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ABSTRACT Increased safety risks and the difficulties of training excavator operators, combined with
manpower shortages, have led to an increased demand for machine automation. This study applies a long
short-termmemory algorithm to automate a bucket tip-trajectory planning artificial intelligence (AI) system.
Unlike other autonomous excavation techniques, our approach performs bucket-trajectory planning without
prior knowledge of the nonlinear bucket–soil interaction dynamics during excavation, which require the
parameters to be precisely adjusted via heuristic analysis of their correlations. Using data acquired from
the excavations of excavator experts, this method uses three-dimensional point cloud of terrain and bucket
motion data of excavation process to train and apply the AI modules. Especially, we transform the point
cloud, which comprises a massive number of points and entails a considerable computation complexity, into
much fewer values, which are enough to represent the three-dimensional shape of the target terrain. To ensure
prevention of collisions with underground obstacles along a given excavation path, a collision avoidance
algorithm, based on continuous pressure monitoring in the excavator’s hydraulic cylinder, is applied.
Comparison experiments reveal that the bucket-tip trajectory planning AI system with collision avoidance
algorithm generates a traceable trajectory for the machine controller, equipped in an excavator, and yields
the desired excavation volume and lead time without collision, regardless of the topographic changes caused
by successive excavations.

INDEX TERMS Automated excavation, bucket-tip trajectory planning, collision avoidance algorithm, field
robots, long short-term memory, point cloud data.

I. INTRODUCTION
The global demand for excavators has soared owing to their
operational versatility, which allows them to be applied to
excavation, loading, and drilling tasks. Excavators are essen-
tial heavy machinery on construction sites. However, the
number of newworkers applying to operate such construction
equipment has stagnated, owing to the hazardous nature of
the job. In particular, the time required to train new personnel
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up to proficiency on the machine exceeds 5 years. Moreover,
the population of skilled operators is declining because of
ageing (i.e., retirement). Therefore, the construction industry
is suffering from a shortage of workers.

Various studies (from estimation of the soil–bucket interac-
tion force to trajectory tracking and autonomous excavation)
have been conducted to address the shortage of personnel.
In the field of excavation automation, several studies have
investigated the interaction dynamics between the soil and the
tool or bucket. For example, some researchers have estimated
soil information from the energy dissipated during soil–tool
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interactions, by measuring the force and displacement of the
bucket [1]. Dynamic models based on the Newton–Euler
equations [2] and soil–tool interactions [3] have been used
to predict the resistive forces exerted upon the bucket during
excavation. These predicted values were fed to a controller to
plan the trajectory of the bucket [4], [5]. Additionally, other
studies have attempted to apply fuzzy methods to identify
the soil property parameters and fundamental earthmoving
equations, to thereby predict the soil resistance forces during
excavation [6].

Despite these efforts to mathematically represent soil–tool
interactions, the non-linearity of soil dynamics still com-
plicates the bucket’s motion control. Moreover, because the
interaction dynamics depend on the bucket size and soil
type, the controller must be manually tuned to the work site
and excavator model. However, such customization is time-
consuming. Therefore, recent research into autonomous exca-
vation has focused on the application of machine and deep
learning approaches that do not require information regarding
the complex dynamics between the soil and bucket motion.
Some researchers [7] have attempted to replace existing
control methods [e.g., proportional–integral–derivative (PID)
control] with a reinforcement learning (RL)-based trajectory
tracking controller; this generates valve commands to supply
hydraulic power and operate the excavator arm. In [8] and [9],
for a given excavator link trajectory, impedance and sliding
mode controllers were used to calculate the desired cylinder
forces. Subsequently, echo state networks took these forces
and cylinder pressure values as inputs to control the servo
valves and force the bucket along a set course.

These artificial-intelligence (AI)-based approaches have
focused upon the trajectory-tracking performance when set-
ting a trajectory, instead of generating a desired path.
However, incorporating expert manipulation for existing
tracking methods is a difficult task, which depends on the
expert’s intuitions regarding the excavation state (rather than
calculations of the excavation forces). To automate an excava-
tor, we primarily need a bucket-tip trajectory that incorporates
human expertise. Later studies developed AI systems that
could imitate the manipulation of experts or generate the
total path of the bucket by referring to in-situ data. Refer-
ence [10] used neural networks to determine the soil type and
design an appropriate path for the bucket. Moreover, some
researchers [11] have developed an automatic bucket-filling
algorithm for a wheel loader, based on the time-delayed
neural network; this uses encoder and pressure transducer
measurements to imitate the manipulation of experts in the
‘‘bucket filling’’ stage of the excavation process. In [12], tak-
ing the topology of the soil surface as input, a heteroscedastic
Gaussian process was developed and applied to an electric
manipulator for autonomous excavation. The method accu-
rately determined the switching time from the drag to the
scoop phase, to obtain the desired excavation volume. In [13],
a multi-layer perceptron was used to generate a dataset of
shaping forces; these were transformed into the point set of

bucket trajectory using the dynamic movement primitives.
Furthermore, in [14], deep reinforcement learning (DRL) was
used to develop the bucket tip trajectory. Data for training the
DRL were obtained from a robotic simulation program. After
learning, the DRL of the excavator could output each control
action for excavation.

However, the control actions determined by the AI sys-
tems in [10], [11], and [12] were extremely restrictive in
certain stages of the excavation process, which limits their
applicability across different terrain shapes. In the force-data-
based trajectory planning in [13], the force configuration
during excavation differed between fields with different soil
hardness, even when the paths were identical. Moreover, the
configuration step requires different tuning to be set (accord-
ing to the force set) for the transformation into the point’s
coordinate value. The DRL has been widely developed and
applied in robotics, because the computing performance has
progressed considerably in terms of memory and comput-
ing speed, as reported in [7], [14], [15], [16], and [17].
Generally, DRL involves numerous trial and error operations
when training the control policy to output the Q value for
each action. Because repetitive trial and error is difficult to
perform in practice owing to safety risks, several studies have
performed multiple trial and error simulations and stored
the data for each excavation in a replay buffer [14], [15].
However, in virtual simulations, the integration of soil
dynamics, including the soil–tool interaction and configura-
tion of soil piles and particles, not only requires knowledge
of physical soil characteristics but also considerable computa-
tional power, depending on the size and number of soil parti-
cles. Furthermore, in DRL, the reward function, which yields
a reward to the agent depending on the agent’s action based
on states, requires a heuristic approach for its configuration
andmust thoroughly consider the relation between the control
action and state of excavation.

To address the limitations and difficulties of prior studies,
we developed a trajectory planning system for the bucket-
tip position and orientation; to this end, we used expert
excavation data (composed of the point cloud for the target
terrain before excavation and the position values of the bucket
tip during excavation). The bucket-tip trajectory planning
system consists of two AI approaches. The first generates the
region of excavation, considering safety against collisions;
the second locates waypoints inside that region. These two
AI modules include long short-term memory (LSTM) algo-
rithms as the main layer. LSTM is an advanced recurrent
neural network (RNN) and is suitable for training with one-
dimensional (1D) long-sequence datasets. For configuration
of the 1D input dataset, we transformed the point cloud into
three values (representing the terrain features). In addition to
the bucket-tip trajectory planning AI system, we developed
a collision avoidance algorithm to prevent the bucket from
crashing into underground obstacles, and we adjusted its
excavation range to ensure safety. Using these algorithms,
this study proposes an excavation procedure that is robust
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against topographic changes (produced via successive exca-
vations) and safe to operate when underground obstacles are
present; this approach does not require knowledge of soil
dynamics. To validate the method’s robustness, we compare
its performance against those of experts, changing the terrain
in each trial. The collision avoidance algorithm is validated
in a simulated environment.

TABLE 1. Specifications of experimental excavator.

FIGURE 1. Excavator and sensors used for experimental verification.

II. METHOD
A. EXPERIMENTAL EXCAVATOR HARDWARE SETUP
The proposed trajectory planning algorithm was applied to
a 1/8-scale excavator (Table 1, Fig. 1). The boom, arm, and
bucket were rotated via the linear actuation of hydraulic cylin-
ders, which were fed hydraulic pressure from the hydraulic
pump. The rotation of the pump and swing actuator was
controlled via an electronic speed controller, using pulse
width modulation (PWM) signals from the controller PC.
Servo valves for operating the hydraulic cylinders were also
controlled by PWM signals. The velocity of the cylinder was
controlled using the open/close ratio of the servo valve, which
was proportionate to the duration of the PWM ‘‘ON’’ signal
(with each period spanning 20 ms).

To establish the automatic excavation system, we installed
wire encoders, pressure transducers, and a depth camera on
the excavator (Fig. 1). Wire encoders can measure the stroke
of the hydraulic cylinders; this was transformed into the
rotation angles of the boom, arm, and bucket joints. Two pres-
sure transducers were installed at the ends of the hydraulic
cylinders, and the difference between the two pressure values
for each cylinder was proportional to the load on that cylinder.
The depth camera was installed on the cabin to obtain the
point cloud for the terrain.

The excavator’s workspace extended 1 m from the boom
joint; however, in this study, we limited its range to 0.95 m

from the boom joint, to prevent tipping of the excavator under
heavy loads.

B. EXPERIMENTAL CONTROLLER SETUP
The control system of the excavator comprised three comput-
ers, including the AI computer, machine controller, and host
computer (Fig. 2).

The AI computer was equipped with an NVIDIA
RTX 3090 GPU for rapid training and application of bucket
trajectory planning, based on deep learning. Moreover, it col-
lected the point cloud data via a direct connection with the
depth camera, to minimize the data losses during transfer.

For the machine controller of the excavator, we used the
CompactRIOmade byNational Instruments (NI); this gathers
sensor data from the excavator and transmits the control input
to manipulate machine links in real time. These input and
output data flow through input/output (I/O) modules installed
on the CompactRIO. The operation of CompactRIO was con-
trolled and managed through virtual instruments from NI’s
LABVIEW, which were operated in a real-time (RT) module
and field-programmable gate array (FPGA).

The host computer was connected to the AI computer
via the user datagram protocol communication method. The
cable transmitted the measured position and angle informa-
tion for the bucket tip and received the subsequent position
and angle data, which were calculated by the AI computer.
Virtual instrument panels for the RT and FPGA modules
were operated on the host computer. These panels employed
the subsequent position and angle values to calculate PWM
‘‘ON’’ duration signals and thereby control three links of
the excavator, and they transmitted these control signals to
the three servo valves via the I/O modules of the compact
RIO. Two joysticks were also plugged into the host computer,
to manipulate the excavator.

C. TEST SIMULATOR
To obtain the training dataset for expert operation, we con-
structed a personnel test simulator (Fig. 3), using the cockpit
seat of an excavator. The soil in this test was decomposed
granite. The excavator was installed on a workbench, and
experts manipulated it using joysticks. The simulator required
the same joystick manipulation method as the real excavator.
Experts used the joystick buttons to initiate and terminate data
saving. After each round of excavation, the experts performed
swing and soil loading operations on a box located on a
weighing scale, to measure the weights of the excavated soils.
After loading, the test manager recorded the lead time for
excavation and the excavated soil weight. In emergencies
(e.g., unexpected manipulation and motion of the excavator),
the test manager was able to push the kill switch, to cut
off electricity to the actuation system and sensors of the
excavator.

D. POSITION CONTROL FOR EXCAVATION MOTION
The AI system generated waypoints along the bucket tip tra-
jectory. After transmitting the point’s position data from the
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FIGURE 2. Excavator controllers: Host computer, AI computer, and CompactRio.

FIGURE 3. Expert test bed.

TABLE 2. Denavit-Hartenberg parameters for excavator.

AI computer, the machine controller implemented position
control via the point-to-point method. The information for
each point included the distance, depth, and angle of attack
of the bucket tip; these were calculated and measured with
respect to the revolute joint of the excavator’s boom as origin.
The machine controller transformed these values into vari-
ables of the excavator’s joints, using the Denavit–Hartenberg
(DH) configuration (shown in Table. 2 and Fig. 4) and inverse
kinematics. The excavator’s manipulator arm, which is com-
posed of three revolute joints except for the swing joint
fixed during excavation in this study, had three degrees of
freedom (DOF). First, as (1), using the angle of the bucket
tip, the sum of the three joint angles is obtained. For a simple
representation of θ1 and θ2, we calculated the position of the
bucket joint using the angle and length between the bucket
joint and tip, as expressed in (2). Subsequently, in accordance
with the law of cosines expressed in (3) and (4), θ1 and θ2

were calculated using the length of the arm and boom and the
position of the bucket joint. Thus, θ3 was calculated using (1)
with θ1 and θ2.

θ123 = θ1 + θ2 + θ3 = π − θbucket (1)

p′
x = px − a3c123, p′

y = py − a3s123 (2)

θ1 = π − arctan
p′
y

p′
x

− arccos
a12 + (p′

x)
2
+ (p′

y)
2
− a22

2a1
√
(p′
x)2 + (p′

y)2

(3)

θ2 = π − arccos
a12 + a22 − (p′

x)
2
− (p′

y)
2

2a1a2
(4)

After applying inverse kinematics, the three joint variables
were transformed into the hydraulic cylinder lengths of the
boom, arm, and bucket. In Figs. 5 and 6, the boom and
arm hydraulic cylinders are located facing the angles of the
revolute joints with the exception of the bucket joint which
was equipped with a 4-bar linkage, as shown in Fig. 7. Lcyl1
and Lcyl2, which represent the cylinder lengths of the arm and
boom, were calculated using the law of cosines and angles
calculated previously for the inverse kinematics, as shown in
(5) and (6).

π − θ1 + θc1 + θc2 = arccos
LO0a

2
+ LO0b

2
− Lcyl12

2LO0aLO0b
(5)

θc4 = π − θc3 − (θc5 − θ2)

= arccos
LO1c

2
+ LO1d

2
− Lcyl22

2LO1cLO1d
(6)

To determine the length of the bucket cylinder Lcyl3 from θ3,
which was also calculated via inverse kinematics, we initially
calculated the sum of θc9 and θc10 , as shown in (7). Thereafter,
the 4-bar linkage near the bucket joint was divided into two
triangular sections: △O2gf and △O2hf . Thus, θc9 and θc10
were determined from the law of sines and cosines in these
two triangles, using (8) and (9). Moreover, by calculating
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FIGURE 4. 3-DOF robotic system for excavator.

FIGURE 5. Configuration of boom joint and link.

these two angles, the length of LO2f was determined using
the length of bucket cylinder (Lcyl3) in this process, as shown
in (10). By implementing the inverse sequence, Lcyl3 was
obtained from θ3.

π − θc8 − θc11 − θ3 = θc10 + θc9 (7)

θc9 = arcsin
Lgf sin θc7

LO2f
(8)

θc10 = arccos
LO2h

2
+ LO2f

2
− Lfh2

2LO2hLO2f
(9)

LO2f =

√
LO2g

2
+ Lgf 2 − 2LO2gLgf cos θc7

θc7 = π − arccos
Lgf 2 + Leg2 − Lcyl32

2Lgf Leg
(10)

As mentioned earlier, the PWM ‘‘ON’’ duration signal was
based upon the difference between the target and current
length of the cylinder. This difference in each cylinder was
used as an input to the PID controllers, which outputted the
PWM signals. To summarize this section, the control system
(including the AI system) is displayed in Fig. 8.

FIGURE 6. Configuration of arm joint and link.

FIGURE 7. Configuration of bucket joint and link.

E. LONG SHORT-TERM MEMORY
RNNs are suitable for processing 1D sequence datasets. They
focus on the relations between elements of the input vector
and their sequence, using directional connections between
RNN cells in the hidden layer. In each step of the RNN,
the hidden state of the current cell receives the current input
and the hidden state of the previous cell and is calculated as
the output. In this process, parameters (including the weights
and biases for calculation of the hidden state) are shared
across the sequence. Thus, the RNN is advantageous for
obtaining features from a sequence with a low computational
complexity.

However, the RNN’s learning result is considerably influ-
enced by the weight between cells, because the gradient of the
loss function is proportional to the iterative multiplication of
weights between two cells, as reported in [18]. For example,
if the weight value is larger than 1, the gradient will be
exponentially large during back-propagation through time
(BPTT). By contrast, if the weight is smaller than 1 and the
length of the input sequence is large, the gradient can vanish
during BPTT.

Owing to the instability of the RNN learning process,
we employed the LSTM (an improved RNN) as the foun-
dation of the AI system for bucket-trajectory planning. The
LSTM’s memory cell replaces the RNN cell and generates
the hidden state ht (called the short-term memory) and cell
stateCt (called the long-termmemory) from the current input,
cell state, and hidden state of the previous step as input,
as depicted in Fig. 9. When updating states, the memory
cell employs sigmoid gates and a tangent layer. The sigmoid
gates include forget, input, and output gates. The forget gate
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FIGURE 8. Block diagram of excavator control system.

FIGURE 9. Structure of long short-term memory (LSTM).

determines values to be forgotten or transmitted from the
previous cell state. The input gate identifies which of the cal-
culation results of the tanh layer are to be selected for the cell
state update; it takes a combination of the current input and
prior hidden state as inputs. The output gate determines which
values will become the current hidden state after calculating
the tanh function using the current (updated) cell state as its
input. During this process, the prior cell state is transmitted
in its original form. This strategy ensures that the LSTM is
not affected by vanishing or explosion of the gradient. The
parameter sharing and stable gradients of the LSTM make it
an appropriate algorithm to generate an output vector from
the 1D long-input dataset.

F. BUCKET-TIP TRAJECTORY-PLANNING AI SYSTEM
The bucket-tip trajectory planning AI system was used as
a framework to generate the base trajectory of the bucket
as well as the angle of the bucket along this generated tra-
jectory. The system was inspired by the instance segmenta-
tion method, which includes algorithms for generating the
region-of-interest (ROI) box near the target object and for
drawing a segmentation mask to separate it from the back-
ground image. Similarly, the first AI module [the region-of-
excavation (ROE) generationAI] generates the ROE,which is
a minimum excavation boundary (from penetration to bucket
curl) that includes all waypoints of the bucket tip, to penetrate
the ground without crashing into the excavator cabin (as
presented in Fig. 10). It also defines the number of waypoints
in the ROE. The second AI (called the waypoint generation
AI) generates the trajectory of the bucket tip in the workspace

FIGURE 10. Concept of ROE generation AI.

FIGURE 11. Concept of waypoint generation AI.

specified by the ROE generation AI, and it calculates the
angle of the bucket in each step (as illustrated in Fig. 11).
These AIs possess the same structure and comprise multiple
layers, including a bidirectional LSTM that considers the
effects of forward and backward sequences of input data and
two fully-connected layers (as depicted in Fig. 12). However,
the inputs and outputs of these AIs differ.

In the data used for the ROE generation AI in Fig. 12,
polynomials of the terrain equation are the most important
parameters for the ROE creation of bucket tip. We initially
obtained point cloud data for the soil surface using a depth
camera before the start of each excavation round. The data
in this measurement included 1,270 × 840 points, owing to
the large dataset size, terrain features could not be feasibly
obtained for generating the bucket-tip trajectory. To address
this problem, we set the point cloud ROI to reduce the size
of the point cloud, according to the width of the bucket and
the starting point of excavation. Subsequently, we projected
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FIGURE 12. Structure of AI systems in bucket-tip trajectory-planning AI system.

FIGURE 13. Transformation from point cloud to polynomials.

points in the defined ROI onto the y–z graph and performed
polynomial regression of the y–z scatter diagram, to ensure
three coefficients of the 2nd order equation, which represents
a slope or a curvature of the terrain, after polynomial regres-
sion, as depicted in Fig. 13. After polynomial regression,
the ROE generation AI used these polynomials (a2, a1, a0)
and the distance from the boom joint to the user-defined
initial excavation point di as inputs. The ROE generation AI
outputted features of the ROE, including the distance between
the edge of the ROE and the edge of the safety zone ds,
height of the ROE’s bottom edge v, vertical length of ROE
h, and number of excavation waypoints N in the ROE. After
operation of ROE generation AI, the width of ROE w was
determined using (11).

w = di − ds − s (11)

where s represents the range of the safety zone from the boom
joint, which is determined from crash safety considerations.

Subsequently, the waypoint generation AI used the geo-
metric information of the ROE and the distance of the initial
excavation point as inputs (including the height of the ROE’s
bottom edge v, distance of the initial excavation point di,
ROE’s vertical length h, and ROE’s width w), and the current
step number divided by the total number of waypoints rN ,

which was updated in every loop of the bucket-tip-trajectory
generation process.Using these values, the waypoint genera-
tion AI outputted the proportion rh between the current height
of the bucket tip and the vertical length of the ROE, as well
as the angle of the bucket in each step. After application
of the waypoint generation AI, the bucket tip position was
calculated as (12) and (13).

px = di − wrN (12)

py = v+ hrh (13)

respectively, where px and py denote the positions of the
bucket tip, as shown in Fig. 4. These values and the angle
of the bucket tip were transmitted to the controller, to operate
the excavator.

G. COLLISION AVOIDANCE ALGORITHM
The bucket-tip trajectory planningAI system primarily gener-
ated the excavation trajectory after training using the human
expert trajectory data. However, when the bucket sweeps
through the ground, any unexpected variances (including
underground rocks or buried pipes) must be considered. This
variability under the soil surface cannot be identified using
the depth camera or trajectory planning AI and leads to
unsatisfactory results, including machine stalling or rollover
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FIGURE 14. Process of collision avoidance algorithm.

of the excavator during excavation (due to overloading of the
bucket).

To address these problems, we applied the collision
avoidance algorithm by monitoring the cylinder pressure in
each loop, as illustrated in Fig. 14. When the bucket tip
approached an underground obstacle, the pressure of the
cylinder increased and exceeded the defined pressure thresh-
old. Thereafter, the collision avoidance algorithm suspended
excavation and retracted the bucket in the opposite direction
along the path obtained by the trajectory planning AI system.
This strategy minimized the likelihood of the bucket getting
trapped. After a few reverse moves, the collision avoidance
algorithm pulled up the bucket and finished the excavation.
Before the bucket was retracted, the collision avoidance algo-
rithm saved the location information of the place at which
the cylinder pressure exceeded the threshold. This saved
value was applied to determine the width of the ROE in the
subsequent excavation, by updating the safety zone range,
to thereby protect the bucket from crashing. If the ROE width
after ROE generation is too large to prevent crashes, the ROE
width is recalculated for the new safety zone to be established
in front of the underground obstacles. If this is not the case,
the ROE configuration of the ROE generation AI module
will be transmitted into the waypoint generation AI without
modification.

H. ACQUISITION OF TRAINING DATA
We obtained the data for the AI systems from experts’
excavations, following the sequence illustrated in Fig. 15.

FIGURE 15. Process of expert data acquisition.

TABLE 3. Hyperparameters of bucket trajectory-planning AI systems.

During expert excavation, four successive excavations were
performed in each cycle, to produce AI approaches that are
robust against changes in the terrain slope. In this study,
we set the distance from the initial excavation point to the
boom joint as 0.95 m and we placed a marking flag there to
allow the experts to identify where to initiate the penetration.
Expert excavation was performed under the same conditions
and heights as those applied to our AI system, to compare
performances. When the bucket approached the marking flag
during expert excavations (from penetration to bucket curl),
the data (including the point cloud, bucket position and angle,
and cylinder pressure) were saved. Among the expert data,
we selected 180 trials as qualified training data; the soil
weight varied from 2.8 kg to 3.15 kg and the lead time
varied from 0.5 sec to 1.1 sec. To supplement these data,
we performed data augmentation by inserting random noise
into the dataset. We limited the magnitude of random noise
to avoid the results from being affected.

To obtain training data for ROE generation, point clouds
were pre-processed via size reduction, projection onto a 2D
graph, and polynomial regression (to extract polynomials),
following the process depicted in Fig. 13. The distance of
initial excavation di was determined from the first position
of the bucket tip in each trial. The ROE configuration was
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FIGURE 16. Process of bucket tip-trajectory planning algorithm.

Algorithm 1 Bucket Tip-Trajectory Planning Algorithm
Input: Pressure, Point cloud
Output: Future position, Future angle

Initialisation:
1: Obtain point cloud in defined ROI
2: Calculate polynomials of terrain equation
3: Generate ROE box by AI, considering safety zone
4: Enlist bucket-tip trajectories by AI
Loop process

5: if State1 then
6: if i == Size of trajectory list then
7: State1 = False
8: end if
9: if (Current pressure > Pressure threshold) then

10: State1, State2 = False, True
11: Save current location as new safety zone
12: end if
13: Transmit ith vector set of list to controller
14: i+ = 1
15: end if
16: if State2 then
17: Transmit ith vector set of list to controller
18: i− = 1
19: if (i == Threshold of retreat) then
20: State2 = False
21: end if
22: end if
23: return Futureposition,FutureAngle

FIGURE 17. Training losses of two AI systems.

FIGURE 18. Tracking performance of each excavation: tracking error.

determined by calculating the smallest region including all
waypoints for each excavation.

The training data for the waypoint generation AI included
the ROE configuration (calculated during the data genera-
tion process for the ROE generation AI) at the distance of
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FIGURE 19. Comparison between AI-based trajectory and bucket trace.

initial excavation. Furthermore, the ratio between the bucket
displacement and ROE width was calculated using (14).

rN =
di − px
w

(14)

where rN denotes the proportion value and corresponds to the
current step divided by the total steps in Fig. 12, w indicates
the ROE width, and px expresses the distance of the bucket
tip in each excavation step. Among the outputs of the training
data set, the ratio between the vertical displacement of the
bucket and the height of the ROE was calculated as (15).

rh =
py − v
h

(15)

where rh corresponds to the current height of the bucket
divided by the vertical length of the ROE (see Fig. 12);
v and h represent the height of the ROE’s bottom edge and the
vertical length of the ROE, and py denotes the current depth
of the bucket tip. Additionally, the scaling factor was applied
to the angle of the bucket tip, to adjust the magnitude to match
other values.

TABLE 4. Confidence interval range of tracking error.

I. HYPERPARAMETERS
The hyperparameter set for the two AI modules included the
cost function, size of the mini-batch, epochs, and node size
of each layer. These hyperparameters are listed in Table 3.

J. ALGORITHM STRUCTURE
The algorithm included three main component algorithms
(as shown in Fig. 16 and Algorithm 1): the ROE generation
AI, waypoint generation AI, and collision avoidance algo-
rithm.
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FIGURE 20. Normal distribution of excavation performance for excavation by experts and AI system.

TABLE 5. Average and standard deviation of excavated soil weight.

Before excavation, the depth camera obtained the point
cloud within the defined ROI; subsequently, polynomial
regression was applied to secure polynomial values to be
inputted to the ROE generation AI. The ROE generation
AI outputted the ROE configuration for the number of
waypoints, and the waypoint generation AI generated the
depth and bucket tip angle as location data for the way-
point. Incorporating the distance calculated in (12), the way-
point’s location was saved in a list variable. When the
waypoint of the final step was saved, the excavation started.

TABLE 6. Average and standard deviation of excavation lead time.

During excavation, the pressure values for the boom, arm, and
bucket cylinder were continuously monitored by the collision
avoidance algorithm, to determine whether they exceeded
the safety criteria. Depending on the results, the excavator
continued the current excavation or cancelled it and adjusted
the ROE width for the next excavation, whilst identifying the
locations of underground obstacles.

III. EXPERIMENTAL RESULTS
The primary purpose of the bucket-tip trajectory planning AI
system is to achieve robust excavation of various terrains.
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FIGURE 21. 99% Confidence interval range: Soil weight.

FIGURE 22. 99% Confidence interval range: Lead time.

To validate our AI system, we performed four successive
excavations. Subsequently, we performed comparison exper-
iments against expert’s trials, to verify that the AI-directed
excavation matched those of experts in terms of efficiency.
During the excavation, we constrained the distance of the
excavation starting point, which is approximately 0.95 m
from the boom joint for safety. We also focused on the
excavation volume and excavation lead time as performance
factors.

A. PERFORMANCE VALIDATION OF TRAINED AI
The performance of the two AIs was validated during train-
ing. The training loss and accuracy were the key performance
parameters used in the validation. The loss and metric used to
optimize and evaluate the AIs were calculated using the mean
squared error (MSE) expressed in (16).

MSE =
1
n

n∑
i=1

(Ŷi − Yi)2, (16)

where Ŷi is the estimated value of the ROE configuration in
the ROE generation AI and the estimated rate for the height
and bucket tip angle in the waypoint generation AI. Yi denotes
the truth value (i.e., the experts’ results) for the input data. The
MSE of each AI is illustrated in Fig. 17, and the performance
stabilized well at ∼30 epochs for both AI algorithms.

B. TRAJECTORY TRACKING PERFORMANCE DURING
SUCCESSIVE EXCAVATIONS
This experiment was performed to verify the quality of
the bucket-tip trajectories generated by the AI system, by

FIGURE 23. Underground obstacle(Pipe), installed in front of excavator.

FIGURE 24. Excavation under activation of collision avoidance algorithm.

comparing the bucket courses and AI-obtained trajectories
(see Figs. 18 and 19). We verified that the bucket-tip trajec-
tory developed by the AI system could be followed by the PID
controller, in spite of undesirable factors (e.g., delays between
the opening of the electronic valve and the transmission of
hydraulic power and during the continuous update of new
target points from the AI system with a 100 ms period).
Moreover, more effort was required to optimize the gains of
PID controllers during excavation. Comparing this against
the tracking performance of an excavator considered in a
prior study [15], whose average position tracking error was
0.078 m, we find that the limit for the tracking error in this
study was less than 0.015m.When the tracking error between
the measured track and AI-based path (shown in Fig. 19)
satisfied this criterion, the bucket-tip trajectory planning AI
system could develop a traceable track for the bucket tip. The
results of the tracking experiment are illustrated in Fig. 18 and
Table 4 for the 99% confidence interval range; they show that
the tracking errors of the 1st , 2nd , 3rd , and 4th excavations
were under 0.015 m on average. Thus, our algorithm can
develop a traceable path.

C. EFFICIENCY OF THE EXPERTS AND THE AI
The excavation performance of the bucket-tip trajectory plan-
ning AI system was compared against those of experts,
to assess efficiency. We used the weight of excavated soil
and the lead time (from the starting location to the location
at which the bucket was lifted) as indicators of performance.
Over 80 excavation trials were performed by experts and
the AI system, and the mean and standard deviation of each
were calculated. In Fig. 20, and Tables. 5 and 6, the AI
system and experts can be seen to excavate more than 2 kg
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FIGURE 25. Concept of trajectory transition.

of soil and to require 8 ∼ 9 sec for excavation. However, the
bucket-tip trajectory planning AI system exhibited a steadier
work efficiency compared to the experts, as validated by the
standard deviations of soil weight and lead time (presented in
the 99% confidence interval ranges in Figs. 21 and 22).

D. APPLICATION OF COLLISION AVOIDANCE ALGORITHM
We also verified the applicability of the collision avoidance
algorithm, via pressure monitoring. We installed a pipe to
serve as an underground obstacle (as shown in Fig. 23) and
performed successive excavations. When the pressure values
of the three cylinders exceeded the safety criteria, the colli-
sion avoidance algorithm halted excavation and retracted the
bucket (similar to the 2nd excavation illustrated in Fig. 24).
The ROE width decreased after we updated the range of the
safety zone to cover the location of the detected underground
pipe. After reduction of the ROE width, the trajectory of the
3rd excavation (Fig. 24) was also shortened, without crashing
into the underground pipe.

IV. CONCLUSION AND FUTURE WORKS
The autonomous excavation operated using our newly pro-
posed bucket-tip trajectory planningAI system and a collision
avoidance algorithm based on pressure monitoring yielded
results comparable to those of experts (in terms of the exca-
vation volume and lead time). Although the geography of the
targeted terrain changed under successive excavations, the
LSTM-based AI system robustly generated a traceable tra-
jectory without knowledge of the soil dynamics. The collision
avoidance algorithm adjusted the ROEwidth for the waypoint
generation AI by monitoring the pressure, thereby preventing
the bucket from crashing into underground obstacles.

However, certain challenges must be overcome when
applying the bucket-tip trajectory-planning AI system in real-
world excavations. The initial penetration into frozen or wet
soil is not smooth. Consequently, pitch occurs in the cabin

during the penetration process. In future works, to ensure
safety, we will consider the excavation of soils of different
hardness, by applying a transition algorithm from soft- to
rigid-soil excavation (as shown in Fig. 25), where the tra-
jectories are developed by the proposed AI system following
additional training under rigid soil. The transition function
will use the excavator’s pose and position data to determine
the transition time during excavation. Furthermore, we will
extend the application of our AI system from one section
to a field including several sections. To this end, we will
investigate excavation task planning according to topograph-
ical data for the specified field, by referencing [19], and we
will integrate this with the AI system proposed in this study.
We hope that this work will contribute to the expansion of the
excavation industry and improve worker safety.
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