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ABSTRACT Intraspecific nest parasitism is a phenomenon that attracts the attention of biologists since it
helps in saving the endangered species such as Slender Billed Gull. The problem comes from the fact that a
parasite female lays its eggs in the nest of another female (host) of the same species which causes the abandon
of the nest by the host. This behavior causes a significant reduction in future birds number and leads to the
expansion of this specie. Thus, there has been an urgent necessity to clean the nest from parasitic eggs. So,
our aim is to build an automatic parasitic egg identification system based on egg visual features information.
Our system uses deep learning models which have proven their success for image classification. Indeed,
our system conduct an egg image’s pre-processing phase followed by Fast Beta Wavelet Network (FBWN)
to extract the most efficient descriptors (shape, texture, and color). Then, these features will be inputted to
the Stacked AutoEncoder for egg classification. Our proposed system, has been evaluated on 91-egg dataset
collected from 31 clutches of eggs in Sfax region, Tunisia. Our model has given a parasitic egg identification
accuracy of 89.9% which has outperformed the state-of-the-art method and shows the efficiency and the
robustness of our system.

INDEX TERMS Intraspecific nest parasitism, slender-billed gull, parasitic egg identification, fast beta
wavelet network, stacked autoencoder, deep learning.

I. INTRODUCTION
Egg-laying parasitism is a behavior seen in a wide range
of animal species, including birds, amphibians, fish, and
arthropods. In birds, the parasitic creature deposits its eggs
in another bird’s nest (clutch), shifting the expense of raising
its young to the host. Two forms of parasitism can be iden-
tified: intraspecific parasitism, which involves members of
the same species, and interspecific parasitism, in which the
parasite lays eggs in the nest of a different species. Egg-laying
parasitism is a reproductive strategy frequently encountered
in large number of birds [1]. The Slender-billed gull is one
of the bird species which faces the intraspecific parasitism
problem [2]. Indeed, Slender-billed gull can lay up to three
brown-spotted white eggs in a scrape sparsely lined [3] while
in some nests, we can find four or five eggs which means

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

FIGURE 1. Slender-billed Gulls colony in Sfax city (Tunisia).

that this nest contains parasitic eggs [4]. Nests are typically
placed 45 cm apart, but in the center of colonies, nests can be
as close together as 15 cm (see figure 1) which increase the
probability of the egg parasitism.
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In fact, the Slender-Billed Gull is one of the species cov-
ered by the African-Eurasian Migratory Waterbirds Agree-
ment (AEWA) [5], [6], which aids in the preservation of
endangered species. Indeed, for this exact specie, once the
female detects a parasitic egg in its nest, it will leave it [2] and
the contained eggs will be lost. This will cause an important
decrease of the specie future members. So, reducing the
egg parasitism from the nest is crucial to save this specie.
We therefore suggest a system for identifying slender-billed
gull parasitic eggs based on the visual information of the
egg in order to avoid this issue. The eggshell visual patterns
of different females are closely similar which makes the
parasitic egg identification a challenging task [7].

Our idea is to study the hypothesis that parasitic eggs may
be distinguished from other eggs in a clutch based on visual
features of their eggshells. The principal contributions of this
work are:

• Developing a method for automatically identifying par-
asite eggs based on egg visual characteristics will aid
in keeping the nest clean, preventing the female from
leaving the nest and preserving this species.

• Extracting efficient egg image features (texture, color,
and shape) from various inputs (RGB image and alpha
mask image) using the powerful Fast Beta Wavelet Net-
work [8]. These features have effectively represented the
unique signature of each female eggs.

• Producing the best features and classifying themwith the
use of the successful Stacked AutoEncoder SAE) model
[9], [10], [11] to find the parasitic eggs in each Slender-
Billed Gull’s nest.

In fact, compared to other machine learning and deep learning
models, the SAE-based model has demonstrated its useful-
ness in recognizing the parasite eggs.

Our paper is organized as follows: in section II, we present
the related work. While we detail the proposed approach in
section III. Afterward, section IV provides the experimental
results of our method variants, as well as a comparative study
with other methods. Finally, the paper is concluded by giving
the main findings and future directions.

II. RELATED WORK
In support of efforts to protect endangered birds such as the
Slender-Billed Gulls, recent research works based on egg
visual features have been proposed. These works can be
divided into two categories: shallow features-based methods
[12], [13], [14], [15] and deep learning-based methods [16],
[17] (see table 1).

Indeed, many shallow features have been used to charac-
terize the bird’s eggs in order to classify them and identify
possible parasitism. In [12], a parasitic egg identification
method has been proposed. This method identifies the egg
of the Cuckoo finch from the egg of the Anomali Spiza host.
This method computes a granularity spectrum for each egg
region which is issued by applying a fast Fourier transform
succeeded by seven octave-wide isotropic band-pass filters.
Then, from this spectrum, pattern filter size and pattern

proportion energy are computed. Additionally, the color dif-
ference between the host and the parasite’s eggs and pattern
dispersion are extracted from each egg to reinforce the egg
characterization. Afterwards, these four features are classi-
fied using a logistic regression model performed on a dataset
of 309 eggs (224 host eggs and 85 parasitic eggs) collected
from 125 clutches. This dataset has been gathered from
Choma, District of southern Zambia. An overall explained
variance in egg rejection of 31.9% has been reached.

Afterwards, Stoddard et al. [13] proposed an approach
to identify the parasitic eggs (cuckoo finch eggs) from
tawny-flanked prinia eggs (host) based on several visual fea-
tures. Indeed, similarly to [12], two low-level features derive
After granularity analysis (pattern filter size and pattern
proportion energy calculated from the granularity spectrum
which is obtained by applying fast Fourier transform and
band-pass filtering on the egg region), as well as the egg
color difference and the pattern dispersion features, have been
extracted to represent the egg. In addition, the Scale Invariant
feature transform (SIFT) high-level features extracted by the
Nature Pattern Match (NPM) [18] obtained by histogram
equalization and median filtering have been extracted to
capture the information about the shape and orientation of
markings inside the egg. Then, a logistic regression model
has been used to predict the egg parasitism. According to
this study and evaluated on a generated dataset, the model
using the color difference, low-level and high-level pattern
features have given 42%, 44% and 14% of explained vari-
ance in egg rejection respectively. The best performance
has been reached using the low-level features since they
are relevant to the bird vision, simple and easy to quan-
tify. While, the higher-level pattern features may be helpful
when low-level pattern features and color offer hosts little
information. This method has been evaluated on a generated
dataset.

In [14], an image classification method was provided for
the egg classification task. The aim is to classify each egg
into their corresponding clutches (out of 92 clutches) by their
visual features. This method uses SpotEgg tool to charac-
terize eggs with 27 features such as spottiness, shape, color
and size from calibrated images of Eurasian coot (Fulica
atra) specie. These features are classified by the Support
VectorMachines (SVM) algorithm. In fact, each egg has been
assigned to the most matched clutch. An egg classification
accuracy of 53% has been reached.

Furthermore, in [15] a proposed method to identify the
parasitic cuckoo egg from the Great Reed Warbler (GRW)
and Eurasian Reed Warbler (RW) based on visual features
of egg. The aim of this study is to detect the parasitic egg of
cuckoo. Then, a granularity spectrum for quantifying spotting
pattern, size and shape of egg pattern. Indeed, spectrometry
to extract the color of the egg. A dataset of 64 clutches of
GRW and 456 clutches of RW has been parasitized by cuckoo
eggs, collected from the fishpond area betweenMutěnice and
Hodonín in South Moravia. Then, these features are classi-
fied by an unsupervised method with Hierarchical clustering
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TABLE 1. Summary of the parasitic egg detection and egg classification methods.

which yields an accuracy of 45.2%. and with Random Forest
an accuracy of 81.1%.

As it can be noticed from the shallow-based features meth-
ods previously described and illustrated in Table 1, low par-
asitic egg identification results have been reached. This can
be explained by the unsatisfactory egg characterization using
the proposed shallow-the features. Consequently, and due to
the high performances of the deep learning models in image
classification, recent avian egg classification methods [16],
[17] have used these models and given promising results.

In [16], a slender-billed Gull egg classification method
based on Convolution Neural Networks (CNN) has been
proposed. Indeed, the egg RGB images have been introduced
to the CNN to extract the egg features. Then they have
been classified with the Softmax algorithm. It has given an
egg classification accuracy of 87%. While, using the same
CNN model, [17] has reached an egg classification accu-
racy of 91% and 93% using Softmax and SVM classifiers
respectively. This method extracts features from 4 multi-
resolution images issued by applying the Discrete Wavelet
Transform (DWT) of the egg images. Indeed, these twometh-
ods [16], [17] have used the CNN model which is considered
as a simple deep learning model. In addition, they have been
evaluated on a relatively parasitized dataset.

In spite of the recent works on deep learning-based avian
egg classification, deep learning models have not been suffi-
ciently leveraged for parasitic egg identification tasks. Con-
sequently, in this paper, we propose a deep-learning-based
method to identify the Slender-Billed Gull parasitic egg from
their visual feature.

III. PROPOSED APPROACH
Due to the success of deep learning model in image classi-
fication, we have adopted it for our Slender-Billed Gull egg
parasitism identification method. Actually, our system con-
sists on conducting a preprocessing step on egg images which
helps in extracting the most accurate egg features (shape,
color and texture features) using the Fast Beta Wavelet Net-
work (FBWN) [8], [19]. Then, all the extracted features are
concatenated together and the resulted features are flanked

to a Stacked AutoEncoder (SAE) [10], [11] to be more opti-
mized by selecting the most important of them. Finally, the
optimal extracted features will be classified using a Softmax
algorithm to identify the parasitic eggs. The pipeline of our
proposed method is illustrated in figure 2 and the main phases
will be described subsequently.

FIGURE 2. Proposed method pipeline.

A. PREPROCESSING
In order to extract the most important egg visual features
for our method, we have evaluated three variants of prepro-
cessing techniques: RGB egg image resizing into 1024 ×

1024× 3 size, egg image binarization, image alpha blending
by computing image alpha mask from the original egg image.
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The image binarization has been done by applying dif-
ferent MATLAB binarization functions: imbinarize1 (see
figure 3.b), locally adaptive threshold2(see figure 3.c), global
image threshold using Otsu’s method3(see figure 3.d). As it
can be seen from figure 3, the locally adaptive thresholding
technique gives the most visually effective binarization.

FIGURE 3. Egg image binarization using different techniques.

In addition, image alpha blending [20], [21] has been
widely used for image segmentation [22], [23]. It consists in
extracting the image alpha mask4 by overlaying the locally
adaptive thresholding mask to the original RGB image (see
figure 4) which will highlight the spot image regions than the
RGB image. In the context of the egg images, alpha mask
(called also: alpha matte) makes the eggshell spots, which
serve as host identifiers, more visible which helps in boosting
the extraction of representative egg features. The image alpha
mask is computed following equation 1.

I = αF + (1 − α)B (1)

where F is the original image, B is the locally adaptive
thresholding mask and α = 0.5 is the pixel value in the alpha
mask divided by 255 (α between 0 and 1).

FIGURE 4. Image alpha mask extraction.

B. FAST BETA WAVELET NETWORK FOR FEATURE
EXTRACTION
Once the pre-processing step has been conducted, the Fast
Beta Wavelet Network (FBWN) analysis is exploited for
the rapid extraction of appropriate shape, texture and color
features from the egg images. The FBWN success has been
demonstrated in a variety works for different applications
[19], [24], [25].

1https://www.mathworks.com/help/images/ref/imbinarize.html
2https://www.mathworks.com/help/images/ref/adaptthresh.html
3https://www.mathworks.com/help/images/ref/graythresh.html
4https://note.nkmk.me/en/python-opencv-numpy-alpha-blend-mask/

A FBWN is a type of neural network that uses wavelet
transforms as its basic building blocks to extract the most
important features that allow the reconstruction of the
input data [8], [19], [26], [27]. It is designed to handle
high-dimensional and complex data by efficiently reducing
the number of features that better represent the input data.
FBWN aims to provide a simple way to exploit the multi-
resolution analysis. Wavelet has the property of being fast,
meaning that it can analyze data quickly while still retaining
important information about the underlying patterns in the
data.

Thus, the FBWN applies the wavelet transforms (horizon-
tal wavelets ψHi, vertical wavelets ψVi and diagonal wavelets
ψDi) and a scaling function φi to the input image in order to
decompose it intomultiple frequency bands. Afterwards, a set
of convolutional filters are applied to these bands to extract
relevant features. Indeed, selected coefficients from the most
optimal wavelet coefficients (wHi, wVi, wDi) and the opti-
mal scaling function coefficients (vi) that provide the best
image reconstruction are taken as shape and texture fea-
tures respectively. While, the color feature is extracted as the
first and second color moments of the reconstructed image
represented in the HSV color space since it provides better
correspondence with human perceptions of color similarities
than other color spaces [8], [19]. FBWN-feature extraction
is illustrated in figure 5 (for simplicity, random number of
neurons and the coefficients are shown).

FIGURE 5. Feature extraction using Fast Beta Wavelet Network.

C. FEATURE FUSION PROCESS
After that the egg features (shape, color, and texture) are
extracted by the FBWN (see figure 5), they are concatenated
together into one visual feature vector. Then, this resulted
feature vector is injected into a stacked autoencoder to gen-
erated from it the most significant and important character-
istics leading to an optimal parasitic egg identification (see
figure 2).

D. STACKED AutoEncoder
In order to improve the quality of the features, we have
applied the Stacked AutoEncoder (SAE) which will also
classify the images using the SoftMax algorithm in its final
layer. A Stacked AutoEncoder is a neural network consist-
ing mainly of numerous layers of basic AutoEncoder (AE)
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[10], [28]. Figure 6 illustrates a SAE composed of two AEs
and a SoftMax layer.

Indeed, an AE is a neural network model that extract a
compact representation of input data based on the extracted
features in the latent space level (see figure 7). The AE is
composed of an encoder which extracts themost valuable fea-
tures, latent space containing the extracted features (encoded
data) and decoder which reconstruct the input data based on
the extracted features byminimizing the discrepancy between
input data and its reconstruction data [29].

In this work, we have conducted the SAE represented
in figure 6 on the image features which have been already
extracted with FBWN in order to extract from them more
significant features and classify them to identify the parasitic
eggs. In fact, as shown in figure 6, the decoder layers of the
two AEs have been neglected. So, the input FBWN features
are introduced to the first AE to extract more significant
features from them (Feature 1). Then, feature 1 is inputted
to the second AE to extract more optimal features (Feature 2)
which will be injected to the SoftMax layer to classify them
and detect the egg parasitism.A backpropagation (also known
as fine-tuning) is used to improve the model classification
performance. The network is fine-tuned in a supervised man-
ner by retraining it with the training data.

For our proposed approach, we have conducted different
preprocessing techniques as mentioned before to help the
FBWN to extract accurate shape, texture and color features
which will be concatenated in the feature fusion phase and
more optimal features are obtained and classified with the
SAE to detect the parasitic eggs.

As shown in figure 8, and after multiple experiments (see
Table 2), the best accuracy (89.9%) has been reached when
the RGB color and the texture features a well as the image
alpha mask shape feature generated from the FBWN are
concatenated together and inputted to the SAE to identify the
parasitic egg.

IV. EXPERIMENTAL STUDY
To evaluate the performance of the proposed method for par-
asitic egg detection and to determine the best configuration,
we performed extensive experiments on the Slender Billed
Gull dataset by varying the image preprocessing techniques,
the input image features as well as the SAE parameters (see
table 2). Our method was implemented using the MATLAB
software. Moreover, a comparative study with the state-of-
the-art methods results on the same dataset has been provided
(see table 3).

A. DATASET COLLECTION
The dataset used in the paper is formed of 91 Slender-Billed
Gull eggs collected from 31 clutches located in Sfax salt flats
in Tunisia [2], [6]. Each clutch contains at least 2 eggs of
the host (some clutches contain 3 eggs). However, not all
the clutches are parasitized. The dataset has been labelled
by the biologists by applying genetic test which involve egg
breaking. In fact, compared to the dataset used in [16] and

[17], the dataset used to evaluate our method has been built
with new egg samples which are more challenging in terms of
illumination, quality, distance from the camera, etc. In addi-
tion, this dataset includes more parasitic eggs (13 parasitic
eggs).

To evaluate our method, we have taken around 70% of
the dataset as training set (62 eggs) while around 30% of
the dataset has been used for testing the models (29 eggs:
13 parasitic eggs and 16 eggs of the host). Each egg image
is resized to 1024 × 1024 × 3 (where the third dimension
refers to the RGB color space). Samples from our dataset are
shown in figure 9.

B. PERFORMANCE EVALUATION METRIC
Several image classification metrics have been used (accu-
racy, precision, recall, F1 score, variance, etc.) to measure
howwell themethod performs across all classes [30]. To eval-
uate our method, we have adopted the classification accuracy
metric which represents the percentage of the correctly classi-
fied test images (see equation 2) since it is the commonly used
metric for egg parasitism detection and in order to conduct a
comparison study with other methods.

Accuracy =
# of test samples recognized correctly

Total number of test samples
(2)

C. EXPERIMENTAL SETTINGS
In order to reach the best egg parasitism detection results,
different experiments have been conducted while varying
the input image preprocessing and extracted features and
empirically tuning the SAE parameters. As a result, the best
values of the SAE regularization termwere: 0.004 for the first
AE and 0.002 for the second AE. In addition, the best values
for the SAE sparsity proportion were: 0.1 for the first AE and
0.15 for the second AE. While, the best values of the SAE
weight sparsity penalty for each configuration are shown in
table 2.

D. SINGLE VISUAL INFORMATION-BASED RESULTS
Following our architecture, the extracted visual information
(shape, color and texture) from the FBWN is injected to the
SAE to select the most important information from it. Thus,
in order to test the efficiency of each visual information,
we have evaluated them separately.

As it can be seen from table 2, the shape feature extracted
from the original RGB image has given 48% while the binary
image shape resulted from the image binarization technique
using the imbinarizeMatlab function method (Figure3.b) has
given an accuracy of 54.2%. But, the shape of the alpha
mask image (which is built based on the locally adaptive
thresholding) has given 60.5% which proves the efficiency
of the locally adaptive thresholding in valuing the image
shape information. However, the RGB image provided the
best color feature given an accuracy of 48% in comparison
with the image alphamask which gives an accuracy of 35.5%.
Furthermore, the texture information of the RGB image has
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FIGURE 6. Stacked AutoEncoder with two AutoEncoders (a) the first AutoEncoder (b) the second
AutoEncoder (c) Softmax classifier.

FIGURE 7. Architecture of AutoEncoder: encoder and decoder.

given better accuracy (55.7%) compared to the image alpha
mask (54.3%). Indeed, the RGB image generates the best
color and texture features since it includes these information
more naturally that the image alpha mask.

E. RESULTS ENHANCEMENT WITH FEATURE FUSION
After several tests to identify the best single information,
we have conducted a feature fusion-based experiments in
order to improve the method accuracy. As it can be seen from
table 2, merging the RGB image shape, color and texture
features has led to an accuracy of 69.7% while merging these
features fir the image alpha mask has given an accuracy
of 77.4%.

In fact, fusing features from different input images may
give better results. That is why, we have evaluated different
combinations of features from different images (fusion 1 to
fusion 5 in table 2). It is shown in table 2 that the last fusion
(fusion 5) has given the best accuracy (89.9%) in comparison
with the other features fusions. This can be explained by the
fact that fusion 5 is the result of combination the best single
information feature together.

F. COMPARISON WITH STATE OF THE ART MODELS
Due to the absence of stat-of-the-art results on the same
dataset, we considered testing various classifiers to assess
the effectiveness of our model. Table 3 illustrates the per-
formance comparison results for different classifiers. Indeed,
we have tested the SVM5 and the decision tree6 with the
features of Fusion 5 and they achieved an accuracy of 44.8%
and 49.3%, respectively. However, as deep learning models
are conducted directly on images, the CNN7 and the Faster-
RCNN8 models have been tested on the egg RGB images and
they achieved an accuracy of 57.3% and 68.7%, respectively.
While these classifiers have all been tested using the same
hardware configurations, the SAE have shown its superiority
among them, given an accuracy of 89.9%, as can be shown in
table 3 and figure 10.

V. DISCUSSION
From table 2 and as previously presented, we can notice that
the RGB image texture and color features are the better than
the ones of the image alpha mask input. Indeed, as it can
be seen from figure 9, the egg spots texture and color of the
different Gulls are relatively different which makes the RGB
image texture and color important features for the egg para-
sitism detection. Whereas, for the shape feature, the image
alpha mask performs better than the RGB and the binary
images since it provides the most accurate egg spots shapes
generated from the locally adaptive thresholding binarization
(see figure 3). However, merging different features has giving
better accuracy results for both RGB image and image alpha
mask (see Table 2). Indeed, after several features fusion eval-
uations, merging the best single-features (Fusion 5) has given
the best egg parasitism detection accuracy (89.9%) which

5https://tinyurl.com/SVM-model
6https://www.mathworks.com/help/stats/decision-trees.html
7https://www.mathworks.com/help/deeplearning/gs/create-simple-deep-

learning-classification-network.html
8https://www.mathworks.com/help/vision/ug/getting-started-with-r-cnn-

fast-r-cnn-and-faster-r-cnn.html
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FIGURE 8. Egg classification using descriptor fusion: color and texture descriptors are extracted from the
RGB image and the shape descriptor is extracted from the image alpha mask.

TABLE 2. The accuracy result for our method with different configurations (various inputs and features and different SAE weight sparsity penalty values).

TABLE 3. The accuracy results of different architecture.

prove that merging the most powerful features leads to higher
results.

In addition, as it can be seen from table 3 and figure 10,
the deep learning classifiers (CNN, FasterRCNN and SAE)
perform better than the shallow features-based classifiers
(SVM andDecision Tree). This proves more the effectiveness
of the deep learning models to extract and classify significant
visual features. However, the SAE has given the best result
among the other deep learning models (89.9%). This can be
explained by the fact that CNN and FasterRCNN needs large
dataset to be sufficiently trainedwhile the dataset used for this

work is relatively of a small size. contrariwise, the SAE can
perform well with limited data. In addition, the SAE is sim-
pler model and requires less hyperparameters regularization.

Consequently, our proposed method has exploited the
power of the FBWN in extracting accurate visual features
and the SAE ability in selecting and classifying these fea-
tures to detect the parasitic eggs from the Slender-Billed
Gull’s dataset. The experimental results reached confirm the
effectiveness of our method. Nevertheless, our architecture
is relatively time consuming since it involves several phases
to detect the parasitic egg. But, this is not a big problem

37200 VOLUME 11, 2023



W. Nhidi et al.: Deep Learning-Based Parasitic Egg Identification From a Slender-Billed Gull’s Nest

FIGURE 9. Samples from our Slender-Billed Gull’s egg dataset.

FIGURE 10. Different models accuracy results.

since the task of parasitic egg identification is not a real-time
application due that the time criterion constraint is not crucial
for the biologist.

VI. CONCLUSION
In this paper, we have proposed a Slender-Billed Gull’s
parasitic egg identification method based on the egg visual
features which contributes in saving this endangered species.
Our method extracts powerful features from pre-processed
egg image using the FBWN. Then these features are intro-
duced to the SAE to select the most suitable features and
classify them by the SoftMax algorithm. The experimental
results and the comparative study with other classifiers prove
the robustness and efficiency of our method. As for the
future works, we plan to use more egg image features and
evaluate our method on other egg datasets to confirm more
its effectiveness. In addition, our method will be upgraded by
including more powerful deep learning models.
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