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ABSTRACT Cloud data centers have started utilizing erasure coding in large-scale storage systems to ensure
high reliability with limited overhead compared to replication. However, data recovery in erasure coding
incurs high network bandwidth consumption compared to replication. Cloud storage systems also play an
important role in the energy consumption of data centers. Heuristic proactive recovery algorithms select all
data blocks from failure-predicted disk/machine and perform proactive replication that contributes to huge
recovery bandwidth savings. However, they fail to optimize the selection. Optimization can further improve
resource savings. To address this issue, we propose a recovery algorithm that applies minimization on data
blocks selected for proactive replication by considering the necessary and appropriate constraints that are
constructed based on the system’s current network traffic and data duplication information. We evaluate
the proposed algorithm using extensive simulations. Experiments show that the recovery algorithm reduces
network traffic by 60% and storage overhead by 46% compared to the heuristic proactive recovery approach.
Also, the proposed proactive recovery methods reduce the storage system’s energy consumption by up to
52% compared to replication.

INDEX TERMS Cloud storage systems, data reliability, erasure codes, replication, energy consumption.

I. INTRODUCTION
Cloud storage system is an aggregation of individual hard-
ware components that are subject to failure. The system has
to deal with these hardware failures to guarantee the durabil-
ity of data stored on these components. Cloud storage sys-
tems also have to handle software glitches, network outages,
power outages, and machine reboots to ensure data avail-
ability. To enforce fault tolerance against failures, various
data redundancy techniques are employed in cloud storage
systems. The most common data redundancy techniques are
replication and erasure coding [2]. Typical three-way repli-
cation replicates each data block in three different machines
such that it can tolerate any 2 failures. Storage overhead is
3x for this three-way replication method. Replication is an
inefficientmethod for today’s cloud storage systems that store
petabytes of data [16]. Erasure coding is a viable alternative
to replication. The (n, k) erasure code divides data into k data
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blocks and stores them into n different machines along with
n − k parity blocks. The total of k original and n − k parity
blocks form a stripe such that it can tolerate any n − k fail-
ures. Reed_Solomon code is one of the most popular erasure
codes. It provides better reliability with less storage overhead
compared to replication [2]. For example, the most popular
(14,10) Reed_Solomon code can tolerate any 4 block fail-
ures and storage overhead is 1.4x. Many large-scale storage
systems like Windows Azure Storage, Google’s ColossusFS,
Facebook’s HDFS has adopted Reed-Solomon code [16],
which provides significant cost savings with respect to
storage.

In order to ensure data reliability, any failed data block
in the cloud storage system has to be restored. The process
of recovering failed data blocks is known as data recovery.
In order to avoid unnecessary repairs of short-term transient
node failures, data recovery is delayed for a certain amount of
time. Google File System (GFS) delays recovery of unavail-
able nodes for 15 minutes [4]. An analysis in Facebook’s
3000 machine production cluster revealed that in a day,
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at least 20machine failures activate data recovery, even after a
delay is applied to eliminate unnecessary data recovery due to
transient failures [3]. Due to network traffic issues, Facebook
has applied the Reed-Solomon code for only 8% of their data.
A considerable amount of research has focused on designing
repair-efficient erasure codes. Several researchers [3], [9],
[10], [11], [12], [17], [31] have proposed proactive recovery
of erasure codes to reduce repair bandwidth and disk I/O. Few
pieces of research concentrate on applying a delay in data
recovery of erasure codes, to reduce repair bandwidth [12].

It has been estimated that if Facebook applied Reed-
Solomon on 50% of their data, repair network traffic of the
system would saturate their network links. Increased repair
network traffic is one of the major performance issues of
erasure coding which prevents it from being more pervasive
in cloud storage systems.

Improving energy efficiency is another major challenge
of cloud data centers. Storage systems consume up to 40% of
a data center’s total energy [26]. Read and write latency of
the storage systems also reduces energy efficiency [23]. Since
erasure coding reduces storage overhead significantly, it also
reduces the energy consumption of storage systems. How-
ever, recovery network traffic in erasure code may jeopardize
the energy savings of erasure code in terms of storage.

In a preliminary version of this paper [21], we pro-
posed a cloud storage system that employs several proposed
bandwidth-efficient proactive recovery methods. In the event
of any disk/machine failure prediction, the client’s durability,
availability, and performance requirements are determined
using a Service Level Agreement (SLA). Based on this infor-
mation, the system selects an appropriate proactive recovery
method. This heuristic proactive recovery technique selects
a set of data blocks for proactive replication according to
the selected recovery method. We observed that our recovery
approach improves repair bandwidth efficiency and reduces
network traffic in cloud storage systems with limited storage
overhead compared to existing recovery approaches. The
resource savings vary according to the selected proactive
recovery technique. However, it does not take into account
important system parameters like data duplication and the
system’s current network traffic during proactive recovery
that may incur additional storage overhead and network band-
width/traffic. This paper is the extended version of our pre-
vious paper [21] and the differences between this work and
previous work are:

• We propose an optimization approach to further enhance
the efficiency of proactive recovery methods proposed
earlier in [21]. The optimization approach applies min-
imization on a set of data blocks that are selected
for proactive replication by the aforementioned earlier
heuristic approach. The Optimization approach takes
into account the system’s current network traffic and
data duplication information.

• We propose an optimization algorithm that intends to
limit proactive replications when the system’s instan-
taneous network bandwidth reaches a certain limit and

hence it minimizes bandwidth throttling. It also uses
data duplication information to diminish the temporary
storage and recovery bandwidth consumption due to
unnecessary replication.

• We analyze the energy efficiency of proactive recovery
methods. Activating proactive recovery in erasure cod-
ing reduces data transfers that can count toward energy
savings. However, proactive recovery methods suggest
additional temporary dedicated storage overhead that
may increase system energy consumption. To analyze
the energy consumption of storage systems, we estimate
the energy consumption of storage and network devices,
respectively. Using that we compare the system’s con-
sumption from replication, erasure coding, and various
recovery approaches used in erasure coding.

II. RELATED WORK
Due to the recent advancements in the Internet of Things
(IOT), Big Data applications demand petabytes of storage.
Erasure code is becoming an important fault-tolerant method
of industrial storage systems. Although it improves relia-
bility with less storage overhead compared to replication,
inefficient data reconstruction of erasure coding needs to be
addressed.

Dimakis et al. [9] proposed regeneration codes that reduce
network traffic by downloading small amounts of data from a
higher number of nodes than the number of nodes involved in
typical reconstruction. However, the exact repair of regener-
ation codes for several combinations of parameters remained
unresolved. This was followed by several researchers [17],
[18], [30] showing that the exact repair is possible for several
parameters. The locally repairable code is another family of
code proposed that reduces repair bandwidth. Other works
[3], [10], [39] add local parity to reduce the number of
data blocks accessed during reconstruction. This has the side
effect of increasing storage overhead by 1.33x compared to
Reed-Solomon [10].

TLRC [39] reduces the recovery overhead of distributed
storage. However, storage overhead is almost the same
as the methods proposed by Sathiamoorthy et al. [3] and
Huang et al. [10], and the recovery performance is not better
than proactive recovery. Hitchhiker code [11], built on top
of Reed-Solomon code using a piggy-backing framework,
reduces the network traffic by 35%while some encoding time
overhead is incurred. Even though the above methods reduce
repair network bandwidth/ traffic, none reduces recovery
bandwidth as efficiently as replication.

Several works [12], [22], [27], [34], [35], [41] proposed
system-level solutions like delaying data recovery, caching
data read during recovery, parallel reconstructions, switching
between two families of erasure codes, and proactive replica-
tion of data blocks. Silberstein et al. [12] suggest delaying
the data repair to improve the repair network bandwidth.
Though bandwidth savings can be achieved by delaying the
data repair, it compromises data reliability. The technique
LRTR [41] performs temporary redundancy of surviving

VOLUME 11, 2023 38227



R. Nachiappan et al.: Optimized Proactive Recovery in Erasure-Coded Cloud Storage Systems

chunks on risky stripes and repair of failed chunks is delayed
to reduce network overhead. Though temporary redundancy
improves reliability, the delay in the repair of failed chunks
will increase the access latency of hot data. A combination
of cooperative repair and caching techniques is proposed by
Subedi at al. [22]. This reduces network traffic and execution
time of MapReduce applications significantly.

Caching involves additional storage overhead. It only
repairs the data blocks that are resided in the same stripe
of the data that are read due to the MapReduce job and
it will not eliminate data blocks that are degraded due
to failure and its associated degraded read latency. Partial
Parallel repair (PPR) [27] divides reconstruction operation
into multiple nodes and combines partial results to recon-
struct unavailable data blocks. This reduces repair time and
degraded read time significantly while also reducing net-
work pressure. SelectiveEC [40], a recovery task scheduling
module, carefully selects nodes to read source data blocks
for recovery and to store recovered ones. It increases the
recovery throughput. However, the repair is not proactive in
these works. HACFS [28] reduces data reconstruction time,
degraded read latency, and network traffic. The complexity of
this storage system increases as it uses two different erasure
codes and dynamically adapts between them according to
workload change. A framework called Zebra is presented by
Li and Li [29] to reduce the reconstruction overhead of hot
data. This encodes data into multiple tiers and employs dif-
ferent tiers with different values of parameters. It suggests
maintaining less number of data blocks for hot data to reduce
network traffic. Though it reduces network transfer for hot
data, the storage overhead is linear with the amount of hot
data.

Gong et al. [35] proposed the SPSN algorithm that selects
an optimal set of nodes to participate in data repair to
improve repair performance. Bai et al. [33] proposed PPT and
PPTC. They were designed to avoid network traffic during
data recovery. They eliminate the bottleneck links during
data recovery by analyzing the bandwidth gap among links.
SMFRepair and MSRepair techniques [32] eliminate the low
bandwidth links to reduce recovery time in the heterogeneous
network. PivotRepair [42] utilizes storage nodes available
up-link and down-link bandwidth to fast-track the repair by
bypassing the congested links. The techniques proposed by
Gong et al. [35], Bai et al. [33], Zhou.H et al. [32], and
Yao et al. [42] are reactive. The proactive recovery tech-
niques can reduce the data recovery time to zero as the
recovery is proactive when the failures are successfully
predicted.

Li et al. [8] defined a system that used failure predic-
tion techniques to implement proactive replication in erasure
codes for reducing degraded read latency and improving read
performance. However, it did not address data unavailability
due to machine failures. HP AutoRAID [5] automatically
manages the migration of data between 2-way replication of
active data and RAID 5 for inactive data with the help of

access pattern change. However the 2-way replications and
RAID5 offer limited reliability. Araujo et al. [7] proposed
hybrid coding and double coding. Both strategies combine the
use of replication and erasure coding. Li et al. [20] defined
a cost-effective data reliability management mechanism to
ensure the reliability of massive data with minimum replica-
tion based on a generalized data reliability model. None of the
aboveworks incorporate the client’s expectation and nature of
data to define bandwidth-efficient recovery of erasure codes.
FastPR [31] and LFPR [43] combine two repair methods,
migration, and reconstruction to reduce repair time. Though
this method is proactive, the data access latency will be
increased when the migration occurs.

Greenan et al. [24] estimate energy consumption of data
recovery in erasure coding, taking into account only the
power consumption of disks involved in the recovery oper-
ation. Several researches [24], [25] calculate data reconstruc-
tion energy consumption, on the basis of participating node’s
energy consumption and its active time during data recovery.
Ahmadvand et al. [44] proposed a method and Dynamic
voltage and frequency scaling (DVFS) technique to manage
the energy consumption of big data processing. A summary of
the related work on improving reliability, energy efficiency,
storage efficiency, bandwidth efficiency and performance
improvement is presented in Table 1.

Failure predictions in cloud storage systems enable cloud
service providers to define efficient proactive failure man-
agement in cloud storage. Various statistical and machine
learning methods are used to predict failures in cloud stor-
age systems. A few methods [13], [14], [36], [37] are used
to predict hard drive failures based on SMART attributes.
Li et al. [13] achieved 95% predictions with a False Alarm
rate of less than 0.1%. Hence the failure prediction of disk
drives is high with fewer false positives.

Many researches focused on predicting failures in dis-
tributed systems based on system logs. Javadi et al. [15] pre-
sented the failure model as a predictive method of distributed
systems availability and unavailability. Agarwal et al. [6] use
log messages to predict failures in Hadoop clusters. Data
access patterns in a distributed storage can be used to identify
the popularity of data blocks in real-time over a certain period
of time. Based on their popularity, data blocks can be clas-
sified as hot, warm, or cold. As the access pattern changes,
the popularity of data blocks has to be updated. Various
researches [1], [38] used popularity-based classification to
improve the durability, availability, and read performance of
cloud storage systems.

Existing research does not reduce recovery network band-
width/ traffic of erasure coding to the same extent as replica-
tion can reduce. In this paper, we propose an optimization
algorithm to enhance the efficiency of proposed proactive
recovery methods. The optimization algorithm builds up on
proactive recovery techniques that were proposed in the pre-
liminary version of this paper [21] and that we briefly discuss
in the following section.
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TABLE 1. Summary of related work.

III. PROACTIVE RECOVERY TECHNIQUES
In this section, we briefly discuss the proactive recovery tech-
niques ProDisk, ProMachince, ProHot, and ProHot LazyCold
proposed in the preliminary version of this paper [21].

• ProDisk: When disk failures are predicted, all the data
blocks in the failure-predicted disks (all disks in the
machines that are predicted to fail permanently) are
proactively replicated as described by Li et al. [8]. Since
it is crucial to handle disk failures pro-actively to ensure
high durability of data, ProMachine, ProHot, and Pro-
Hot LazyCold also handles disk failures the same as
ProDisk.

• ProMachine: Machine failures can be classified as per-
manent, long-term, or short-term depending on Mean
Time To Repair (MTTR). ProMachine selects all data
blocks from the failure-predicted machine for proac-
tive replication. Typical reconstruction of erasure codes
will be applied for unpredicted machine and disk
failures.

• ProHot: The data which are more likely to be accessed
soon is known as hot data. In the ProHot method, the
system periodically identifies hot data blocks. It applies
proactive recovery only for hot data blocks from failure-
predicted machines. Typical reconstruction of erasure
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codes is applied to recover all cold data blocks from
failure predicted machine and unexpected failures.

• ProHot_LazyCold: In case of any temporary long-term
machine failure predictions, it is acceptable to delay
the recovery of cold data since it is not going to be
accessed soon. ProHot_LazyCold selects hot data form
failure predicted machine for proactive replication and it
applies lazy recovery for cold data.

To improve the efficiency of proactive recovery methods,
we proposed an optimization algorithm that is introduced in
the next section.

IV. ADAPTIVE BANDWIDTH EFFICIENT CLOUD
STORAGE SYSTEMS
An adaptive cloud storage system employs several proactive
recovery methods. In the event of any failure prediction,
it selects one of the proactive recovery methods that can
meet the client’s SLA. To improve the efficiency of proactive
recovery, the proposed system adapts client SLA and chooses
the most suitable method for recovery. Client data can be
classified as hot, warm, or cold depending on the access
frequency. Data recovery can be delayed for the data that is
having less access frequency (cold data). The client may also
accept a delay in accessing that data. At the same time, a delay
in access latency is not acceptable for hot data. Activating
proactive recovery of hot data can reduce access latency in
the presence of failure. In this paper, we include an algorithm
in the existing adaptive bandwidth-efficient cloud storage
systems such that it minimizes the number of data blocks
replicated during proactive recovery, regardless of the selec-
tion of any proactive recovery methods. This optimization
algorithm was included in the existing proposed system; it
helped to further increase the storage and network efficiency.

A. ARCHITECTURE AND DESIGN
The architecture of the adaptive bandwidth-efficient cloud
storage system is proposed in the preliminary version of this
paper [21]. We have introduced a new component called
Enhanced Proactive Recovery (EPR) in the existing archi-
tecture, to further enhance the efficiency of the proposed
system, regardless of the selection of any proactive recovery
method to handle failure prediction. The overall architecture
is presented in Figure 1. It is implemented as an extension
of regular data storage. A dedicated proxy server extends
the support of encoding and decoding erasure codes. It also
handles failures in storage systems. The storage server stores
and retrieves data. The storage server’s availability status and
disk health status are reported to the proxy server, which is
responsible for increasing or decreasing the data replication
factor. The system adjusts the replication factor of erasure-
coded objects when failures are predicted.

The component disk failure prediction monitors the
health status of individual disks, using classification and
regression tree methods with information derived from
SMART attributes [13]. Node failure history and disk health

FIGURE 1. System architecture.

information component collects node failure history and
calculates the node’s Mean Time to Failure (MTTF) and
MTTR using various statistics of availability and unavailabil-
ity. It also collects disk failure alarms from the component
Disk failure prediction. Data access pattern classifies data
blocks as hot based on their popularity over a time period.
Assuming that data blocks with high access frequency have
more chance to be accessed in the future, we define those
as hot. It is recorded as H = {hij} where hij is the jth

block from disk i that is identified as hot. Data block health
monitor collects information on failure-predicted nodes and
disks from node failure history and disk health information
module. It identifies and sets different flags of the data blocks
that are predicted for failure due to disk, machine (Permanent,
long-term, or short-term) failures. The Client’s requirements
in regard to durability, availability, and access latency are
recorded in the client SLA.
Dynamic replication manager chooses one of the best

recovery techniques which can meet client SLA with lim-
ited resources from recovery methods ProDisk, ProMa-
chine, ProHot, and ProHot_LazyCold. If the client requires
high durability, ordinary availability, and access latency, the
dynamic replication manager will select the recovery tech-
nique ProDisk. ProHot will be selected if they require high
availability and low access latency of hot data. In case
the client requests high durability, availability, and low
latency, the technique ProMachine will be selected. The Pro-
Hot_LazyCold will be selected by the dynamic replication
manager if the client requests high availability and low access
latency for hot data and they ignore the availability and access
latency of cold data. Based on the selection of the recov-
ery technique, it chooses a set of data blocks for proactive
recovery.
Enhanced Proactive Recovery (EPR) module attempts to

reduce the data blocks that are selected for proactive repli-
cation. EPR selects an optimal subset of data, taking into
account the system’s current network traffic and data duplica-
tion. EPR deletes the data blocks on condition that the failure-
predictedmachine has come back to life or a failure-predicted
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disk does not fail as expected. It is also responsible for scaling
up and down the number of dedicated temporary storage
nodes, according to the predictions and amount of data to
be stored in temporary storage during a period of time. EPR
is also responsible for allocating a highly available node as
a temporary storage such that any failure in this temporary
storage node is minimal. Any prediction of failure in this
temporary storage will also lead to proactive replication. The
implementation of an optimization algorithm in this module
is the main contribution of this paper and it is discussed in
detail in the next section.

B. PROPOSED RECOVERY APPROACH
The overall functionality of the proposed enhanced adaptive
bandwidth-efficient cloud storage system and the recovery
approach performed by this system are discussed in this
section.

The proposed system initially stores data with any
(n, k) erasure code. With the help of disk/machine failure pre-
diction methods employed in cloud storage systems, failure
types and MTTR of node failures are predicted. Failures are
also identified as disk, permanent machine, temporary long-
term machine (MTTR>15 minutes), or temporary short-term
machine (MTTR<15minutes) failures. The set of data blocks
(b1, b2, . . . , bi) that is more likely to be accessed soon is
defined as the hot data set H . Based on the failure types, and
client SLAs, one of the appropriate recovery techniques is
selected from the recovery techniques ProDisk, ProMachine,
ProHot, ProHot_LazyCold.

When the disk/permanent machine failures are predicted,
all the data blocks in the failure-predicted disk (all data blocks
of each disk in a failure-predicted machine) are selected for
proactive replication by the dynamic replication manager.
Next, EPR applies minimization on the selected set of data
blocks by considering the system’s current network traffic
and data duplication. It chooses a subset of data blocks for
proactive replication. The selected subset of data is proac-
tively replicated into the permanent storage as described
in [8]. The counter variables of corresponding replicated data
blocks are incremented. These counter variables are used to
identify if the particular data blocks are replicated already
or to delete data blocks against false prediction. A delay is
applied while deleting data blocks that are replicated for the
false prediction. Time In Advance (TIA), which is provided
by the failure prediction algorithm, is used as a time delay to
delete the data blocks that are replicated due to false positives
of failure predictions. A time delay larger than TIA is the
better choice, but this will result in extra storage. The choice
of time delay varies and depends on the storage system where
the system is utilized.

In the event of long-term temporary machine failure pre-
dictions, Dynamic Replication Manager either select all data
blocks from the failure-predicted machine for the recovery
method ProMachine or selects appropriate data blocks for the
recovery methods ProHot and ProHot_LazyCold. Then EPR
selects a subset of it. The subset of data, selected by EPR is

replicated into the dedicated temporary storage. Data blocks
that are not replicated are recovered by typical reconstruction
of erasure codes. While data blocks are proactively repli-
cated into temporary storage, the corresponding data block’s
counter variables are incremented. These variables are used to
identify if the particular data blocks are already replicated or
need to be deletedwhen themachine recovers from temporary
machine failures. When the failure-predicted nodes recover
from actual failure and if no further failures are predicted
for the same nodes, proactively replicated data blocks cor-
responding to those nodes are deleted. In the occurrence of
node/disk failure, the reference is made to the data blocks
that are proactively replicated. This will reduce the number
of data reconstructions in erasure-coded storage systems.

V. ENHANCED PROACTIVE RECOVERY
In this section, to further enhance the efficiency of proactive
recovery, we discuss optimization on failure-predicted data
blocks and select appropriate data blocks for proactive repli-
cation.

A. PROBLEM FORMULATION
Let B be a set of data blocks that are stored in the cloud
storage system. Let an element bij in B denote a data block
that is stored in the j-th location of disk i. Let DR = {drij}
be a set of counter variables which represents the number of
times, the corresponding data block bij in set B is replicated.
The counter variables in DR represent only the replication
of data blocks on the occurrence of disk/permanent machine
failures. Similarly, MR is a set of counter variables that are
used to represent data blocks that are replicated due to tem-
porary machine failures. An element mrij in MR represents a
variable that is incremented if the corresponding data block
bij is replicated on the node which is dedicated to handling
machine failure. The cardinality of the set DR and MR is
equal to the cardinality of set B. The value of mrij represents,
the number of copies of block bij that exist in the dedicated
temporary storage. The variables drij are decremented at the
actual failure of disk i. Variables mrij are decremented when
themachine that holds disk i has come back from failure, once
after the occurrence of actual failure of the same machine.
The copy of the data block bij is also deleted from the node
which is dedicated to handling temporary machine failure.
In case of a false positive, the copy of a data block is deleted
after applying the appropriate time delay.

In the event of any disk/permanent machine failures or
temporary long-term machine failure prediction, Dynamic
Replication Manager selects a set of data blocks for
proactive replication according to the method selected for
proactive recovery. Let FP be a set of data blocks selected
for proactive replication. Let TIA be the time in advance of
predicting failures, EPR has to select an appropriate subset
of data for proactive replication from the set FP, taking into
account data duplication and the system’s current network
traffic. Let X be a set of binary decision variables xij, such
that each variable xij represents block bij from FP, xij = 1 if
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the data block bij from FP is selected for replication and
xij = 0 otherwise. When the EPR sets the values of xij
belonging to X, it selects the subset of bij from the set FP
that are corresponding to xij equal to 1.
The module EPR should not select the data block bij from

the set FP for proactive replication if the system has more
than one copy of the data block bij at the failure prediction
time t. This will avoid unnecessary data duplication of the
block bij. For example, consider a disk ‘‘disk i’’ is predicted
for failure. Dynamic Replication Manager selects all blocks
in ‘‘disk i’’ for replication. Let bij be a data block belonging
to ‘‘disk i’’ which is selected for replication by the Dynamic
replication manager. The system may already hold a copy of
bij due to the failure prediction of the machine which contains
the ‘‘disk i’’. In this case, EPR will not select the data block
bij for proactive replication. Doing this will not only save
the bandwidth of creating extra copies but also save storage.
On the actual occurrence of failure of ‘‘disk i’’, appropriate
reference could bemade to the copy of data block bij such that
it can handle the failure of ‘‘disk i’’. The scenario is similar
when the block bij is marked for temporary machine failure.
Hence we have,

xij = 0 ∀ bij ∈ D if mrij = 1 (1)

xij = 0 ∀ bij ∈ M if drij = 1 (2)

‘Systems network traffic can be effectively managed by
eliminating proactive recovery for some appropriate failure
predictions using the system’s Current Recovery Bandwidth
(CRB). When the system’s current recovery bandwidth
reaches the system’s recovery bandwidth capacity, EPR
should avoid proactive recovery of the events, which are
expected to increase the system’s recovery bandwidth above
Recovery Bandwidth Capacity (RBC) at the given time.

(S ∗

∑
xij)/TIA + CRB <= RBC ∀xij ∈ X (3)

We formulate the problem of selecting a subset of data
blocks for proactive replication, from the set of data blocks
with a predicted failure FP as an integer programming as
follows:

Minimize
∑

xij ∀xij ∈ X (4)

Subject to:

xij = 0 ∀ bij ∈ D if mrij = 1 (5)

xij = 0 ∀ bij ∈ M if drij = 1 (6)

xij = 1 ∀ bij ∈ D if drij = 0 (7)

xij = 1 ∀ bij ∈ M if mrij = 0 (8)

(S ∗

∑
xij)/TIA + CRB <= RBC ∀xij ∈ X (9)

xij = {0, 1} ∀xij ∈ X (10)

In order tomaintain the system’s network traffic to the level
of the system’s RBC, we eliminate proactive recovery when
the system’s CRB reaches RBC. As a result, typical recon-
struction will be conducted to recover data blocks that were

Algorithm 1 Enhanced Proactive Recovery Algorithm
INPUT: FP, FT
1: if BANDWIDTH_CONSTRAINT (FP)=true then
2: for each bij in FP do
3: if mij ≤ 1 and dij ≤ 1 then
4: xij = 1
5: else if Ft =machine and dij ≥ 1 then
6: xij = 0
7: else if Ft =disk and mij ≥ 1 then
8: mij = mij − 1
9: dij = dij + 1

10: define disk holding copy of dij as permanent
11: xij = 0
12: end if
13: end for
14: else
15: for each bij in FP do
16: xij = 0
17: end for
18: end if
OUTPUT: X

not proactively handled and this may increase the system’s
network traffic substantially.

B. ENHANCED PROACTIVE RECOVERY ALGORITHM
The objective of the algorithm is to minimize the number
of data blocks to be replicated during proactive recovery.
To solve the problem of minimizing the number of proac-
tive replicated data blocks, we designed an algorithm called
Enhance Proactive Recovery Algorithm (EPRA). Upon any
failure predictions, the proposed algorithm determines the
set of data blocks that are needed to be handled proactively
by taking into account the system’s current network traffic
and data duplication information. The EPRA is presented in
Algorithm 1.

On receipt of any failure prediction event, the algorithm
examines how the system’s network traffic will be affected
while activating proactive recovery. The required calculations
are represented in Algorithm 2. This algorithm calculates the
total Transfers Required (TR) to proactively handle the pre-
dicted event. Using TR, the total Projected Bandwidth Need
(PBN) to proactively handle the predicted event is calculated
as follows,

PBN = TR/TIA (11)

The algorithm also calculates the Projected Network Traf-
fic (PNT) of the system using the system’s CRB as follows,

PNT = CRB + PBN (12)

Based on the calculated PNT, the system determines
whether to proactively handle the predicted failure or not at
any given time. Following that, data de-duplication is per-
formed in lines 2 to 9. For any failure prediction of ‘disk i’,
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Algorithm 2 Bandwidth_Constraint(FP)
1: procedure Bandwidth_Constraint(FP)
2: initialize TR=0
3: initialize PBN=0
4: for each bij in FP do
5: if mij ≤ 1 and dij ≤ 1 then
6: TR=TR+S
7: end if
8: end for
9: PBN=TR/TIA

10: PNT=CRB+PBN
11: if PNT ≤ RBC then
12: return true
13: else
14: return false
15: end if
16: end procedure

Let us consider a data block bij in ‘disk i’ is already replicated
due to the proactive recovery of the machine, that contains
‘disk i’. The system should avoid replicating the block bij
due to the prediction of ‘disk i’. However, an appropriate
reference has to be made to the copy of bij such that it cannot
be deleted during the eviction process, which is activated
when the machine containing ‘disk i’ recovers from failure.
On the other hand, consider a scenario where a data block bij
has to be proactively handled on receipt of a machine failure
prediction to which it belongs. If the system already has a
copy of bij, due to failure prediction of ‘disk i’ in advance.
The system will simply avoid replicating block bij.
The algorithm gets a set of data blocks in failure predicted

machine/disk and the failure type from Dynamic Replication
Manager and sets the decision variable xij = 1 if the cor-
responding data block bij from the failure predicted set has
to be replicated. EPRA sends X, a set of decision variables
to the Dynamic Replication manager. Dynamic Replication
manager replicates the data block bij from set FP only if the
corresponding decision variable xij is 1.

VI. ENERGY CONSUMPTION ANALYSIS
Several metrics are used to measure the energy consumption
of storage systems. Somemetrics use the energy consumption
of hardware/software components to calculate the energy
consumption of the storage systems. Some others measure
the energy consumption of storage systems by measuring
the application’s usage of physical resources like storage,
network, and memory.

In order to compare energy efficiency from replication and
erasure coding with various proactive recovery techniques,
we estimate the energy consumption of storage and network
devices. The energy consumption of the storage systems is
estimated by calculating the usage of the disks. We calculate
the energy consumption of the network devices in terms of

the amount of data transferred via the top of the rack switch
during recovery.

Since we use these energy models to compare the
energy consumption of various recovery methods, we do not
consider the energy consumption of the intervening applica-
tion running on top of the storage system.

A. ENERGY CONSUMPTION OF STORAGE DEVICES
As mentioned above, we estimate the storage energy by
calculating the energy consumption of the disk drives in
the storage system. Even though several other devices like
machines, racks, and cooling systems are involved in the
energy consumption of storage systems, the disk remains
the most important component of the storage systems, and
the energy consumption of the storage system is directly
proportional to the number of disks employed in a storage
system. Since we use this model for the system comparison
for various recovery methods, we will ignore the energy
consumption of other devices. As with any models, it makes
some abstractions for empirical investigations. Hence, energy
consumption of the storage devices is expressed as:

Et = Dt ∗ Tt ∗ U (13)

where Et is the energy consumption of the storage system
during the time period t as the product of the number of
disks active Dt , the amount of time active Tt and the energy
consumption of the disk per unit time U .
Replication uses more disks compared to erasure coding

as it stores more data blocks to ensure reliability. Proactive
replication in erasure coding uses additional disks for a cer-
tain period of time. Disk failure/permanent machine failure
predictions use the additional disk from the time of prediction
till the actual occurrence of predicted disk failure. Temporary
machine failure uses the additional storage from the time of
prediction until the recovery of the corresponding machine.
The number of disks used in case of disk failure/permanent
machine failure predictions is equal to the number of disks
predicted for failure, whereas it varies with respect to the
selection of recovery methods in the event of temporary
machine failure predictions.

B. ENERGY CONSUMPTION OF NETWORK DEVICES
Weestimate data recovery energy consumption by calculating
the amount of data transferred through the router during the
recovery of each failure event. We have calculated the energy
consumption of data recovery using the model proposed by
Viswanath et al. [19],

Et = Ep ∗ Rt/S + Est ∗ Rt (14)

We calculated the energy consumption of a router as a
sum of the energy consumption of processing and storing
the data blocks that were involved in recovery during time t .
Energy consumption caused by data processing in routers is
expressed as the product of per-packet processing energy Ep
and the incoming data rate during recovery time t. The input
data rate can be calculated using data transfer rate (amount of
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data transferred per second) Rt and data block size S as
Rt/S. Data storage energy in the router is calculated as a
product of per byte storage energy Est and the input data
rateRt . The total energy consumption of the router during
time T is calculated as the sum of all individual recovery
energy consumption Et during time T. Since we use Equa-
tion 14 to measure the energy consumption of routers during
recovery, we do not consider the router’s idle power. Also,
we do not consider the energy consumption of data transfer
with respect to the intervention of applications running on
top of it.

Finally, we calculated the total energy consumption of the
system during time T as the sum of the storage and network
device’s energy consumption during that time.

VII. PERFORMANCE EVALUATION
We used the ds-sim [12] simulator to evaluate the effi-
ciency of proactive recovery methods while applying EPRA.
We have added a significant amount of codes in ds-sim to
implement failure prediction, proactive recovery, optimiza-
tion of proactive recovery, and energy consumption.

The ds-sim simulator simulates 3-tier storage components
including disks, machines, and racks. ds-sim stores data in
blocks and multiple data blocks form a stripe. A stripe is
composed of a set of original and parity data blocks such that
any data block in a stripe can be reconstructed using a subset
of data blocks in a stripe. In nway replication a stripe consists
of all replicas of a block, whereas it is comprised of k original
and n−k parity blocks for Reed-Solomon (n, k) erasure code.
ds-sim randomly chooses racks to store blocks of data. ds-sim
randomly chooses n racks to store n blocks of a stripe such
that no two blocks in the stripe are placed on nodes in the
same rack.

ds-sim generates failure and recovery events for all hard-
ware components using either synthetic probability distribu-
tions or failure traces. Each storage component disk, machine,
and rack are incorporated with separate failure and recovery
distribution. Disk failures include latent sector failures and
permanent disk failures. Latent sector failures are detected
and recovered using a technique called scrubbing. Machine
failures include both transient and permanent failures. The
ds-sim starts recovery of a permanent machine failure imme-
diately and it applies 15 minutes delay for initiating recovery
of transient failures. Rack failures are assumed to be transient.
The ds-sim performs a run time simulation and records all
instantaneous properties of the system including repair band-
width, repair energy, repair storage overhead for proactive
recovery, and the number of degraded stripes. Table 2 lists the
values of simulation parameters. The simulation parameters
such as total data, number of disks/racks or machines, and
disk capacity are based on the work by Silberstein et al. [12].
The choices of energy consumption of disk and router’s
storage energy consumption are made according to
Harnik et al. [26] and Li et al. [20] respectively.

In order to compare and evaluate the efficiency of the opti-
mization method EPRA compared to its heuristics, we have

TABLE 2. Simulation parameters.

used the same set of failure events for heuristics and opti-
mization. The heuristics methods are proposed in our early
work [21]. This eliminates any difference in metrics due to
the variation of failure events generated by the simulator.

A. PERFORMANCE ANALYSIS
In this section, we analyze and compare the energy con-
sumption of replication, the most popular erasure code Reed-
Solomon (14, 10), and various proactive recovery techniques.
We also show the trade-off between dedicated temporary
storage overhead and bandwidth savings of various proactive
recovery methods.

1) SYSTEM ENERGY CONSUMPTION
We run simulations with the configuration parameters and
failure prediction rate as listed in Table 2. We use time in
advance, 24 hours, which is found reasonable according to
Li et al. [13] and Agrawal et al. [6]. As the failures are
generated by the simulator, the recovery energy consumption
and energy consumption of dedicated temporary storage are
calculated for each failure event, except for machine fail-
ures for less than 15 minutes. Since we do not consider the
intervention of any application running on top of the storage,
we have calculated the storage energy of disks by assuming
that disks are active during the entire period of simulation.
The shutting down of the inactive disks is not considered here
which is usually used to enhance energy savings of storage
systems. In case of any disk failure prediction, additional
disks are activated to support proactive recovery that would
always incur some energy consumption. It is calculated by
assuming that the storage system activates an extra disk at the
time of failure prediction and it is active from the time of fail-
ure prediction till the actual occurrence of failure on the same
failure-predicted disk. In the event of temporary machine
failure prediction, the systemwill activate the number of disks
proportional to the number of data blocks that are selected
for proactive recovery. Those disks will be active from the
time of failure prediction till recovery of the failure-predicted
machine and energy consumption is calculated accordingly.

Figure 2 shows the comparison of average energy con-
sumption in KJ/day for replication, (14, 10) Reed-Solomon,
and several proactive recovery methods. The figure also
shows the average energy consumption of the system, with

38234 VOLUME 11, 2023



R. Nachiappan et al.: Optimized Proactive Recovery in Erasure-Coded Cloud Storage Systems

FIGURE 2. Storage system’s average energy consumption in KJ per day.

FIGURE 3. Average storage and recovery energy consumption in
KJ per day.

individual split-ups for energy consumption of storage, recov-
ery bandwidth, and temporary dedicated storage for proac-
tive recovery, respectively. Reed-Solomon (14, 10) saves the
system’s overall energy consumption up to 51.7% compared
to replication. ProDisk reduces energy consumption by up
to 51.8% compared to Replication. ProHot reduces energy
consumption up to 51.9%, ProMachine reduces energy con-
sumption by 51.8% and ProHot_LazyCold reduces energy
consumption by 52% compared to the same approach. The
energy savings of proactive recovery methods are very lim-
ited. This is due to the fact that the energy consumption
of dedicated storage compensates for the energy savings
of recovery bandwidth. Figure 3 shows data reconstruction
and storage energy for various coding schemes and recovery
methods that are normalized against replication. Energy con-
sumption of temporary storage overhead of proactive recov-
ery methods is calculated for TIA 12 hours. Figure 3 shows
that the storage energy consumption overhead of proactive
recovery methods is the least. The power consumption can
also be reduced by carefully scheduling the proactive replica-
tion in appropriate TIA which is a future research direction.

2) TEMPORARY DEDICATED STORAGE OVERHEAD
To evaluate resource savings from proactive replication,
we calculated the average number of data blocks repli-
cated per day. Figure 4 shows the trade-off between

FIGURE 4. Storage overhead and average recovery bandwidth.

recovery bandwidth and temporary dedicated storage for
various proactive recovery methods. ProMachine reduces
the recovery bandwidth of Reed-Solomon (14, 10) up to
75% with approximately 1.3% storage overhead compared
to Reed-Solomon. ProHot reduces recovery bandwidth up
to 41% where as ProHot_LazyCold reduces recovery band-
width by 85% with 0.75% additional storage savings com-
pared to Reed-Solomon. The storage overhead of replica-
tion, ProDisk, ProMachine, ProHot and ProHot_LazyCold
are 90%, 0.01%, 1.3%, 0.75%, and 0.75%, respectively
compared to Reed-Solomon. Figure 4 shows that proactive
recovery methods offer excellent bandwidth savings as com-
pensation for dedicated temporary storage overhead due to
proactive replication.

B. ENHANCED PROACTIVE RECOVERY
In this section, we investigate how the optimization of proac-
tive recovery (EPRA) further improves the efficiency of stor-
age systems. To eliminate any difference in measurement due
to variations of events generated by the simulator, we applied
optimization on the same set of events that we used for
heuristic proactive recovery. We compare repair network
traffic/bandwidth, energy, and storage overhead of heuristic
proactive recovery against optimized for several proactive
recovery techniques.

1) REPAIR NETWORK TRAFFIC
We examine how the EPRA reduces repair network traffic
compared to its respective heuristics. The results of examin-
ing network traffic of proactive recovery method with vary-
ing TIA of failure predictions are presented in Figure 5.
Since recovery bandwidth is inversely proportional to recov-
ery time, the reduction of TIA increases network traffic of
storage systems. In this experiment, the maximum recovery
bandwidth capacity is set to 650 TB/day and when TIA is set
to 12 hours optimization does not show much savings. When
TIA was 30 minutes optimization shows significant savings
in network traffic.

The optimization of recovery methods ProDisk, ProHot,
and ProHot_LazyCold reduces network traffic up to
60%, 37%, 60%, and 49%, respectively compared to its
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FIGURE 5. Maximum instantaneous recovery bandwidth, in TB/h. (a) ProDisk (b) ProMachine (c) ProHot and (d) ProHot_LazyCold.

FIGURE 6. Total number of proactively replicated slices due to proactive
recovery.

corresponding heuristic methods. Hence the computation
time due to optimization can be ignored considering the
reduction in network traffic compared to its heuristics.
Similarly, optimized ProDisk, ProMachine, ProHot, and
ProHot_LazyCold recovery methods reduce network traffic
around 4%, 4%, 4%, and 3.6%, respectively compared to
when TIA is 12 hours. Clearly the network savings due
to proactive recovery increase as TIA decreases. Applying
optimization to proactive recovery methods reduces recovery
bandwidth around the system’s recovery bandwidth capac-
ity. However, ProMachine could not reduce network traffic
further while TIA is 30 minutes. This is due to the fact that
this method handles a large amount of data compared to other
methods, during proactive recovery.

FIGURE 7. Average recovery bandwidth in GB per day.

2) TEMPORARY DEDICATED STORAGE OVERHEAD
To evaluate temporary storage savings due to the optimization
of proactive replication, we have calculated the total amount
of data transferred over the simulation period. Figure 6 shows
the comparison of the total amount of data transferred
while using heuristics and optimization, respectively for var-
ious proactive recovery methods. Applying optimization on
ProDisk provides up to 46% storage savings compared to the
heuristic of the samemethod. Similarly, ProMachine, ProHot,
and ProHot_LazyCold offer up to 10%, 12%, and 12% of
storage savings respectively compared to their corresponding
heuristics. Storage savings of optimized proactive recovery
methods are increased with respect to the number of data
blocks handled proactively by those methods.
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FIGURE 8. Average energy consumption in KJ per day.

FIGURE 9. Average number of durable degraded and available degraded
slices per day.

FIGURE 10. Average repair bandwidth, in GB/day with varying
prediction rate.

3) REPAIR BANDWIDTH
To examine how the optimization of proactive recovery saves
recovery bandwidth, we calculated the average recovery
bandwidth per day. Figure 7 shows the bandwidth savings of
optimization compared to its heuristics in recovery methods
ProDisk, ProMachine, ProHot, and ProHot_LazyCold. Opti-
mizing proactive recovery of ProDisk, ProMachine, ProHot,
and ProHot_LazyCold methods offers up to 3%, 9.5%, 4%,
and 12% of savings respectively compared to its heuristics.
Bandwidth savings of optimized proactive recovery meth-
ods are increased since it saves bandwidth by avoiding data
duplication.

FIGURE 11. Maximum instantaneous recovery bandwidth, in GB/h with
varying prediction percentage.

4) ENERGY CONSUMPTION
To examine how the optimization of proactive recovery saves
energy consumption of the storage system, we calculated
the average recovery bandwidth per day. Figure 8, shows
the energy savings of optimization compared to respective
heuristics for several proactive recovery methods. Since opti-
mization eliminates data duplication, it saves energy in terms
of temporary storage and recovery bandwidth energy con-
sumption. Applying optimization on proactive recovery of
ProDisk, ProMachine, ProHot, and ProHot_LazyCold meth-
ods offers up to 3%, 5%, 3.5%, and 4% of energy savings
compared to its own heuristics.

5) RELIABILITY
To examine how the optimization of proactive recovery
affects the reliability of the storage system, we have calcu-
lated the average durable degraded and available degraded
objects per day. Figure 9, shows the number of degraded
slices for various reliability techniques and the impact of opti-
mization on reliability compared to its respective heuristics
for several proactive recovery methods. Since optimization
minimizes recovery network traffic, it slightly increases the
number of degraded slices compared to heuristics. However,
the number of degraded slices in optimized proactive recov-
ery is still much better than the native methods.

C. SENSITIVITY ANALYSIS
To determine how EPRA is influenced by failure prediction
rate, we measured parameters like network traffic/bandwidth,
storage overhead, and energy consumption with varying fail-
ure prediction rates.

For analyzing how the system is affected by the failure pre-
diction rate, we measured network traffic with varying disk
failure prediction rates. Li et al. [13], showed that more than
90% accuracy of disk failure prediction is possible. We run
the simulation with failure prediction accuracy varying from
60% to 90% and calculated recovery network bandwidth and
traffic of ProMachine method with TIA equal to 12 hours,
as shown in Figure. 10 and 11, respectively.
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From Figure 10 bandwidth savings at failure predictions
rate of 90%, 80%, 70%, and 60% of ProMachine method
with TIA 12 hours are 75%, 68%, 61%, and 56% compared
to (14,10) Reed-Solomon. Optimizing proactive recovery in
the storage systems provides bandwidth savings 8%, 6%,
4%, and 3% compared to its heuristics with failure predic-
tion percentages of 90%, 80%, 70%, and 60%, respectively.
Bandwidth savings due to optimization reduces as the failure
prediction rate decreases. The reduction in network traffic
due to optimization is depicted in Figure 11. The optimiza-
tion reduces network traffic up to 60% when the prediction
percentage is 90%. Even though optimization offers excellent
bandwidth savings with a prediction percentage of 90%, sav-
ings in network traffic is becoming very limited as the failure
prediction rate decreases. This is due to the fact that when the
prediction rate is low, the system’s network traffic increases
as it activates the typical reconstruction of unpredicted fail-
ures. Optimizing proactive recovery in the storage systems
reduces network traffic (max instantaneous recovery band-
width in MB/h) by eliminating proactive recovery for some
failure predictions. However, with less failure prediction, this
has a minimum effect.

Hence optimization of proactive recovery provides sig-
nificant improvements in repair network bandwidth, energy
consumption, and temporary dedicated storage with a smaller
failure prediction percentage. However, network traffic sav-
ings due to optimizations are limited with a smaller failure
prediction percentage.

VIII. CONCLUSION AND FUTURE WORKS
The two primary reliability mechanisms employed by cloud
storage systems—replication and erasure coding—have their
own drawbacks. Even though erasure code offers tremen-
dous storage savings compared to replication, reconstructing
lost or corrupted data blocks involve large communication
overhead. In our recent work, to achieve maximum recovery
bandwidth savings in erasure codes, we have proposed sev-
eral prediction-based proactive recovery techniques that are
defined using combinations of replications, erasure coding,
and lazy recovery. As an extension of this, we proposed
an optimization approach and algorithm in this paper that
minimizes the number of data blocks to be replicated during
proactive recovery. This optimization contributes to increas-
ing resource savings of the storage systems.We also analyzed
the energy consumption of replication, erasure coding, and
erasure coding with several recovery approaches in cloud
storage systems. Experiments showed that the proposed opti-
mization algorithm increased resource savings compared to
its respective heuristics. It also showed that the proactive
recovery methods in erasure offer limited energy savings.

In future work, we plan to investigate the scheduling of
proactive replicas in distributed storage such that it reduces
degraded read latency in cloud storage. Another promising
area of future research is the energy-efficient scheduling of
proactive replicas in cloud storage.
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