancement in the
searching performance of optimization algorithms when uti-
lizing any evolutionary operator, this study proposes a special
crossover operator, which helps the algorithm to escape the
local minima and explore different search regions. Therefore,
a new step is added to the traditional GWO algorithm, which
is located at the end of each iteration. In another word, the
original version of GWO is executed, then, the current best
solution – or alpha is enhanced via a crossover operator. The
proposed algorithm is called Crossover Grey Wolf Optimizer
(XGWO). Moreover, the initialization step of the XGWO is
implemented using a discrete chaotic map which is used as
the pseudo-random number generator, replacing the uniform
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distribution. The steps of the proposed modification are given
as follows:

• Step 1: Inputs: Get all the required parameters for
solving a specific optimization problem, such as the
number of search agents (Size), and the number of total
iterations (Itr). In addition, the number of dimensions
(Dim) is set to 256, which represents the total number of
bits in each S-box, i.e., it is equal to 16×16. Therefore,
the range for each S-box is [0, 255], which represents
the upper and lower boundaries, respectively.

• Step 2: Initialization: Generate each search agent ran-
domly in the search space using the discrete chaotic
map using Equation (11) instead of randomizing the
agents using a uniform distribution.

• Step 3: Evaluation function: The fitness of each gener-
ated solution is evaluated based on the targeted objec-
tive function. In this study, the fitness function is
represented by the nonlinearity function, which is given
in Eq. 2.

iv Step 4: DetermineWAlpha,WBeta, andWDelta. In this
step, the best wolfs are determined by sorting the solu-
tion ascendingly. If there is a new solution with fitness
better than the previous, then, keep the new solution as
the newWAlpha, otherwise, go to step 6.

• Step 5: Solution updating: In this step, the position
of each wolf (including the omegas) is updated using
Equations (17-19). Then, the fitness value for each
search agent is re-evaluated to determine if there is a
new current best solution or alpha.

• Step 6: Crossover operator: If the current best solution
(W t

alpha) is equal to the previous iteration best solution
(W t−1

alpha),i.e., not updated, then, the crossover operator
is executed. The inputs to the crossover operator are the
best two search agents,W t

alpha andW
t
beta. The proposed

crossover works as follows:
i Set S1 and S2 as two parents, where the S1 denotes the
Walpha, while S2 denotes theWbeta.

ii Determine Smax1 and Smax2 which denote the positions of
the values higher than or equal 128 in S1 and S2 respec-
tively. In addition, determine Smin1 and Smin2 denote the
values lower than to 128 in S1 and S2 respectively.

iii Perform an intersection operator between the previ-
ously mentioned sets as follows: SP1 = Smax1 ∩ Smax2 ,
and SP2 = Smin1 ∩ Smin2 .

iv Generate two random solutions as offspring (O1,O2),
in the range [R1,R2] where:
R1 = Round(min(S1(SP2),S2(SP2))−Ia), and R2 =

Round(max(S1(SP1),S2(SP1))+Ia),
I = max(S1(SP1),S2(SP1))−min(S1(SP2),S2(SP2)),
and a is a random number in the range [0, 1].

v Replace the position of the repeated generated values
with the original values (if any).

vi Evaluate the new generated offspring (O1,O2) using
the nonlinearity function.

FIGURE 1. S-box generation process based on XGWO.

vii Compare the fitness of O1 and O2 with the parents S1
and S2.

viii Replace the best offspring with the worst parent, if any,
as new alpha and beta, otherwise, keep the original
Walpha and Wbeta.

• Step 7: Repeating or Stop Criteria: The steps above
are repeated until the stop condition is met, which is a
fixed number ofmaximum iterations (Itr). If the current
iteration t is less than Itr , then, go to step 5 and update
the positions for the search agents, otherwise, return the
position ofWalpha and the fitness values as well.

The Pseudo code the XGWO based S-box is presented in
Figure 1. While, the complete flowchart of XGWO is pre-
sented in Figure 2.

V. EVALUATION OF THE PROPOSED ALGORITHMS
In this study, the analysis focuses on three interrelated
objectives:

i To assess the convergence-related performance
enhancements of XGWO over GWO for S-box
optimization;
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FIGURE 2. The flowchart of XGWO.

ii To analyze the XGWO and GWO-based S-boxes for
cryptographic properties in terms of the bijectivity,
nonlinearity, SAC, BIC, LP, and differential approxi-
mation probability (DP);

iii To compare the generated XGWO and GWO S-boxes
with competing metaheuristics that integrate chaotic
maps

The proposed enhancement to the GWO in this study was
developed and executed on a machine with the following
specification: Windows 10, 2.6 GHz Intel Core i7 CPU,
512GBflash storage and 16GB 1867MHzDDR3RAM. The
MATLAB programming language serves as the basis for the
implementation of the XGWO and GWO. The parameters for
the implementation were set as follows: iterations (MaxItr) =

100, and Population size (PopS) = 50. Statistical significance
was established by running the XGWO and GWO 20 times.
Out of the 20 executions, one best S-box configuration was
selected to benchmark.

Figure 3 shows the convergence curve for GWO and
XGWO, where XGWO achieved better convergence than
GWO; furthermore, XGWO has greater convergence and a
higher nonlinearity score than GWO. Early in the iteration,
where the starting nonlinearity score for XGWO is higher

than GWO, the effect of the discrete chaotic map as a compo-
nent of the population initialization may be observed. Addi-
tionally, Table 1 summarize the nonlinearity score for 20 runs
of GWO and XGWO, while Table 2 tabulates the appropriate
Mann-Whitney U Test results.

Table 2 showed that (H0) is rejected with α < critical
value. Hence, XGWO and GWO significantly differed in
terms of their average nonlinearity performances.

VI. EVALUATING THE GENERATED S-BOXES
The performance of the predicted S-boxes in terms of security
is evaluated and examined in this section. The S-box gener-
ated by GWO is shown in Table 3, while the S-box generated
by XGWO is shown in Table 4. To understand the crypto-
graphic robustness of the generated S-boxes, security profes-
sionals and researchers have used a variety of performance
metrics to assess the robustness of S-boxes [7], [29], [50] (see
Section III). Sixmajor properties have been taken into consid-
eration to assess the cryptographic properties of the generated
S-boxes, such as nonlinearity, bijectivity, strict avalanche
criteria (SAC), bit independence criteria (BIC), differential
uniformity and linear probability. The next subsection will
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FIGURE 3. Convergence curve for the proposed methods.

TABLE 1. GWO and XGWO nonlinearity score for 20 runs.

briefly explain these well-identified performance criteria for
S-boxes.

A. BIJECTIVE CRITERION
Regarding the bijectivity property, we can note that all entries
in Table 3 (GWO-generated) and Table 4 (XGWO-generated)
for the S-boxes fall within the range of 0 to 255. It is
worth noting that each table has distinct and non-repeated
values, confirming that both S-boxes satisfy the criteria for
bijectivity.

B. NONLINEARITY
Table 5 shows the nonlinearity evaluations of S-boxes pro-
duced by GWO and XGWO. The highest, lowest, and mean
nonlinearity scores of the generated S-boxes are displayed in
Figure 4. For the GWO generated S-box, the nonlinearities
were 108, 106, 108, 108, 106, 108, and 106. Given that the
lowest nonlinearity value of 106 may be attained using the
random approaches, it is clear that premature convergence
made it impossible to produce a GWO-based S-box with

TABLE 2. Mann-whitney U test statistics.

improved minimal nonlinearity in an acceptable amount of
time.

On the other hand, the nonlinearity scores of the XGWO-
generated S-box were 110, 108, 110, 108, 110, 108, 110,
and 110, with the lowest nonlinearity score of 108 which
was the major aim of the objective function (i.e., Maxi-
mize the nonlinearity score). Therefore, the XGWO method
that was suggested demonstrated superior performance com-
pared to the traditional GWO method with regards to the
maximum, minimum, and average nonlinearity values. It is
important to highlight that XGWO has the capability to pro-
duce S-boxes that exhibit significant resilience against linear
cryptanalysis.
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FIGURE 4. Nonlinearity score of the generated S-boxes by GWO and XGWO.

TABLE 3. S-box generated by standard grey wolf optimizer.

TABLE 4. S-box generated by crossover grey wolf optimizer algorithm.

C. STRICT AVALANCHE CRITERIA
The correlation between input and output bits, known as Strict
Avalanche Criterion (SAC), is often used to evaluate S-boxes.

The study presented SAC values of the S-boxes generated
by the GWO and XGWO methods in Tables 6 and 7. The
average SACvalues for GWOandXGWO-generated S-boxes
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TABLE 5. Nonlinearity comparison of s-boxes.

TABLE 6. SAC of the proposed S-box GWO.

TABLE 7. SAC of the proposed S-box XGWO.

TABLE 8. BIC-nonlinearity of the GWO S-box.

were 0.5011 and 0.4936, respectively. Both methods fell just
short of the ideal value of 0.5. However, the offset values of
the GWO and XGWO-generated S-boxes were 0.02930 and
0.03319, respectively. These values are relatively small, indi-
cating that both methods can produce S-boxes with accept-
able SAC properties.

D. BIT INDEPENDENCE CRITERIA
The computation of BIC-nonlinearity values follows a stan-
dard procedure. Tables 8 illustrate BIC-nonlinearity values
of the Boolean functions for the S-box generated by GWO
which has an average value of 103.21 with a minimum value
of 96. Meanwhile, the average BIC-SAC value in Table 10
is 0.4995. For XGWO, the BIC-nonlinearity and BIC-SAC
values are provided in Table 9 and 11, respectively. The

minimum value in Table 9 is 100 whereas the average value
is 103.85. Similarly, the average BIC-SAC value in Table 11
for XGWO is 0.505.

The BIC-nonlinearity score, which measures the nonlin-
earity of S-boxes, was found to be satisfactory for both GWO
and XGWO generated S-boxes, with scores of 103.21 and
103.85, respectively. This suggests that the BIC-nonlinearity
values for the S-box generated by XGWO were better
in terms of the minimum and average values than the
S-box generated by GWO. However, the average BIC-SAC
value for the S-boxes generated by GWO and XGWO was
0.4995 and 0.505, respectively, indicating that both methods
produced S-boxes that closely approached the optimal value
of 0.5. As a result, the generated S-boxes met the BIC-SAC
criterion.
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TABLE 9. BIC-nonlinearity of the XGWO S-box.

TABLE 10. BIC-SAC of the proposed S-box by GWO.

TABLE 11. BIC-SAC of the proposed S-box by XGWO.

E. DIFFERENTIAL UNIFORMITY
An S-boxmust have lower differential values in order to resist
differential cryptanalysis. The largest differential probability
for both GWO and XGWO is 0.03906 or 10/256. (where 10 is
the highest value in Table 12 for GWO and Table 13 for
XGWO).

In evaluating the Differential Probability (DP) of an S-box
using the distribution table, the goal is to minimize the fre-
quency of the maximum value in the table. Based on the
results obtained from this evaluation, it can be observed that
the GWOmethod has a frequency of 3 for the maximum entry
value, while the XGWO method has a frequency of 9 for the
same value. However, both methods proposed in this study
have been shown to be effective in producing S-boxes that
provide resistance against differential attacks.

F. LINEAR PROBABILITY
For S-boxes to be resistant to linear cryptanalysis, they should
have lower LP values. The LP analysis of S-boxes generated
by the GWO and XGWO methods is presented in Table 14.
The LP score obtained for both S-boxes generated by XGWO
and GWO was 0.1172. Therefore, it can be concluded that

both LP scores are effective in providing resistance against
linear cryptanalysis.

VII. COMPARISON ANALYSIS
To put a current work into perspective, there is a need
for a through benchmarking evaluation of the proposed
approach against the existing metaheuristic algorithms with
chaotic map integration, such as Globalized Firefly Algo-
rithm (GFA) [20], Teaching Learning Based Optimiza-
tion (TLBO) [42], Standard Firefly Algorithm (SFA) [20],
Chaotic Firefly Algorithm (CFA) [44], Genetic Algorithm
(GA) [16], Ant Colony Optimization (ACO) [43], Bacterial
Foraging Optimization (BFO) [40], Artificial Bee Colony
(ABC) [13], Simulated Annealing (SA) [39], Cuckoo Search
(CS) [46], Jaya Algorithm (JA) [41], Particle Swarm Opti-
mization (PSO) [49]. The comparative performance of vari-
ous metaheuristic algorithms with chaotic maps is presented
in Table 15, and by examining eachmajor column of the table,
several notable observations can be highlighted.

Regarding the column of nonlinearity, it is worth to men-
tion that the proposed XGWO demonstrated superior perfor-
mance compared to all the competing S-boxes by achieving

42426 VOLUME 11, 2023



A. I. Lawah et al.: GWO and Discrete Chaotic Map for Substitution Boxes Design and Optimization

TABLE 12. DP For The GWO.

TABLE 13. DP for the XGWO.

the highest average nonlinearity score of 109, this was the
main goal of the objective function, which was to maximize
the nonlinearity score. The minimum nonlinearity scores for
the S-boxes produced by the XGWO, GFA, GA, and PSO
approaches were the same. (i.e., the minimum distance value
is one way to measure the strength of nonlinearity for an
S-box) and higher than all other S-boxes in the comparison.
However, the GWO algorithm outperforms the TLBO, SA,
and JA algorithms in terms of average nonlinearity. Similarly,
GWO, SFA and ACO obtained the same average nonlinearity
scores, and lower than the other competing S-boxes. Con-
sidering that nonlinearity was used as the objective function
for all the methods employed in the comparison. The XGWO
approach proves to be efficient in achieving high nonlinearity.

The average values of the all S-boxes generated in the
SAC column are reasonably close to the ideal value of 0.5.
However, relying solely on the average value can be mislead-
ing. The mean of the values in the dependency matrix table

TABLE 14. LP values comparison.

can still be around 0.5 even if some of them are not ideal.
To obtain a more precise picture, the offset is used, which
measures the deviation of each individual value from the ideal
value 0.5. Although GWO resulted in a slightly higher offset
value than the S-boxes produced by ACO and ABC, which
achieved the lowest offset value in the comparison, XGWO
still obtained a comparable offset value to the other methods
analyzed. Therefore, the SAC properties of the proposed
design using GWO-based methods have been shown to be
satisfactory.

The BIC-NL and BIC-SAC columns are used to evaluate
all S-boxes based on their calculated matrix entries for bit
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TABLE 15. comparison of the S-boxes.

independence criteria. CFA performs the best in the BIC-NL
column with a minimum score of 102 and an average score
of 104.64, outperforming other S-boxes. XGWO came in
second position behind ABC and was on level with SA and
CS in terms of the best BIC-NL minimum score of 100.

However, XGWO only ranks fifth with CS regarding the
average BIC-NL score of 103.85. Despite a poor minimum
BIC-NL score of 98, TLBO has the second-best average BIC-
NL of 104.57, indicating that most entries of BIC-NL TLBO
matrix are higher than 100. BFO shows the poorest perfor-
mance in terms of BIC-NL with the best minimum score of
94 and an average score of 103.07. For BIC-SAC average, all
entries have values close to the ideal value of 0.5, indicating
similar performances. Therefore, Table 15 demonstrates that
the S-boxes generated by the proposed methods closely fulfill
the BIC criteria.

Referring to the column that displays the Differential Prob-
ability (DP) scores for a particular set of S-boxes. All S-boxes
have a DP score of 0.0390 and a maximum I/O of 10. Min-
imizing the frequency of the maximum I/O is crucial for
effective defense against differential attacks. After compar-
ing different optimization algorithms, it has been found that
GWO and ACO have the best overall performance with a fre-
quency of 3 for the maximum I/O. The other algorithms have
been ranked in ascending order of their frequency of maxi-
mum I/O as follows: CFA (7), JA, SFA, TLBO (8), XGWO,
BFO, CS (9), PSO and GA (10), ABC (12), and GFA,
SA (13). Thus, every approach has the potential to create S-
boxes that demonstrate strong resilience against differential
attacks.

In the LP (linear probability) score column, GWO and
XGWO and TLBO are ranked third with a score of 0.1172,
while the top-ranked algorithm is BFOwith a score of 0.1015.
The other algorithms are ranked in ascending order, with JA,
GFA, ACO at 0.1171, SFA, CFA, PSO, and GA at 0.1250,
ABC at 0.1328, and SA at 0.1406.

VIII. CONCLUSION
Considering the potentially vast search space, random
search approaches and even pure metaheuristic approaches
often yield unsatisfactory results. Consequently, recent stud-
ies have explored the integration of chaotic maps with
metaheuristic-based approaches, and significant performance
improvements have been reported in the literature due to the
properties of chaotic maps, such as their ergodic behavior
and sensitivity to initial conditions. In this study, a discrete
chaotic map has been utilized with the Grey Wolf Opti-
mizer (GWO) algorithm as the base algorithm. Furthermore,
a new crossover operator has been introduced to enhance
the diversification aspect of GWO, resulting in a proposed
algorithm called ‘‘XGWO.’’ The empirical results of the
S-box analysis demonstrate that the overall performance of
XGWO is promising. Future work in this area will focus on
extending the application of the novel XGWO to other opti-
mization problems, specifically exploring the multi-swarm
XGWO approach for dynamic optimization problems where
the search space changes over time.
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