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ABSTRACT This paper is concerned with the problem of bipartite containment control design for a class of
nonlinear multiagent systems with time-delays in agents’ states under impulsive false-data-injection attacks.
The considered multiagent system is subject to Markovian variation in the signed communication topology.
The graph among the followers is assumed to be structurally balanced for each Markovian switching mode.
Amemory distributed control protocol is proposed to achieve bipartite containment within the convex hull of
leader agents as well as the symmetric convex hull. The bipartite containment control problem is solved by
means of a Markovian switching Lyapunov function and the Razumikhin technique. In addition, the problem
of bipartite leader-following consensus is also addressed for delayed nonlinear multiagent systems with one
leader. Two examples are provided to show the effectiveness of the proposed control scheme, and comparison
results with existing methods are given as well.

INDEX TERMS Bipartite containment control, multiagent systems, Markovian switching topologies,
impulsive attacks, Razumikhin method.

I. INTRODUCTION
In recent years, the problem of distributed control for mul-
tiagent systems with cooperative and competitive interac-
tions has attracted researchers’ attention due to its wide
applications including bipartite formation control [1], bipar-
tite leader-following/containment motion of Lagrangian sys-
tems [2], social networks [3], etc. In particular, for multiagent
systems with one leader and signed topology, the objec-
tive of designing distributed control protocols is to achieve
bipartite tracking control [4]. Also, the cases of more than
one leader often take place in many engineering applications
such as localization and navigation, environment perception
and human-robot interaction [5]. In those cases, containment
control problems can easily occur. For multiagent systems
with multiple leaders and signed topology, the objective of
designing distributed control protocols is to achieve bipartite
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containment control, where the states of all followers in two
competitive nodes’ subsets can eventually converge to the
convex hulls spanned by all the leaders’ states or their sym-
metric states with the same modulus but different in sign [6].

In the context of multiagent systems, there are two cat-
egories of information graph: the fixed topology and the
switching topologies. The latest works of bipartite contain-
ment control mostly focus on for multiagent systems with
fixed topology [6], [7], whereas switching topologies involve
more variable factors, and are more meaningful for appli-
cation of realistic circumstances [8]. Up to now, few works
focus on the problem of bipartite containment control for
multiagent systems with switching topologies, such as [9]
and [10]. In [9], bipartite containment control has been pro-
posed for nonlinear fractional multiagent systems over signed
networks with switching topologies. Based on the frac-
tional Razumikhin technique and common Lyapunov func-
tion method, a delayed control protocol is proposed to ensure
bipartite containment control. In [10], bipartite containment
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control has been proposed for discrete-time second-order lin-
ear multiagent systems over signed networks with switching
topologies, where time-varying communication delays are
taken into account. From the above analysis, it can be found
that the problem of bipartite containment control for multi-
agent systems with Markovian switching topologies remains
to be important and challenging, which is one of the reasons
that motivate the current work.

Time delay is widely utilized in various practical systems,
and it does causemany issues such as system instability, oscil-
lation and performance degradation. Memory controllers can
provide better performance than memoryless controllers for
time-delay systems [11]. Particularly, the problem of bipartite
leader-following synchronization have been investigated for
multiagent systems with node state delays over fixed topol-
ogy [12] and Markovian switching topologies [13]. In addi-
tion, in the above-mentioned works, memoryless control has
been utilized to guarantee bipartite leader-following synchro-
nization. In most cases the bipartite containment control deals
with multiagent systems without node state delays [2], [9],
[14]. If there are node state delays, however, it is essential
to consider the effect of time delay on bipartite containment
control. This motivates us to consider memory control proto-
cols for delayed multiagent systems.

Security control of multiagent systems is of paramount
importance due to cyber-physical attacks such as false-data-
injection attacks and denial-of-service attacks [15]. In the
context of secure bipartite tracking control under fixed topol-
ogy, various dynamics of agents have been discussed, such
as single integrator [16], linear systems [17], nonlinear sys-
tems [18]. In particular, the case of switching topology is
also considered in [18]. By now, few works emphasize the
problem of bipartite containment control for multiagent sys-
tems under cyber-attacks. In [19], bipartite containment con-
trol has been considered for networked agents with general
linear dynamics and antagonistic interactions under denial-
of-service attacks. Therefore, it is still a challenging work to
study the problem of bipartite containment control for nonlin-
ear multiagent systems with node state delays and switching
topologies under cyber-attacks.

Inspired by the above analysis, this paper addresses the
problem of bipartite containment control for nonlinear multi-
agent systems with node time-delays and Markovian switch-
ing topologies under impulsive false-data-injection attacks.
The main contributions of this paper are outlined as follows:

1) Comparing with fixed topology considered in [4], [5],
and [20], Markovian switching topologies are considered,
which can be viewed as an extension of existing results for
multiagent systems over unsigned and switching graphs [21].

2) Motivated by memory feedback that is capable of com-
pensating for the effect of time-varying delays [22], amemory
distributed control protocol is presented to solve the bipartite
containment control problem.

3) Different from the impulsive effects on bipartite syn-
chronization in [23], the impulses arising from false-data-
injection attacks can destroy bipartite containment consensus.

4) By using a Markovian switching Lyapunov function
and the Razumikhin technique, sufficient conditions are pro-
vided for achieving the bipartite containment consensus of
the delayed multiagent systems considered in this paper.
Notations: In represents the n× n identity matrix. λmin(A)

and λmax(A) denote the minimum and the maximum eigen-
value of the corresponding matrix, respectively. ⊗ stands for
the Kronecker product for matrices. sign(·) represents the
signum function. E{x} is the expectation of the stochastic
variable x, and Prob{·} is the occurrence probability of an
event.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a bipartite containment control problem for a mul-
tiagent system with N followers and R leaders over a coope-
tition network. The dynamics of follower i is given by

ẋi(t) = −Cxi(t) + Af (xi(t)) + Bfd (xi(t − d(t)))

+ ui(t), i ∈ N ≜ {1, · · · ,N }, (1)

and the dynamics of leader l is given by

ẋl(t) = −Cxl(t) + Af (xl(t)) + Bfd (xl(t − d(t))),

l ∈ R ≜ {N + 1, · · · ,N + R}, (2)

where xi(t) ∈ Rnx is the state vector for the ith agent
(i ∈ N ∪ R ), and ui(t) ∈ Rnx is the control input for the
ith agent (i ∈ N ). The matrices A ∈ Rnx×nx , B ∈ Rnx×nx and
C ∈ Rnx×nx are known constant matrices. For each i ∈ N ,
f (xi(t)) ∈ Rnx and fd (xi(t−d(t))) ∈ Rnx are nonlinear vector-
valued functions without and with time delay, respectively.
d(t) denotes the time delay satisfying that 0 ≤ d(t) ≤ d̄,
where d̄ is a known constant.

Let θ (t), t ≥ 0 represent the Markovian switching process
which takes values in a finite set S ≜ {1, · · · , S}. The
transition rates of the process θ(t) are defined as

Prob{θ(t+1)=q|θ (t)=p}=

{
µpq1+ o(1), p ̸= q,
1 + µpq1+ o(1), p = q,

(3)

where 1 > 0, lim
1→0

o(1)
1

= 0. µpq ≥ 0(p, q ∈ S,

p ̸= q) denotes the transition rate from p to q, and

µpp = −

S∑
q=1,q̸=p

µpq. The transition rate matrix is given by

ϒ = [µpq]S×S .

For multiagent systems with R leaders and N followers
over a Markovian switching coopetition network, a signed
graph Gθ (t) = {V, Eθ(t),Aθ (t)} is defined to a coopetition
relationship among agents, where V = N ∪ R, Eθ (t) denotes
a set of edges, Aθ (t) = [aθ(t)ij ] ∈ R(N+R)×(N+R) represents a
weighted adjacency matrix. If agent i can receive the infor-
mation from agent j, then aθ (t)ij ̸= 0. The Laplacian matrix
of Gθ (t) is defined as Lθ (t) = Dθ (t) − Aθ (t) with Dθ (t) =

diag{dθ (t)1 , · · · , dθ (t)N+R} and d
θ (t)
i =

N+R∑
j=1

|aθ (t)ij |. It is assumed
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that each leader has no neighbors, then the matrix Lθ(t) is
rewritten as

Lθ(t) =

[
Lθ (t)1 Lθ (t)2
0 0

]
where Lθ (t)1 ∈ RN×N and Lθ (t)2 ∈ RN×R.
The communication between N followers is modeled as

the signed subgraph Ĝθ(t) = {N , Êθ (t), Âθ (t)}, where Êθ (t) ⫅
N × N , Âθ(t) = [aθ (t)ij ] ∈ RN×N . In particular, if aθ(t)ij >

0, then the relationship between follower i and follower j is
cooperative, else if aθ (t)ij < 0, then the relationship between
follower i and follower j is competitive.
For each p ∈ S, the signed subgraph Ĝp is said to be

structurally balanced if the follower set N can be divided
into two subsets N 1 and N 2, where N 1 ∩ N 2 = ∅ and
N 1 ∪ N 2 = N , such that apij ≥ 0 for all i, j ∈ N 1 or i, j ∈ N 2,
and apij ≤ 0 for all i ∈ N a and j ∈ N b, a ̸= b, a, b ∈ {1, 2}.
Define 2 = diag{ν1, · · · , νN } with νi = 1 if i ∈ N 1 and
νi = −1 if i ∈ N 2.
Assumption 1: The nonlinear function f (·) and fd (·) are

odd functions and for all x, yl ∈ Rnx , l = N +1, · · · ,N +R,∥∥∥∥∥∥f (x) −

N+R∑
l=N+1

ρl f (yl)

∥∥∥∥∥∥ ≤ µ1

∥∥∥∥∥∥x −

N+R∑
l=N+1

yl

∥∥∥∥∥∥ , (4)

and ∥∥∥∥∥∥fd (x) −

N+R∑
l=N+1

ρl fd (yl)

∥∥∥∥∥∥ ≤ µ2

∥∥∥∥∥∥x −

N+R∑
l=N+1

yl

∥∥∥∥∥∥ , (5)

where µ1 > 0 and µ2 > 0 are known constants,

ρl ≥ 0,
N+R∑
l=N+1

ρl = 1.

Remark 1: Bipartite consensus in a structurally balanced
signed graph means that agents are divided into two groups
where agents in two groups reach consensus on state value
but opposite in sign. Nonlinear functions are commonly
required to be odd functions to achieve bipartite consensus
for nonlinear multiagent systems over a signed network, see,
e.g. [4], [9], and [12]. In the presence of multiple leaders
in multiagent systems, the problem of containment control
arises. In this case, the conditions (4) and (5) in Assumption 1
are often required for nonlinear trems in nonlinear multiagent
systems [9].
Assumption 2: For each p ∈ S, the signed subgraph Ĝp is

structurally balanced, and for all p ∈ S, there exists the same
bipartition {N 1,N 2} of the follower setN , and there is at least
one leader with a directed path to each follower in the signed
graph Gp (p ∈ S).
Remark 2: Assumption 2 implies that for each switching

mode p, the signed graph Ĝp is structurally balanced, and the
state information of at least one leader can be transmitted
to and available over time to the unpinned agents as well.
In addition, vertices of all possible topology graphs can be
partitioned into subsets N 1 and N 2. Assumption 2 has also

been made in multiagent networks with antagonistic interac-
tions and switching topologies [9].
Lemma 1: [7] By Assumption 2, each eigenvalue exists

positive real part for matrix 2Lp12, ∀p ∈ S, where 2 =

diag{ν1, · · · , νN }. Moreover, for each p ∈ S, each element
of −2(Lp1)

−12Lp2 is nonnegative, and each row sum is 1.
Suppose that the containment controller ui(t) is subjected

to impulsive false data injection (FDI) attacks. Then themem-
ory and Markovian switching containment controller ui(t)
under FDI attacks is designed as

ui(t) = −ζ1(θ (t))ψi(t) − ζ2(θ (t))ψi(t − d̄)

+

∞∑
k=1

qi(t)δ(t − tk ) (6)

where

ψi(t) =

∑
j∈Ni

∣∣∣aθ (t)ij

∣∣∣ (xi(t) − sign
(
aθ (t)ij

)
xj(t)

)

+

N+R∑
l=N+1

aθ (t)il (xi(t) − νixl(t)) , (7)

where Ni = {j ∈ N | aθ (t)ij ̸= 0}. ζ1(θ (t)) > 0 and
ζ2(θ (t)) > 0 are the controller gains. qi(t) : Rnx → R is
an attack function, δ(·) is the Dirac impulse, and {tk}∞0 is
the impulsive time sequence to describe when an FDI attack
occurs, where 0 = t0 < t1 < · · · < tk < · · · , lim

k→∞
tk = ∞.

It is assumed that infk{tk − tk−1} = h1, where h1 > 0 is a
known constant.

Therefore, the dynamics of follower i can be written as
ẋi(t) = −Cxi(t) + Af (xi(t)) + Bfd (xi(t − d(t)))

− ζ1(θ (t))ψi(t) − ζ2(θ (t))ψi(t − d̄), t ̸= tk
xi(t

+

k ) = xi(t
−

k ) + qi(t
−

k )

(8)

where ψi(t) is defined by (7), xi(t
+

k ) = lim
δ→0+

xi(tk + δ),

xi(tk ) = xi(t
−

k ) = lim
δ→0−

xi(tk + δ).

It is assumed that the attack signal qi(·) is bounded, i ∈ N .
That is, there exists a positive constant η such that ∥q(·)∥2 ≤

η, where q(·) = [qT1 (·) · · · q
T
N (·)]

T .
Remark 3: In the literature, the interaction topologies

among agents over signed networks can be roughly classified
into the following two categories: the time-invariant topology
and the time-varying ones that include Markovian switching
topologies. In addition, different from the assumption on
impulsive false-data-injection attacks in [24], here impulsive
false-data-injection attacks are assumed to be bounded and
have negative effects on bipartite containment consensus.
Remark 4: In this paper, it is assumed that leaders have no

neighbors. In order to reach bipartite containment consensus,
it is usually required that there is at least one leader that
has a directed path to each follower in the signed commu-
nication graph [14]. In this case, leaders control followers
in the architecture of decentralized control (see, e.g. [1],
[9], [14]). When each leader can be autonomous or evolving
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dynamically via communicating with other leaders in its
neighbourhood, leaders control followers in the architecture
of distributed control (see, e.g. [20], [25] ). It would be
interesting to design a bipartite containment controller for
nonlinear multiagent systems with multiple leaders where
each leader has its neighboring leaders, which merits future
research.

Let xF (t) = [xT1 (t), · · · , x
T
N (t)]

T , xL(t) = [xTN+1(t), · · · ,
xTN+R(t)]

T , 9(t) = [ψT
1 (t), · · · , ψ

T
N (t)]

T , then

9(t) =

(
Lθ (t)1 ⊗ Inx

)
xF (t) +

(
2Lθ (t)2 ⊗ Inx

)
xL(t).

Furthermore, let e(t) =

(
2

(
Lθ (t)1

)−1
⊗ Inx

)
9(t),which

can be rewritten as

e(t) =
(
2⊗ Inx

)
xF (t)

+

(
2

(
Lθ (t)1

)−1
2Lθ(t)2 ⊗ Inx

)
xL(t).

Definition 1: Bipartite containment consensus with an
error bound is said to be achieved if the bipartite con-
tainment error e(t) converges into the set H in the mean-
square sense for any initial conditions, where H ≜ {e(t) ∈

RnxN | E{∥e(t)∥2} ≤ c} and c is a positive constant.
Definition 2: Let m(t) : R → R be a continuous function.

Define the upper Dini-derivative of m(t) by D+m(t), defined
as

D+m(t) = lim sup
h→0+

m(t + h) − m(t)
h

.

Denote
F̄(xF (t)) = [f T (x1(t)), · · · , f T (xN (t))]T ,
F̃(xL(t)) = [f T (xN+1(t)), · · · , f T (xN+R(t))]T ,
F̄d (xF (t − d(t))) = [f Td (x1(t − d(t))), · · · , f Td (xN (t −

d(t)))]T ,
F̃d (xL(t−d(t))) = [f Td (xN+1(t−d(t))), · · · , f Td (xN+R(t−

d(t)))]T ,
M (xF (t), xL(t), θ(t)) =

(
2⊗ Inx

)
F̄(xF (t))

+

(
2

(
Lθ (t)1

)−1
2Lθ (t)2 ⊗ Inx

)
F̃(xL(t)),

Md (xF (t − d(t)), xL(t − d(t)), θ(t))
=

(
2⊗ Inx

)
F̄d (xF (t − d(t)))

+

(
2

(
Lθ (t)1

)−1
2Lθ (t)2 ⊗ Inx

)
F̃d (xL(t − d(t))).

Then the dynamics of the bipartite containment error e(t)
is given by

ė(t) = −(IN ⊗ C)e(t)

+ (IN ⊗ A)M (xF (t), xL(t), θ(t))

+ (IN ⊗ B)Md (xF (t − d(t)), xL(t − d(t)), θ(t))

− ζ1(θ (t))
(
Lθ (t)1 ⊗ Inx

)
e(t)

− ζ2(θ (t))
(
Lθ (t)1 ⊗ Inx

)
e(t − d̄), t ̸= tk ,

e(t+k ) = e(t−k ) +
(
2⊗ Inx

)
q(t−k ). (9)

Suppose that the initial state of the error system (9) is given
by e(t) = ϕ(t), t ∈ [−d̄, 0], where ϕ : [−d̄, 0] → RnxN is a
continuous function.
Lemma 2: Let R1,R2,R3 be any real matrices of appro-

priate dimensions with R3 > 0. Then, for any vectors x and y
with appropriate dimensions, the following inequality holds:

2xTRT1 R2y ≤ xTRT1 R3R1x + yTRT2 R
−1
3 R2y.

III. MAIN RESULTS
In this section, by using a Markovian switching Lyapunov
function and the Razumikhin technique in [26], Razumikhin-
type stability theorem is established for the bipartite contain-
ment error system (9).
Theorem 1: Suppose that for given positive scalars

a1, a2, a3, σ, there exist matrices Pp > 0, p ∈ S, positive
scalars ϵ1, ϵ2, such that

4p 0 PpA PpB
0 −a2Pp + ϵ2µ

2
2Inx 0 0

ATPp 0 −ϵ1Inx 0
BTPp 0 0 −ϵ2Inx

 < 0,

p ∈ S, (10)

−a3(IN ⊗ Pp) + ζ2(p)((Lp1)
TLp1 ⊗ Pp) < 0, p ∈ S, (11)

and

a1 −
ln(1 + σ )

h1
> 0, (12)

where 4p = −PpC − CTPp +

S∑
q=1

µpqPq + ζ2(p)Pp +

(−2γ + a1 + (a2 + a3)(1 + σ ))Pp + ϵ1µ
2
1Inx , 0 < γ <

min
p∈S,i∈N

(
ζ1(p)Re(r

p
i )

)
, where rpi , i ∈ N are the eigenvalues of

matrix Lp1, and Re(r
p
i ) denotes the real part of the eigenvalue

rpi . Then the error system (9) converges into the bounded set
H ≜ {e(t) ∈ RnxN | E{∥e(t)∥2} ≤ c} in the mean-square

sense, where c =

(1+σ−1) max
p∈S

(λmax(Pp))η

min
p∈S

(λmin(Pp))(ea1h1−(1+σ ))
.

Proof. Construct the Markovian switching Lyapunov func-
tion as follows:

V (e(t), θ(t)) = eT (t)(IN ⊗ Pθ (t))e(t) (13)

where Pp,∀θ (t) = p ∈ S, is a positive definite matrix of
appropriate dimension to be determined.

Define the weak infinitesimal operator A of the random
process {(e(t), θ(t)), t ≥ 0} as follows

AV (e(t), θ(t))

= lim
δ→0+

1
δ
[E{V (e(t+δ), θ(t+δ))|e(t), θ(t)}−V (e(t), θ(t))].

For each θ (t) = p ∈ S and t ∈ (tk , tk+1], AV (e(t), p) can
be computed as follows [27]

AV (e(t), p) = 2eT (t)(IN ⊗ Pp)ė(t)

+

S∑
q=1

µpqeT (t)(IN ⊗ Pq)e(t), (14)
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and the weak infinitesimal operator along the system (9) leads
to

AV (e(t), p)

= eT (t)

IN ⊗

−PpC − CTPp +

S∑
q=1

µpqPq

 e(t)

+ 2eT (t)(IN ⊗ PpA)M (xF (t), xL(t), p)

+ 2eT (t)(IN ⊗ PpB)M (xF (t − d(t)), xL(t − d(t)), p)

− 2ζ1(p)eT (t)
(
Lp1 ⊗ Pp

)
e(t)

− 2ζ2(p)eT (t)
(
Lp1 ⊗ Pp

)
e(t − d̄). (15)

By Lemma 2, it follows that

− 2ζ2(p)eT (t)
(
Lp1 ⊗ Pp

)
e(t − d̄)

≤ ζ2(p))eT (t)(IN ⊗ Pp)e(t)

+ ζ2(p)eT (t − d̄)((Lp1)
TLp1 ⊗ Pp)e(t − d̄). (16)

By Assumption 1, it follows that ∀ϵ1 > 0,

ϵ1[µ2
1e
T (t)e(t)−MT (xF (t), xL(t), p)M (xF (t), xL(t), p)]≥0,

(17)

and ∀ϵ2 > 0,

ϵ2[µ2
2e
T (t − d(t))e(t − d(t))

−MT
d (xF (t − d(t)), xL(t − d(t)), p)

Md (xF (t − d(t)), xL(t − d(t)), p)] ≥ 0. (18)

By (10) and (12), there exists a sufficiently small positive
scalar ε such that r ≜ 1 + σ + ε < ea1h1 and

�p ≜


0p 0 PpA PpB
0 −a2Pp + ϵ2µ

2
2Inx 0 0

ATPp 0 −ϵ1Inx 0
BTPp 0 0 −ϵ2Inx


< 0, p ∈ S, (19)

where 0p = −PpC−CTPp+
S∑
q=1

µpqPq+ζ2(p)Pp+ (−2γ +

a1 + (a2 + a3)(1 + σ + ε))Pp + ϵ1µ
2
1Inx .

Suppose that

rV (e(t), p) − V (e(t − d(t)), p) ≥ 0,

rV (e(t), p) − V (e(t − d̄), p) ≥ 0. (20)

Then, by (15), (16), (17) and (18), it follows that for any a1 >
0, a2 > 0, a3 > 0, ϵ1 > 0, ϵ2 > 0,

AV (e(t), p) + a1V (e(t), p)

≤ AV (e(t), p) + a1V (e(t), p)

+ a2(rV (e(t), p) − V (e(t − d(t)), p))

+ a3(rV (e(t), p) − V (e(t − d̄), p))

+ ϵ1[µ2
1e
T (t)e(t)

−MT (xF (t), xL(t), p)M (xF (t), xL(t), p)]

+ ϵ2[µ2
2e
T (t − d(t))e(t − d(t))

−MT
d (xF (t − d(t)), xL(t − d(t)), p)

Md (xF (t − d(t)), xL(t − d(t)), p)]

= ξT (t)(IN ⊗�p)ξ (t)

+ eT (t)
(
2γ (IN ⊗ Pp) − ζ1(p)(Lp1 ⊗ Pp)

− ζ1(p)((Lp1)
T

⊗ Pp)
)
e(t) (21)

where ξ (t) = [eT (t) eT (t − d(t)) MT (xF (t), xL(t), p)
MT
d (xF (t − d(t)), xL(t − d(t)), p)]T .
Since 0 < γ < min

p∈S,i∈N

(
ζ1(p)Re(r

p
i )

)
, where rpi , i ∈ N

are the eigenvalues of matrix Lp1, e
T (t)(2γ (IN ⊗ Pp) − ζ1(p)

(Lp1 ⊗ Pp) − ζ1(p)((Lp1)
T

⊗ Pp))e(t) ≤ 0.
Therefore, for t ∈ (tk , tk+1],

AV (e(t), p) + a1V (e(t), p) ≤ ξT (t)(IN ⊗�p)ξ (t), (22)

where �p is defined in (19).
By (19) and (22), it follows that for t ∈ (tk , tk+1],

AV (e(t), p) ≤ −a1V (e(t), p). (23)

It follows from (23) that for t ∈ (tk , tk+1],

E{AV (e(t), θ(t))} ≤ −a1E{V (e(t), θ(t))}, (24)

Moreover, ∀σ > 0,

V (e(t+k ), θ(t
+

k ))

= V (e(t+k ), θ(t
−

k ))

= eT (t−k )(IN ⊗ Pθ (t−k ))e(t
−

k )

+ 2eT (t−k )(IN ⊗ Pθ(t−k ))
(
2⊗ Inx

)
q(t−k )

+ qT (t−k )(IN ⊗ Pθ (t−k ))q(t
−

k )

≤ (1 + σ )eT (t−k )(IN ⊗ Pθ (t−k ))e(t
−

k )

+ (1 + σ−1)qT (t−k )(IN ⊗ Pθ (t−k ))q(t
−

k )

≤ (1 + σ )V (e(t−k ), θ(t
−

k ))

+ (1 + σ−1) max
p∈S

(λmax(Pp))∥q(t
−

k )∥
2

≤ (1 + σ )V (e(t−k ), θ(t
−

k )) + b (25)

where b = (1 + σ−1) max
p∈S

(λmax(Pp))η.

In the sequel, it will be proved by the method of mathemat-
ical induction that for t ∈ (tk , tk+1],

E{V (e(t), θ(t))} ≤ (1 + σ )ke−a1tE{V (e(0), θ(0))}

+ (1 + σ )k−1be−a1(t−t1)

+ (1 + σ )k−2be−a1(t−t2)

+ · · · + be−a1(t−tk ) ≜ ϕk (t). (26)

Firstly, when t ∈ (t0, t1], the following inequality (27) will
be shown.

E{V (e(t), θ(t))} ≤ e−a1tE{V (e(0), θ(0))} = ϕ0(t). (27)

If the inequality (27) does not hold, then there exists some
t ∈ (t0, t1] such that

E{V (e(t), θ(t))} > ϕ0(t). (28)
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Let t̂0 = inf{t ∈ (t0, t1]|E{V (e(t), θ(t))} > ϕ0(t)}, then

E{V (e(t̂0), θ(t̂0))} > ϕ0(t̂0). (29)

and

E{V (e(t), θ(t))} ≤ ϕ0(t),∀t ∈ (t0, t̂0]. (30)

Let ť0 = sup{t ∈ (t0, t̂0]|E{V (e(t), θ(t))} ≤ ϕ0(t)}, then

E{V (e(t), θ(t))} > ϕ0(t),∀t ∈ (ť0, t̂0]. (31)

By Definition 2, one has

D+E{V (e(t), θ(t))} = E{AV (e(t), θ(t))}. (32)

By using Dynkin’s formula, it follows that

E{V (e(t̂0), θ(t̂0))} ≤ e−a1(t̂0−ť0)E{V (e(ť0), θ(ť0))}. (33)

Note that E{V (e(ť0), θ(ť0))} ≤ ϕ0(ť0), it follows that

E{V (e(t̂0), θ(t̂0))}≤e−a1 t̂0E{V (e(0), θ(0))}=ϕ0(t̂0)), (34)

which contradicts with (29).
Secondly, suppose that (26) holds for t ∈ (tk , tk+1], k =

1, 2, · · · , l − 1(l > 1), then

E{V (e(t), θ(t))} ≤ ϕl−1(t),∀t ∈ (tl−1, tl] (35)

and

E{V (e(t−l ), θ(t
−

l ))} ≤ ϕl−1(t
−

l ). (36)

It will be proved that (26) holds for k = l, i.e.,

E{V (e(t), θ(t))} ≤ ϕl(t),∀t ∈ (tl, tl+1]. (37)

If the inequality (37) does not hold, then there exists some
t ∈ (tl, tl+1] such that

E{V (e(t), θ(t))} > ϕl(t). (38)

Let t̂l = inf{t ∈ (tl, tl+1]|E{V (e(t), θ(t))} > ϕl(t)}, then

E{V (e(t̂l), θ(t̂l))} > ϕl(t̂l). (39)

and

E{V (e(t), θ(t))} ≤ ϕl(t), ∀t ∈ (tl, t̂l]. (40)

Let ťl = sup{t ∈ (tl, t̂l]|E{V (e(t), θ(t))} ≤ ϕl(t)}, then

E{V (e(t), θ(t))} > ϕl(t), ∀t ∈ (ťl, t̂l]. (41)

By using Dynkin’s formula, it follows that

E{V (e(t̂l), θ(t̂l))} ≤ e−a1(t̂l−ťl )E{V (e(ťl), θ(ťl))}

≤ e−a1(t̂l−tl )E{V (e(t+l ), θ(t
+

l ))}. (42)

In addtion,

E{V (e(t+l ), θ(t
+

l ))} ≤ (1+σ )E{V (e(t−l ), θ(t
−

l ))}+b (43)

From (42), (43) and (36), it follows that

E{V (e(t̂l), θ(t̂l))} ≤ ϕl(t̂l), (44)

which contradicts with (39).

By mathematical induction it can be concluded that (26)
holds.

By (26) and the assumption that infk{tk − tk−1} = h1,
it follows that

E{V (e(t), θ(t))} ≤ (1 + σ )ke−a1tE{V (e(0), θ(0))}

+
be−a1h1

(
1 − (1 + σ )ke−a1h1k

)
1 − (1 + σ )e−a1h1

. (45)

Denote α = a1 −
ln(1+σ )
h1

and note that t−t0h1
− 1 ≥ k, then

E{V (e(t), θ(t))} ≤
1

1 + σ
e−αtE{V (e(0), θ(0))}

−
bea1h1e−αt

(1 + σ )(1 − (1 + σ )e−a1h1 )

+
b

ea1h1 − (1 + σ )
. (46)

Moreover,

E{V (e(t), θ(t))} ≥ min
p∈S

λmin(Pp)E{∥e(t)∥2}. (47)

(46) and (47) imply that

lim
t→∞

E{∥e(t)∥2} ≤ c (48)

where c =

(1+σ−1) max
p∈S

(λmax(Pp))η

min
p∈S

(λmin(Pp))(ea1h1−(1+σ ))
.

This completes the proof.
Remak 5: Based on a Razumikhin-type technique,

Theorem 1 is presented on the stability of the bipartite con-
tainment error system, which is modeled as a Markovian
switching system with time delay and impulsive effects.
Recently, bipartite quasi-synchronization was investigated
in [28] for delayed neural networks under time-invariant
signed graphs and single leader via a distributed impulsive
control strategy. All the results and analysis methods in [28]
cannot be directly extended to the case of delayed neural net-
works under time-varying signed graphs andmultiple leaders.
Hence, results presented in this paper are new and more
general than those in [28].
Remak 6: From the perspective of practical applications,

Lyapunov functions contain more information about the con-
sidered multiagent network, which could reduce the conser-
vatism of the conditions on the stability and performane of
the bipartite containment error system. In light of the con-
sideration of less conservatism, the impulse-time-dependent
Lyapunov function method has been proposed for time-delay
systems with impulsive effects [29], but the computational
complexity could be raised.

If θ (t) ≡ 1 in (6)-(7), that is, the signed graph is fixed,
then the bipartite containment error system becomes

ė(t) = −(IN ⊗ C)e(t)

+ (IN ⊗ A)M (xF (t), xL(t), θ(t))

+ (IN ⊗ B)Md (xF (t − d(t)), xL(t − d(t)), θ(t))

− ζ1
(
L1 ⊗ Inx

)
e(t)
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− ζ2
(
L1 ⊗ Inx

)
e(t − d̄), t ̸= tk ,

e(t+k ) = e(t−k ) +
(
2⊗ Inx

)
q(t−k ), (49)

and the following Corollary 1 holds.
Corollary 1: Suppose that for given positive scalars

a1, a2, a3, σ, there exist matrices P > 0, positive scalars
ϵ1, ϵ2, such that

4 0 PA PB
0 −a2P+ ϵ2µ

2
2Inx 0 0

ATP 0 −ϵ1Inx 0
BTP 0 0 −ϵ2Inx

 < 0, (50)

−a3(IN ⊗ P) + ζ2(LT1L1 ⊗ P) < 0, (51)

and

a1 −
ln(1 + σ )

h1
> 0, (52)

where4 = −PC−CTP+ ζ2P+ (−2γ +a1 + (a2 +a3)(1+

σ ))P + ϵ1µ
2
1Inx , 0 < γ < min

i∈N
(ζ1Re(ri)), where ri, i ∈ N

are the eigenvalues of matrix L1, and Re(ri) denotes the real
part of the eigenvalue ri. Then the bipartite containment error
system (49) converges into the bounded set H ≜ {e(t) ∈

RnxN | E{∥e(t)∥2} ≤ c} in the mean-square sense, where
c =

(1+σ−1)λmax(P)η
λmin(P)(ea1h1−(1+σ ))

.

If there is just one leader (R = 1), then the bipartite
consensus problem for delayed multiagent systems (1)-(2) is
a bipartite tracking control problem.Assumption 1 is replaced
by the following Assumption 3.
Assumption 3: The nonlinear function f (·) and fd (·) are

odd functions and for all x, y ∈ Rnx ,

∥f (x) − f (y)∥ ≤ µ1 ∥x−y∥ , (53)

and

∥fd (x) − fd (y)∥ ≤ µ2 ∥x−y∥ , (54)

where µ1 > 0 and µ2 > 0 are known constants.
Let L̂θ (t) = [l̂θ (t)ij ]N×N be the Laplacian matrix of the

signed subgraph Ĝθ (t),
Aθ(t)N+1 = diag{aθ(t)1(N+1), · · · , a

θ(t)
N (N+1)},

J θ(t) ≜ L̂θ (t) +Aθ(t)N+1,

ϕi(t) = f (xi(t)) − νif (xN+1(t)),
8(t) = [ϕT1 (t), · · · , ϕ

T
N (t)]

T ,

ϕdi(t − d(t)) = fd (xi(t − d(t))) − νifd (xN+1(t − d(t))),
8d (t − d(t)) = [ϕTd1(t − d(t)), · · · , ϕTdN (t − d(t))]T ,
ei(t) = xi(t) − νixN+1(t), e(t) = [eT1 (t), · · · , e

T
N (t)]

T .

Then, the bipartite tracking error system is given by

ė(t) = −(IN ⊗ C)e(t) + (IN ⊗ A)8(t)

+ (IN ⊗ B)8d (t − d(t))

− ζ1(θ (t))
(
J θ(t)

⊗ Inx
)
e(t)

− ζ2(θ (t))
(
J θ(t)

⊗ Inx
)
e(t − d̄), t ̸= tk ,

e(t+k ) = e(t−k ) +
(
2⊗ Inx

)
q(t−k ), (55)

and the following Corollary 2 holds.

Corollary 2: Suppose that for given positive scalars
a1, a2, a3, σ, there exist matrices Pp > 0, p ∈ S, positive
scalars ϵ1, ϵ2, such that

4p 0 PpA PpB
0 −a2Pp + ϵ2µ

2
2Inx 0 0

ATPp 0 −ϵ1Inx 0
BTPp 0 0 −ϵ2Inx

 < 0,

p ∈ S, (56)

−a3(IN ⊗ Pp) + ζ2(p)((J p)TJ p
⊗ Pp) < 0, p ∈ S, (57)

and

a1 −
ln(1 + σ )

h1
> 0, (58)

where 4p = −PpC − CTPp +

S∑
q=1

µpqPq + ζ2(p)Pp +

(−2γ + a1 + (a2 + a3)(1 + σ ))Pp + ϵ1µ
2
1Inx , 0 < γ <

min
p∈S,i∈N

(
ζ1(p)Re(r

p
i )

)
, where rpi , i ∈ N are the eigenvalues of

matrix J p, and Re(rpi ) denotes the real part of the eigenvalue
rpi . Then the bipartite tracking error system (55) converges
into the bounded set H ≜ {e(t) ∈ RnxN | E{∥e(t)∥2} ≤ c} in

the mean-square sense, where c =

(1+σ−1) max
p∈S

(λmax(Pp))η

min
p∈S

(λmin(Pp))(ea1h1−(1+σ ))
.

Remak 7: Many practical systems can be modeled by
multiagent systems with switching agent dynamics. Under
the framework of multiagent systems with switching agent
dynamics over unsigned graphs, the problems of consensus
tracking and containment control have been studied in [30]
and [31], respectively. From a practical perspective, it is inter-
esting to study the problem of bipartite containment control
for multiagent systems with switching agent dynamics over
signed graphs, which would be one of our future research
directions.

IV. TWO NUMERICAL EXAMPLES
In this section, two numerical examples are presented respec-
tively to illustrate the effectiveness of the proposed bipar-
tite containment and leader-following consensus control
methods.
Example 1 (Bipartite containment control). Consider the

3-D delayed neural network [32] as follows:

ż(t) = −Cz(t) + Af (z(t)) + Bfd (z(t − d(t))) (59)

where z = [z1, z2, z3]T ∈ R3, C = 2I3, and

A =

 1.25 3.2 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1.0

 , B =

 −0.1 −2 1
2 −0.5 1
1 −1 −2

 .
f (z(t)) = fd (z(t)) = [f (z1(t)), f (z2(t)), f (z3(t))]T with
f (zm(t)) = 0.5(|zm(t) + 1| − |zm(t) − 1|)(m = 1, 2, 3), and
time delay d(t) =

1
1+e−t .

Let us consider a multiagent system which consists of
seven followers and three leaders, and the Markovian switch-
ing topologies are given by signed graphs G1 and G2 shown
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FIGURE 1. Signed graph G1.

FIGURE 2. Signed graph G2.

in Figures 1 and 2, where three leaders are labeled by 8,9 and
10, and seven followers are labeled by 1-7.

The coopetition relationship between 7 followers is mod-
eled by signed subgraphs Ĝ1 and Ĝ2, which are structurally
balanced. Let N 1 = {1, 2, 3}, N 2 = {4, 5, 6, 7} and 2 =

diag{1, 1, 1,−1,−1,−1,−1}. The dynamics of three lead-
ers satisfies (59), and the transition rate matrix is chosen as

ϒ =

[
−0.35 0.35
0.65 −0.65

]
.

Let a1 = 0.5, a2 = 0.9, a3 = 1, h1 = 2, σ =

0.8, ζ2(1) = 5, ζ2(2) = 4.5. By solving the linear matrix
inequalities (10)-(11) in Theorem 1 by Matlab LMI toolbox,
it is obtained that

P1 =

 0.4383 −0.0094 −0.0021
−0.0094 0.4336 −0.0046
−0.0021 −0.0046 0.4309

 ,

FIGURE 3. The positions of all agents at different instants, where the
vertex of the blue triangle is the leader

{
8, 9, 10

}
, while the green ∗ and

red 1 are the follower
{
4, 5, 6, 7

}
and

{
1, 2, 3

}
respectively.

P2 =

 0.4272 −0.0084 −0.0020
−0.0084 0.4229 −0.0042
−0.0020 −0.0042 0.4206

 .
Moreover, ζ1(1) and ζ1(2) can be chosen as ζ1(1) = 258 and
ζ1(2) = 328 respectively.
Assume that qi(t) = [0.085,−0.1, 0.04]T . Then, η =

0.0987, and based on Theorem 1, it can be obtained that the
containment error bound c = 0.2606. Figure 3 depicts the
positions of all agents at different instants. Figure 4 displays
the time evolution of ∥e(t)∥2, which shows that the contain-
ment errors have satisfactory upper bounds.

If we consider the memoryless control protocol, that is,
ζ2(θ (t)) = 0 in (6), then the maximum of ∥e(t)∥2 is c =

0.4131. It can be found that with the memory control proto-
col, the maximum of ∥e(t)∥2 is reduced.
Example 2 (Bipartite leader-following control). In this

example, the bipartite tracking control issue is taken into
consideration. We remove the leaders 9 and 10 from signed
graphs G1 and G2 in Example 1. The transition rate matrix
and the attack functions qi(t)(i = 1, · · · , 7) are same as in
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FIGURE 4. ∥e(t)∥2 in Example 1.

FIGURE 5. Experimental diagram of the delayed Chua’s circuit.

FIGURE 6. Trajectories of states zi1(i = 1, 2, · · · , 8).

Example 1. The dynamic of the leader is the delayed Chua’s
circuit [33], where the system parameters are taken as

C =

 1.269 −10 0
−1 1 −1
0 19.53 0.1636

 ,
A =

 5.594 0 0
0 0 0
0 0 0

 , B =

 0 0 0
0 0 0

−3.906 0 0

 ,
and the nonlinear functions f (z8(t)) = [f (z81(t)), 0, 0]T with
f (z81(t)) = 0.5(|z81(t) + 1| − |z81(t) − 1|), and fd (z8(t −

d(t))) = [fd (z81(t − d(t))), 0, 0]T with fd (z81(t − d(t))) =

sin(0.5z81(t − d(t))). d(t) = 0.02.
Let a1 = 0.5, a2 = 0.9, a3 = 0.5, h1 = 2, σ =

0.8, ζ2(1) = 3, ζ2(2) = 2.8. By solving the linear matrix
inequalities (56)-(57) in Corollary 2 by Matlab LMI toolbox,

FIGURE 7. Trajectories of states zi2(i = 1, 2, · · · , 8).

FIGURE 8. Trajectories of states zi3(i = 1, 2, · · · , 8).

FIGURE 9. Trajectories of bipartite tracking errors ei1(i = 1, 2, · · · , 7).

FIGURE 10. Trajectories of bipartite tracking errors ei2(i = 1, 2, · · · , 7).

it is obtained that

P1 =

 4.1293 0.0269 0.1856
0.0269 4.6159 −0.0380
0.1856 −0.0380 3.7830

 ,
P2 =

 4.1321 0.0229 0.1792
0.0229 4.5922 −0.0254
0.1792 −0.0254 3.7969

 .
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FIGURE 11. Trajectories of bipartite tracking errors ei3(i = 1, 2, · · · , 7).

FIGURE 12. ∥e(t)∥2 in Example 2.

Moreover, ζ1(1) and ζ1(2) can be chosen as ζ1(1) = 478 and
ζ1(2) = 1120, respectively. based on Corollary 2, one gets
that the containment error bound c = 0.3017.The experimen-
tal circuit diagram of the delayed Chua’s circuit is shown in
Figure 5. Figures 6-8 show time evolutions of state variables
of seven followers and one leader. Figures 9-11 display time
evolutions of the containment error signals. Figure 12 depicts
the time evolution of ∥e(t)∥2, which demonstrates that the
experimental upper bound of ∥e(t)∥2 is less than the theo-
retical upper bound.
Remak 8: Example 2 cannot be studied by applying the

results in [12], because the nonlinear function without delay
is different from the onewith time-varying delay in this paper,
and a switching topology and impulsive attacks were not
taken in account in [12].

V. CONCLUSION
The problem of bipartite containment control design has been
investigated for a class of nonlinear multiagent systems with
node-delay under signed switching topologies and impulsive
false-data-injection attacks. A memory control protocol has
been designed to guarantee that the dynamics of the bipartite
containment error system is ultimately bounded in mean
square. The simulation examples have been presented to
demonstrate the effectiveness of the proposed design scheme
of bipartite containment/leader-tracking controllers. Further
research topics include the extension of the main results to the
bipartite containment/leader-tracking problem under event-
triggered mechanism [34], [35].
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