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ABSTRACT Themain aim of the paper is to define a newMembership score function on the class of interval-
valued Pythagorean fuzzy numbers, which can overcome the drawbacks of existing familiar rankingmethods.
In this paper, firstly, we show the limitations of various ranking functions in ordering/ comparing any two
arbitrary interval-valued Pythagorean fuzzy numbers in detail. Secondly, we define a new Membership
score function on the class of interval-valued Pythagorean fuzzy numbers and study their properties. Then
we compare our proposed method with many other different existing methods to show the efficacy of the
proposed method. Finally, we show the applicability of the proposed Membership score function in solving
interval-valued Pythagorean fuzzy multi-criteria decision-making problems using a numerical example.

INDEX TERMS Interval-valued Pythagorean fuzzy numbers, improved accuracy score function,
membership score function, MCDM.

I. INTRODUCTION
Zadeh [19] introduced the idea of fuzzy sets as a general-
ization of classical sets. The need for the fuzzy set arose
because the problem of incorrect information could not be
resolved with his crisp sets without loss of information.
The main idea of fuzzy sets is that an object’s degrees of
membership and non-membership are not always 0 or 1,
which can take any value between 0 and 1. Furthermore,
the main characteristic of fuzzy sets is that the sum of
the membership and non-membership values of each object
(element) in the non-empty fuzzy subset must be exactly
one. That is the information about the fuzzy object to be
complete (100 %). In a real problem/scenario, we may
not get 100 % information about the object. This problem
leads researchers to generalize the fuzzy set further. As a
result, Atanassov [2] proposed the intuitionistic fuzzy set
(IFS) as a generalization of the concept of fuzzy sets
(FS). Intuitionistic fuzzy sets, introduced by Atanassov, are
more efficient than fuzzy sets in modelling problems with
incomplete information. This is because, for IFS, the sum
of membership and non-membership for each element in
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the IFS is flexible. The efficiency obtained using IFS was
further improved by using the Pythagorean fuzzy set (PFS)
introduced by Yager [16], [17], [18]. The PFS was obtained
from the IFS by relaxing the IFS condition to ‘‘the sum of
the squares of the membership and non-membership degrees
of the elements included in the PFS is less than or equal
to 1’’. Peng and Yang [14], [15] were strongly motivated
by the idea of Pythagorean fuzzy sets and proposed the
concept of interval-valued Pythagorean fuzzy sets (IVPFS)
as a generalization of Pythagorean fuzzy sets. In real-world
scenarios, many real-world problems contain incomplete
and ambiguous information. This kind of problem is better
modelled using interval-valued Pythagorean fuzzy sets than
Pythagorean fuzzy sets, intuitionistic fuzzy sets, and fuzzy
sets. Also, it may not be possible to give an exact intuitionistic
fuzzy value or interval-valued intuitionistic fuzzy value for
every problem for which the information is incomplete in
the actual problem. For example, if a decision maker (DM)
defines alternative membership (support) value as [0.5, 0.6]
and alternative non-membership value as [0.55, 0.65]. where
the sum of the upper bound of the membership value
(0.6) and upper bound of the non-membership value
(0.65) is greater than 1, and the declared value is neither
IFS nor IVIFS, but 0.62 + 0.652 = 0.7825 ≤ 1.
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Therefore, it can be considered as IVPFS. That is, the
interval-valued Pythagorean fuzzy set is more effective in
handling incomplete and inaccurate information than the
interval-valued intuitionistic fuzzy set and the intuitionistic
fuzzy set. The main advantage of IVPFS is that it gives better
modelling of Decision problems involving imprecise and
incomplete information than interval-valued intuitionistic
fuzzy numbers. Decision problems with interval-valued
Pythagorean fuzzy information require a ranking principle for
making a better model, which makes the ranking issues of
interval-valued Pythagorean fuzzy numbers (IVPFNs) more
important in the literature. After introducing IVPFNs, many
researchers worldwide tried to discriminate any two arbitrary
IVPFNs by defining various ranking functions. However,
unfortunately, every time, the available methods have some
drawbacks, which are rectified by the new method, which
is where the research gap exists [10]. A few researchers
have achieved total ordering on the set of intuitionistic fuzzy
numbers [12], [13]. Peng and Yang [15] introduce the idea
of score and accuracy function on the set of IVPFNs to
compare arbitrary IVPFNs. They have also discussed various
properties of the proposed score functions and studied their
applicability in solving an MCDM problem. Garg [4], [5]
has tried to give a better ranking method for comparing
arbitrary IVPFNs, which can overcome the drawbacks of
previously available methods. Unfortunately, his method also
fails to satisfy some important properties of the ranking
functions. Hence the main aim of this work is to point out the
limitations of a few familiar existing methods and develop a
new Membership score for discriminating arbitrary IVPFNs,
which can result in the drawbacks of familiar existing
methods [5], [15]. Jeevaraj [9] has introduced a new distance-
based similarity measure on the set of IVIFNs by using a
non-hesitance score function defined on the set of IVIFNs
and solved a pattern recognition problem using the proposed
similarity measure. Jeevaraj and Abhijit [8] have proposed
a new score function on the set of IVIFNs to compare
arbitrary IVIFNs. Also, they have shown the applicability
of the proposed score function in solving a multi-criteria
decision-making problem. This method overcomes many
drawbacks of the previous method. However, Jeevraj and
Abhijit [8] ranking principle does not define a total ordering
on the set of IVIFNs. Abhijit et al. [1] have used trapezoidal
intuitionistic fuzzy numbers to model a real-life problem
related to the selection of resilient suppliers in manufacturing
industries. Different ranking methods are available on the
set of intuitionistic fuzzy numbers [8], [9], [11] and their
applications in decision-making. However, all the ranking
methods discussed above do not define a total ordering on
the set IVIFNs and IVPFNs.

We organize the entire paper in the following manner.
After the introduction, we give a few basic Mathematical
definitions in Section II. Section III points out the limitations
of the improved accuracy score function and discusses the
drawbacks of various ranking functions defined on the class
of IVPFNs. Section IV discusses the new membership score

function and its Mathematical properties. In section IV,
We show the efficacy of a membership score function in
ranking arbitrary IVPFNs by numerical examples, which can
be done by showing the places in which few other existing
ranking functions fail. We develop a multi-criteria decision-
making (MCDM) algorithm for solving MCDM problems
with Pythagorean Fuzzy information in Section V, and also
we show the execution part using a numerical example.
Finally, we give conclusions in Section VI.

II. PRELIMINARIES
In this section, we give some basic definitions.
Definition 1 (Atanassov, [2]): Let X be a nonempty set.

An intuitionistic fuzzy set A in X is defined by A =

{⟨x, µA(x), νA(x)⟩ |x ∈ X}, where µA(x) : X → [0, 1] and
νA(x) : X → [0, 1], x ∈ X with the conditions 0 ≤ µA(x) +

νA(x) ≤ 1, ∀x ∈ X . The numbers µA(x), νA(x) ∈ [0, 1]
denote the degree of membership and non-membership of x
to lie in A respectively. For each intuitionistic fuzzy subset A
in X , πA(x) = 1 − µA(x) − νA(x) is called hesitancy degree
of x to lie in A.
Definition 2 (Yager [16]): Let X be a nonempty set.

A Pythagorean fuzzy set P in X is defined by P =

{⟨x, µP(x), νP(x)⟩ |x ∈ X}, where µP(x) : X → [0, 1]
and νP(x) : X → [0, 1], x ∈ X with the con-
ditions 0 ≤ (µP(x))2 + (νP(x))2 ≤ 1, ∀x ∈ X .
The numbers µP(x), νP(x) ∈ [0, 1] denote the degree
of membership and non-membership of x to lie in P
respectively. For each Pythagorean fuzzy set P in X , πP(x) =√
1 − (µP(x))2 + (νP(x))2 is called the indeterminacy degree

of x to lie in A. For convenience Peng and Yang [15] called
(µP(x), νP(x)) a Pythagorean Fuzzy Number, denoted by
p = (µP, νP)
Definition 3 (Atanassov & Gargov, [3]): Let D[0, 1] be

the set of all closed sub-intervals of the interval [0, 1].
An interval-valued intuitionistic fuzzy set on a set X ̸= φ

is an expression given by

A = {⟨x, µA(x), νA(x)⟩ : x ∈ X}

where µA : X → D[0, 1], νA : X → D[0, 1] with the
condition 0 < supxµA(x) + supxνA(x) ≤ 1.
The intervals µA(x) and νA(x) denote, respectively, the

membership and non-membership degree of the element x to
present in the set A. Thus for each x ∈ X , µA(x) and νA(x)
are closed intervals whose lower and upper endpoints are,
respectively, denoted by µAL (x), µAU (x) and νAL (x), νAU (x).
We denote

A =
{〈
x, [µAL (x), µAU (x)], [νAL (x), νAU (x)]

〉
: x ∈ X

}
where 0 < µA(x) + νA(x) ≤ 1
For each element x ∈ X , we can compute the unknown

degree (hesitance degree) of belongingness πA(x) to A as
πA(x) = 1 − µA(x) − νA(x) = [1 − µAU (x) − νAU (x),
1 − µAL (x) − νAL (x)]. We denote the set of all IVIFSs in X
by IVIFS(X ). A = ([a, b], [c, d]) denotes an interval-valued
intuitionistic fuzzy number is denoted by for convenience.
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Definition 4 (Peng and Yang, [15]): Let D[0, 1] be the
set of all closed sub-intervals of the interval [0, 1].
An interval-valued Pythagorean fuzzy set on a set X ̸= φ

is an expression given by

P = {⟨x, µP(x), νP(x)⟩ : x ∈ X}

where µP : X → D[0, 1], νP : X → D[0, 1] with the
condition 0 < supxµP(x) + supxνP(x) ≤ 1.
The intervals µP(x) and νP(x) denote the membership and

non-membership degree of the element x to present in the set
P. Thus for each x ∈ X , µP(x) and νP(x) are closed intervals
whose lower and upper endpoints are, respectively, denoted
by µPL (x), µPU (x) and νPL (x), νPU (x). We denote

P =
{〈
x, [µPL (x), µPU (x)], [νPL (x), νPU (x)]

〉
: x ∈ X

}
where 0 < µP(x) + νP(x) ≤ 1.

For each element x ∈ X , we can compute the unknown
degree (hesitance degree) of belongingness πP(x) to P as

πP(x) = 1 − µP(x) − νP(x)

= [
√
1−(µPU (x))2−(νPU (x))2,

√
1−(µPL (x))2−(νPL (x))2].

We denote the set of all IVPFSs in X by IVPFS(X ).
A = ([a, b], [c, d]) denotes an interval-valued Pythagorean
fuzzy number for convenience.
Definition 5 (Peng and Yang, [15]): Let P1 = ([a1, b1],

[c1, d1]), P2 = ([a2, b2], [c2, d2]) be two IVPFNs. Then their
relations are defined as follows,

1) P1 = P2 iff a1 = a2, b1 = b2, c1 = c2, and d1 = d2
2) P1 ≺ P2 iff a1 ≤ a2, b1 ≤ b2, c1 ≥ c2, and d1 ≥ d2
Definition 6 (Peng and Yang, [15]): For any IVPFN

P = ([a, b], [c, d]), the score function of P is defined as
follows,

s(P) =
a2 + b2 − c2 − d2

2
, s(P) ∈ [−1, 1].

Definition 7 (Peng and Yang, [15]): For any IVPFN
P = ([a, b], [c, d]), the accuracy function of P is defined
as follows,

a(P) =
a2 + b2 + c2 + d2

2
, a(P) ∈ [0, 1].

Definition 8 (Peng and Yang, [15]): For any two IVPFNs
P1 = ([a1, b1], [c1, d1]), P2 = ([a2, b2], [c2, d2]),
1) if s(P1) > s(P2), then P1 ≻ P2
2) if s(P1) = s(P2), then

• if a(P1) > a(P2), then P1 ≻ P2
• if a(P1) = a(P2), then P1 = P2.

Definition 9 (Garg 2016, [4]): Let Ai = ([ai, bi], [ci, di])
be the collection of IVPFN. Then the aggregated value
by using an interval-valued Pythagorean fuzzy weighted

averaging average (IPFWA) operator is defined as

IPFWA(Ai) =

n∏
i=1

wiAi

= ⟨[

√√√√1 −

n∏
i=1

(1 − a2i )
wi ,

√√√√1 −

n∏
i=1

(1 − b2i )
wi ],

[
n∏
i=1

(ci)wi ,
n∏
i=1

(di)wi ]⟩,

where wi is the weight of Ai(i = 1, 2, . . . , n) such that
wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Definition 10 (Garg 2016, [4]): LetAi = ([ai, bi], [ci, di])
be the collection of IVPFN. Then the aggregated value
by using an interval-valued Pythagorean fuzzy weighted
geometric average (IPFWG) operator is defined as,

IPFWG(Ai) =

n∏
i=1

Awii

= ⟨[
n∏
i=1

(ai)wi ,
n∏
i=1

(bi)wi ],

[

√√√√1 −

n∏
i=1

(1 − ci2)wi ,

√√√√1 −

n∏
i=1

(1 − di2)wi ]⟩,

where wi is the weight of Ai(i = 1, 2, . . . , n) such that
wi ∈ [0, 1] and

∑n
i=1 wi = 1.

III. LIMITATIONS OF SCORE AND ACCURACY FUNCTION
In this section, we investigate the limitations of the Score and
Accuracy function ( [15]) defined on the class of IVPFNs.
Definition 11 (Peng and Yang, [15]): For any IVPFN

P = ([a, b], [c, d]), the score function of P is defined as
follows,

s(P) =
a2 + b2 − c2 − d2

2
, s(P) ∈ [−1, 1].

Definition 12 (Peng and Yang, [15]): For any IVPFN
P = ([a, b], [c, d]), the accuracy function of P is defined
as follows,

a(P) =
a2 + b2 + c2 + d2

2
, a(P) ∈ [0, 1].

Definition 13 (Peng and Yang, [15]): For any two IVPFNs
P1 = ([a1, b1], [c1, d1]), P2 = ([a2, b2], [c2, d2]),
1) if s(P1) > s(P2), then P1 ≻ P2
2) if s(P1) = s(P2), then

• if a(P1) > a(P2), then P1 ≻ P2
• if a(P1) = a(P2), then P1 = P2.

The ranking principle given inDefinition 13 has the following
Limitations.
1) If P1 = ([a1, b1], [0, 0]), then both s(P1) = a(P1).

That is, the accuracy function does not play any role
in the ranking. In this case, Garg’s improved accuracy
function [5] can perform well.
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2) If P1 = ([a1, b1], [0, 0]),P2 = ([
√
a21 − ϵ,

√
b21 + ϵ],

[0, 0]), where 0 ≤ ϵ ≤ a21 and b21 + ϵ ≤ 1 are any
two IVPFNs, then s(P1) = s(P2) = a(P1) = a(P2) =
a12+b12

2 which implies P1 = P2. However, it is very
clear that P1 ̸= P2.
Note: For different values of a1, b1 and ϵ, we have
infinite IVPFNs, which are not differentiated using
Peng and Yang’s ranking function. This shows the inef-
ficiency of Peng and Yang’s ranking principle. In these
cases, the improved accuracy function performs better.

3) If P1 = ([
√
a1,

√
b1], [

√
a1 − ϵ1,

√
b1 + ϵ1]),

P2 = ([
√
a1 − ϵ2,

√
b1 + ϵ2], [

√
a1 − ϵ3,

√
b1 + ϵ3])

are any two IVPFN then both s(P1) = s(P2) =

0, a(P1) = a(P2) = a1+b1 ⇒ P1 = P2. But P1 ̸= P2.
Note: For different values of a1, b1, ϵ1, ϵ2 and ϵ3,
we have infinite IVPFNs which are not discriminated
using Peng and Yang’s ranking function. This shows
the inefficiency of Peng and Yang’s ranking principle.
In these cases, the improved accuracy function [5]
performs better.

4) If P1 = ([0, 0], [c1, d1]),P2 = ([0, 0], [
√
c21 − ϵ1,√

d21 + ϵ1]), P3 = ([0, 0], [
√
c21 + ϵ2,

√
d21 − ϵ2])

where 0 ≤ ϵ1 ≤ c21, 0 ≤ ϵ2 ≤ d21 ,

√
d21 + ϵ1 ≤ 1 and√

d21 − ϵ2 ≥

√
c21 + ϵ2 are any three IVPFNs, then

s(P1) = s(P2) = s(P3) =
−c12−d12

2 , a(P1) = a(P2) =

a(P3) =
c12+d12

2 which implies P1 = P2 = P3. But it
is very clear that P1 ̸= P2 ̸= P3. For different values
of c1, d1, ϵ1, ϵ2 and ϵ3, we have infinite IVPFNs that
are not discriminated properly. In these places, both
Peng and Yang’s ranking function and Garg’s improved
accuracy function [5] failed to rank different IVPFNs.

A. LIMITATIONS OF IMPROVED ACCURACY
FUNCTION OF [5])
In this subsection, we discuss the limitations of the improved
accuracy function ( [5]) defined on the class of IVPFNs.

The ranking principle in Definition 13 has the following
Limitations.

1) If P1 = ([a1, a1], [
√
1 − a21,

√
1 − a21]), P2 =

([0, a1], [0, 0]) are any two IVPFNs, then the improved
accuracy function K (P1) = a21 = K (P2) ⇒ P1 = P2.
However, it is evident that P1 ̸= P2. Hence we need a
better method to overcome the limitation of improved
accuracy function [5].

2) If P1 = ([0, 0], [c1, d1]),P2 = ([0, 0], [c2, d2]) are any
two IVPFNs, then K (P1) = K (P2) = 0 which implies
P1 = P2. But it is very clear that P1 ̸= P2.
Note: For different values of a1, b1, we have infi-
nite IVPFNs which are not differentiated using the
improved accuracy function [5]. This shows the
inefficiency of the improved accuracy score [5].

3) If P1 = ([a1, a1], [
√
1 − a21,

√
1 − a21]), P2 =

([0, a1], [0,
√
1 − a21]) are any two IVPFNs, then the

improved accuracy function K (P1) = a21 = K (P2) ⇒

P1 = P2. But P1 ̸= P2. This shows the inefficiency of
the improved accuracy function.

4) Let M1 = ([0, 1], [0, 0]),M2 = ([1, 1], [0, 0]) be
any two IVPFNs, then the improved accuracy function
K (M1) = K (M2) = 1 which implies M1 = M2.
However, M1 ̸= M2. Actually, M1 must be ranked
better (Since there is no non-membership and hesitant
degree). This shows the anti-intuitive case of the
improved accuracy function.

5) Let A = ([0, b], [0, d]),B = ([0, b], [0, 0]) be any two
IVPFNs, then the improved accuracy function K (A) =

K (B) = b2 which implies A = B. However, M1 ̸= M2.
This shows the illogicality of the improved accuracy
function [5].

Hence from the above examples, we conclude that Garg’s
method [5] outperforms Yang and Peng’s ranking principle
but which cannot perform well for all the cases; therefore,
there is a need for introducing a new score function which
can improve the ranking scenario better. By keeping all the
limitations (which we have identified above) in mind, in the
next section, we introduce a newMembership Score function
which overcomes all the identified drawbacks.

IV. MEMBERSHIP SCORE OF AN INTERVAL-VALUED
PYTHAGOREAN FUZZY NUMBERS
In this section, firstly, we introduce a new membership
score function and the ranking principle for comparing
arbitrary IVPFNs and studying some of their properties.
Then we discuss the efficacy of the proposed member-
ship score function in satisfying the limitations identified
in Section III.
Definition 14: Let A = ([a1, b1], [c1, d1]),B =

([a2, b2], [c2, d2]) ∈ IVIPN . A ≺ B if a21 ≤ a22, b
2
1 ≤ b22, c

2
1 ≥

c22 and d
2
1 ≥ d22 .

Definition 15: Let P = ⟨[a1, b1], [c1, d1]⟩ ∈ IVPFN .
Then the membership score function for P is defined as

J (P) =
a21+b

2
1−c

2
1−d

2
1+a21b

2
1+c

2
1d

2
1

3 .
Definition 16: Let A,B ∈ IVPFN .
• If J (A) > J (B) then A > B
• If J (A) < J (B) then A < B
• If J (A) = J (B) then A ≈ B (A and B are considered
equal)

Proofs of the following propositions are immediate from
definition 15. Hence they are omitted.
Proposition 1: For any real number r = ([r, r], [r, r]) ∈

[0, 0.7], J (r) =
2r4
3 .

Proposition 2: If P = (a, 1 − a) = ([a, a], [1 − a, 1 − a])
is any fuzzy number, then J (A) =

2a2−2(1−a)2+a4+(1−a)4
3 .

Proposition 3: 1) LetA = ([1, 1], [0, 0]) be an IVPFN.
Then J (A) = 1.

2) Let A = ([0, 0], [1, 1]) be an IVPFN. Then J (A) = −
1
3 .
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Proposition 4: For any subset,P = ([a, b], [a, b]), ∀a, b ∈

[0, 0.7], the membership score J of A is, J (A) =
2a2b2
3 .

Proposition 5: If M : IVPFN → [0, 1], then
• the inverse image of 0 is ([0, 0], [0, 0]).
• the inverse image of 1 is ([1, 1], [0, 0]).

Note: Here, IVPFN is the set of all interval-valued
Pythagorean Fuzzy numbers. i.e., IVPFN ⊂ [0, 1] × [0, 1]
with the sum of squares of the upper bound of membership
and non-membership interval must be less than or equal to 1.
Theorem 1: Let A,B ∈ IVPFN . If A ≺ B, then

J (A) ≤ J (B).
Proof: Let A,B ∈ IVPFN .

Assume: A ≺ B ⇒ a21 ≤ a22, b
2
1

≤ b22, c
2
1≥c22, d

2
1 ≥d22 (From definition 14) (1)

We claim that J (A) ≤ J (B) ⇒ J (B) − J (A) ≥ 0.

3(J (B) − J (A))

= (a22 + b22 − c22 − d22 + a22b
2
2 + c22d

2
2 )

− (a21 + b21 − c21 − d21 + a21b
2
1 + c21d

2
1 )

= (a22 − a21) + (b22 − b21) + (c21 − c22) + (d21 − d22 )

+ (a22b
2
2 − a21b

2
1) + (c22d

2
2 − c21d

2
1 ). (2)

Add and subtract a21b
2
2 from (2), we get, 3(J (A)− J (B)) =

(a22 − a21) + (b22 − b21) + (c21 − c22) + (d21 − d22 ) + (a22b
2
2 −

a21b
2
2 + a21b

2
2 − a21b

2
1) + (c22d

2
2 − c21d

2
1 ) ⇒ 3(J (A) − J (B)) =

(a22 − a21) + (b22 − b21) + (c21 − c22) + (d21 − d22 ) + b22(a
2
2 −

a21) + a21(b
2
2 − b21) + (c22d

2
2 − c21d

2
1 ) Since from Equation (1),

we know that every term of the above sum is ≥ 0. Hence the
entire sum is greater than or equal to 0.

Hence (J (B) − J (A)) ≥ 0. Hence the proof.
In the following example, we show how the proposed

membership score function is better in comparing arbitrary
IVPFNs. Limitations 1 and 2 discussed in subsection III are
rectified by the proposed membership score function, which
can be seen from example 1.
Example 1: Let us consider A1 = ([0.4, 0.5], [0, 0]),

A2 = ([
√
0.42 − 0.14,

√
0.52 + 0.14], [0, 0]) be any two

IVPFNs. If we apply Peng and Yang’s ranking function
(Definition 13) to the considered IVPFNs A1 and A2, then
we get s(A1) = a(A1) = 0.205 and s(A2) = a(A2) =

0.1392 which implies that A1 and A2 are equal. But A1 ̸= A2.
If we apply our Membership score J to A1 and A2, then we
get J (A1) = 0.15 > J (A2) = 0.1392 which implies that A1 is
grater thanA2 (A1 > A2). This result favours human intuition.
Hence, Limitation 1 and Limitation 2 of subsection III are
overcome by the proposed membership score.
Limitation 3 of subsection III can be improved by the

proposed membership score, which we can see from the
example 2.
Example 2: Let A = ([

√
0.35,

√
0.45], [

√
0.25,

√
0.55]),

B = ([
√
0.2,

√
0.6], [

√
0.4,

√
0.4]) be two IVPFN. By using

Peng and Yang’s ranking function (Definition 13), we get
s(A) = s(B) = 0 and a(A) = a(B) = 0.8, which implies
that A and B are incomparable using Peng and Yang’s ranking

principle. If we apply Membership score J to A and B, then
we get J (A) = 0.0983 > J (B) = 0.0933. This implies that
A is greater than B, favouring human intuition. Hence, the
proposed membership score is better than Peng and Yang’s
ranking functions.

Limitation 4 of subsection III and Limitation 2 of
subsection III-A have been rectified by theMembership score
of an IVPFN, which is shown in Example 3.
Example 3: Let A = ([0, 0], [0.8, 0.9]), B = ([0, 0],

[
√
0.54,

√
0.91]) be two IVPFN. Then by using Peng and

Yang’s ranking function (Definition 13), we get s(A) =

s(B) = −0.725, a(A) = a(B) = 0.725 which implies that
A and B are equal. Also, if we apply the improved accuracy
function, then we get K (A) = K (B) = 0 ⇒ A = B.
Hence both methods failed to rank A and B. However, if we
apply our proposed Membership score to these A and B,
then we get J (A) = −0.3105 and J (B) = −0.3195, which
implies that J (A) > J (B). Therefore, by using Definition 16,
we get A > B, which is logical. Hence we conclude that
limitation 4 is also rectified by our proposed membership
score.

Now, we show the efficacy of our proposed membership
score function in improving the limitations discussed in sub-
section III-A by using Example 4 to Example 8. Limitation
1 to Limitation 5 of subsection III-A has been improved by
applying the proposed Membership score (Definition 15) and
the ranking principle (Definition 16), which is shown below.
Example 4: Let A = ([0.7, 0.7], [

√
0.51,

√
0.51]), B =

([0, 0.7], [0, 0]) be any two IVPFN. If we apply the improved
accuracy function ( [5]), then we get K (A) = K (B) = 0.49,
which implies that A and B are equal. However, A ̸= B.
Suppose, if we apply our proposed Membership score, then
we get J (A) = 0.1534 and J (B) = 0.1633 ⇒ J (B) > J (A).
Thus by using Definition 16, we get B > A.
Example 5: Let A1 = ([0, 0], [0.8, 0.9]), B1 =

([0, 0], [0.1, 0.2]) ∈ IVPFN . If we apply the improved
accuracy function ( [5]) to A1 and B1, then we get K (A1) =

K (B1) = 0 ⇒ A1 = B1 which shows that A1 and B1 are
equal. If we apply Membership score to these A1 and B1,
then we get J (A1) = −0.3105 and J (B1) = −0.0165 ⇒

J (B1) > J (A1). Hence by applying our proposed ranking
principle (Definition 16), we get B1 > A1, which favours
human intuition.
Example 6: Let P1 = ([0.4, 0.4], [

√
0.84,

√
0.84]), P2 =

([0, 0.4], [0,
√
0.84]) be two IVPFN. If we apply the

improved accuracy function ( [5]), then we get K (P1) =

K (P2) = 0.16 ⇒ P1 = P2. However, P1 and P2 are two
different IVPFNs. If we apply our Membership score, then
we get J (P1) = −0.2096 and J (P2) = −0.2267 ⇒ J (P1) >

J (P2). Hence by using our ranking principle (Definition 16),
we get P1 > P2.
Example 7: Let A = ([0, 1], [0, 0]), B = ([1, 1], [0, 0]) ∈

IVPFN . If we apply the improved accuracy function ( [5]),
we get K (A) = K (B) = 1 ⇒ A = B, which is anti-intuitive.
If we apply our Membership score to these A and B, then we
get J (A) = 0.3333 and J (B) = 1 ⇒ J (B) > J (A). Therefore,
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by applying our ranking principle (Definition 16) we get
B > A, which favours human intuition.
Example 8: Let A1 = ([0, 0.5], [0, 0.7]), A2 =

([0, 0.5], [0, 0]) ∈ IVPFN . If we apply improved accuracy
function [5], then we get K (A1) = K (A2) = 0.25 ⇒

A1 = A2 which is wrong. If we apply Membership score to
these A1 and A2, then we get J (A1) = −0.08 and J (A2) =

0.0833 ⇒ J (A1) < J (A2). Hence A1 < A2.

V. MULTI CRITERIA DECISION MAKING METHOD BASED
ON MEMBERSHIP SCORE
In this section, we develop a new algorithm for solving
multi-criteria decision-making (MCDM) problems under
the Pythagorean fuzzy environment that uses the proposed
Membership score for comparing two ormore interval-valued
Pythagorean fuzzy numbers. We assume that there are p
alternatives A = {A1,A2, . . . ,Ap}, which are evaluated with
respect to q criteria C = {C1,C2, . . . ,Cq}. We consider
that the Decision Maker evaluates p alternatives based on
q criteria and give the preferences in terms of interval-
valued Pythagorean fuzzy numbers represented by rij =

([aij, bij], [cij, dij]) with bij+dij ≤ 1, where [aij, bij] represent
the degree of satisfaction of the alternative Ai with respect to
criteriaCj and [cij, dij] represents the degree of dissatisfaction
of the alternative Ai with respect to criteria Cj. The matrix
P = (rij)p×q is called the interval-valued Pythagorean fuzzy
Decision Matrix, and we represent it as follows, as shown in
the equation at the bottom of the page.

Letwj be the weight of j-th criteriaCj given by the Decision
Maker. Where wj ∈ [0, 1] and

∑q
1 wj = 1. The aggregated

performance of each alternative Ai with respect to all the
criteria Cj is calculated using either a weighted averaging
operator or a weighted geometric operator and represented
by Ri = ([ai, bi], [ci, di]), i = 1, 2, . . . , p. Finally, we use
Definition 15 for calculating the membership score of an
aggregated performance J (Ri) of each alternative Ai and rank
the alternatives based on the Membership score J (Ri).
We summarize the decision-making algorithm that uses the

membership score as follows in Algorithm 1.

A. APPLICABILITY OF THE PROPOSED RANKING
FUNCTION IN SOLVING MCDM PROBLEM
In this subsection, we apply Algorithm 1 for solving
multi-criteria decision-making problems with interval-valued
Pythagorean fuzzy information. We show the applicability
of the proposed method in solving the MCDM problem
using a numerical example. Here we consider the investment
problem, which is adapted from Garg [5].

Algorithm 1MCDM Algorithm
1) Formation of Decision Matrix P

Decision Matrix P is formed by asking the decision
maker, the performance of each alternative Ai(i =

1, 2, . . . , p) with respect to criteria Cj(j = 1, 2, . . . , q)
in terms of interval-valued Pythagorean fuzzy numbers
and represent it as P = (rij)p×q, where rij =

([aij, bij], [cij, dij]).
2) Aggregated performance of Alternative Ai

Aggregated performance of Alternative Ai with respect
to Criteria Cj is denoted by Ri = ([ai, bi], [ci, di]), i =

1, 2, . . . , p and obtained by using either weighted
averaging operator or weighted geometric operator.

3) Ranking of Alternative Ai
Here, we calculate the membership score J of aggre-
gated performance of alternative Ri (using Definition
15) and rank the alternatives based on J (Ri) using
Definition 16. The alternative with a high value of J (Ri)
ranks high.

Example 9: Adopted from Garg [5]. Assume the panel
with four possible alternatives A1,A2,A3,A4, namely, car,
food, computer and an arms company in which an investor
wants to invest money. The investment company decides
according to three criteria given by the Risk analysis C1, the
growth analysis C2, and the environmental impact analysis
C3. Assume that the weight of these criteria is set to be
0.35, 0.25, 0.40.

B. SOLVING EXAMPLE V-A.1 USING ALGORITHM 1 WITH
WEIGHTED ARITHMETIC OPERATOR AS THE
AGGREGATION OPERATOR
Here, we apply Algorithm 1 to the numerical example 9 by
using Weighted Arithmetic Operator (Definition 9) as the
aggregation operator.

Step 1: Formation of Decision Matrix P
Decision Matrix P is formed by asking the decision maker,

the performance of each alternative Ai(i = 1, 2, 3, 4) with
respect to criteria Cj(j = 1, 2, 3) in terms of interval-
valued Pythagorean fuzzy numbers and represent the matrix
P = (rij)4×3 as follow (where rij = ([aij, bij], [cij, dij]).), as
shown in the equation at the bottom of the next page.

Step 2: Aggregated performance of Alternative Ai
Aggregated performance of Alternative Ai with respect to

CriteriaCj is denoted byRi = ([ai, bi], [ci, di]), i = 1, 2, 3, 4.
It is obtained by using the weighted averaging operator as

P = (rij)p×q =


([a11, b11], [c11, d11]) ([a12, b12], [c12, d12]) · · · ([a1q, b1q], [c1q, d1q])
([a21, b21], [c21, d21]) ([a22, b22], [c22, d22]) · · · ([a2q, b2q], [c2q, d2q])

...
...

. . .
...

([ap1, bp1], [cp1, dp1]) ([ap2, bp2], [cp2, dp2]) · · · ([apq, bpq], [cpq, dpq])
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TABLE 1. Incorrectness in calculating the values of Aggregated performance Ri .

given in Definition 9, and the values of Ri are given below.

R1 = ([0.3208, 0.4703], [0.3325, 0.4704]),

R2 = ([0.5352, 0.6645], [0.1516, 0.2551]),

R3 = ([0.3646, 0.6000], [0.3000, 0.3565]),

R4 = ([0.5653, 0.6699], [0.1000, 0.2213])

Step 3: Ranking of Alternative Ai
Here, we have calculated the membership score J of

aggregated performance of alternative Ri using Definition 15
and the values are listed below, J (R1) = 0.0132, J (R2) =

0.2559, J (R3) = 0.1270, J (R4) = 0.2844. Then by using
Definition 16, we get A4 > A2 > A3 > A1 and hence A4 is
the best alternative among others. Suppose if we apply Garg’s
algorithm to the same problem; then we get the ranking of
alternatives as A4 > A2 > A3 > A1. For this example, our
proposed algorithm results coincide with Garg’s [5] work.
This happens because IVPFNs are present in the matrix P.
That is, all the IVPFNs present in P can be discriminated
accurately using the improved accuracy function; hence,
we have got accurate results.

C. SOLVING EXAMPLE V-A.1 USING ALGORITHM 1 WITH
WEIGHTED GEOMETRIC OPERATOR AS THE
AGGREGATION OPERATOR
If we apply Algorithm 1 to the numerical example 9 by using
Weighted Geometric Operator as the aggregation operator,
then the steps and results are given below.

Step 1: Formation of Decision Matrix P
Decision Matrix P is formed by asking the decision

maker, the performance of each alternative Ai(i = 1, 2, 3, 4)
with respect to criteria Cj(j = 1, 2, 3) in terms of
interval-valued Pythagorean fuzzy numbers and represent the
matrix P = (rij)4×3 as given in subsection V-B (where
rij = ([aij, bij], [cij, dij]).)

Step 2: Aggregated performance of Alternative Ai

Aggregated performance of Alternative Ai with respect to
CriteriaCj is denoted byRi = ([ai, bi], [ci, di]), i = 1, 2, 3, 4.
It is obtained using the weighted geometric operator as given
in Definition 10, and the values of Ri are given in Table 1.
Step 3: Ranking of Alternative Ai
Here, we have calculated the membership score J of

aggregated performance of alternative Ri using Definition 15
and the values are listed below, J (R1) = −0.0772, J (R2) =

0.2322, J (R3) = 0.0964, J (R4) = 0.1925. Then by using
Definition 16, we get A2 > A4 > A3 > A1 and hence
A2 is the best alternative among others. Suppose we apply
Garg’s algorithm to the same problem; then we get K (R1) =

0.216,K (R2) = 0.6198,K (R3) = 0.4409,K (R4) =

0.5254 and the ranking of alternatives we get it as
A2 > A4 > A3 > A1. In this case, our proposed algorithm
results agree with Garg’s [5] work. This happens because
of IVPFNs present in the matrix P. That is, all the IVPFNs
present inP can be discriminated properly using the improved
accuracy function ( [5]); hence, we have got proper results.

D. SOLVING EXAMPLE V-A.1 USING ALGORITHM 1 WITH
WEIGHTED ARITHMETIC OPERATOR
AS THE AGGREGATION OPERATOR
The main aim of this subsection is to show the inefficiency of
the improved accuracy function using the numerical example.
Here, we apply Algorithm 1 to the numerical example 9
by using Weighted Arithmetic Operator as the aggregation
operator.

Step 1: Formation of Decision Matrix P
Decision Matrix P is formed by asking the decision maker,

the performance of each alternative Ai(i = 1, 2, 3, 4) with
respect to criteria Cj(j = 1, 2, 3) in terms of interval-valued
Pythagorean fuzzy numbers and represent the matrix P =

(rij)4×3 as follow (where rij = ([aij, bij], [cij, dij]).), as shown
in the equation at the bottom of the page.

Step 2: Aggregated performance of Alternative Ai

P = (rij)4×3 =


([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6])
([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.6], [0.1, 0.2])
([0.3, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4]) ([0.3, 0.6], [0.1, 0.3])
([0.7, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.3, 0.4], [0.1, 0.2])



P = (rij)4×3 =


([0, 0], [0.3, 0.4]) ([0, 0], [0.2, 0.4]) ([0, 0], [0.5, 0.6])
([0, 0], [0.2, 0.3]) ([0, 0], [0.2, 0.3]) ([0, 0], [0.1, 0.2])
([0, 0], [0.3, 0.4]) ([0, 0], [0.3, 0.4]) ([0, 0], [0.1, 0.3])
([0, 0], [0.1, 0.2]) ([0, 0], [0.1, 0.3]) ([0, 0], [0.1, 0.2])


37838 VOLUME 11, 2023



M. A. Alrasheedi, S. Jeevaraj: Membership Score of an IVPFNs and Its Applications

Aggregated performance of Alternative Ai with respect to
CriteriaCj is denoted byRi = ([ai, bi], [ci, di]), i = 1, 2, 3, 4.
It is obtained using the weighted averaging operator as given
in Definition 9, and the values of Ri are given below.

R1 = ([0, 0], [0.3325, 0.4704]),

R2 = ([0, 0], [0.1516, 0.2551]),

R3 = ([0, 0], [0.1933, 0.3565]),

R4 = ([0, 0], [0.1000, 0.2213])

Step 3: Ranking of Alternative Ai
Suppose if we apply Garg’s algorithm to the same problem,

then we get K (R1) = 0,K (R2) = 0,K (R3) = 0,K (R4) = 0,
and the ranking of alternatives as A1 = A2 = A3 = A4. All
the alternatives are equally ranked, but it is not true. If we
calculate the membership score J of aggregated performance
of alternative Ri using Definition 15, then we get J (R1) =

−0.1025, J (R2) = −0.0289, J (R3) = −0.0532, J (R4) =

−0.0195. Then by using Definition 16, we get A4 > A2 >

A3 > A1. i.e., Arm company is considered the most
desirable alternative among others. This example shows that
our proposed membership score function outperforms the
improved accuracy function.

VI. CONCLUSION
In this paper, firstly, we have discussed the limitations of the
improved accuracy score function and other similar ranking
functions in ordering/ comparing any two arbitrary interval-
valued Pythagorean fuzzy numbers in detail. Secondly,
we have introduced a new Membership score function on
the class of IVPFNs and studied their properties. Thirdly,
we have compared our proposed method with two other
familiar methods for the superiority of the proposed method.
Finally, a numerical example has been solved to discuss
the application of the proposed membership score function
in solving interval-valued Pythagorean fuzzy multi-criteria
decision-making problems. This work is an initial attempt to
define a total ordering principle on the class of IVPFNs, and
the total ordering will be achieved in the near future as similar
to the total ordering on the set of interval-valued Fermatean
fuzzy numbers introduced by Jeevaraj [7].
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