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ABSTRACT Ethereum is one of the first blockchains executing smart contracts, i.e., financial applications
directly executed on the ledger using a virtual machine. High transaction volumes caused by financial
applications, including decentralized finance and non-fungible tokens, slow down the Ethereum Virtual
Machine. Hence, there is a need to detail the execution characteristics of the EthereumVirtualMachine before
its performance can be improved. This work introduces an off-line Ethereum virtual machine tracer called
EVMTracer that produces runtime data dependence graphs from executed transactions as an alternative
program representation. From the runtime dependence graphs, we can deduce valuable metrics about
program execution characteristics, including the degree of parallelization and computational redundancies
in smart contracts. Our experiments encompass all blocks up to 12M on the Ethereum mainnet. We found a
geometric mean of 1.90× theoretical maximum speedup when executing the smart contracts in parallel and
identified 34.97% of SLOAD instructions as redundant.

INDEX TERMS Blockchain, smart contracts, Ethereum, tracing, metrics, parallelism, redundant computa-
tions.

I. INTRODUCTION
The Ethereum blockchain supports trustless and permission-
less execution of smart contracts. Smart contracts received
a lot of attention from applications including trade [1], [2],
IoT [3], [4], trust management [5], [6], [7], banking [8],
[9], [10], [11], decentralized finance (DeFi) [12], [13], [14],
governance [15], [16], [17], non-fungible tokens (NFTs) [18],
[19], [20] and metaverse [21], [22]. By the end of 2021,
Ethereum contained 14M blocks with over four million smart
contracts and has processed over one billion transactions.
More than 177.6 billionUSD were locked in the area of DeFi
alone by May 2022 [23].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin .

The Ethereum Virtual Machine (EVM) is the underlying,
Turing-complete execution platform that processes the byte-
code of smart contracts through transactions [24]. With the
increasing complexity of blockchain applications, the effi-
ciency of the virtual machine becomes paramount for smart
contract execution. According to Ethereum inventor and
co-founder Vitalik Buterin, scaling the transaction through-
put from currently 15 tx s−1 to 100 000 tx s−1 is one of the
most pressing issues of the Ethereum blockchain [25]. Visa,
in comparison, is a direct competitor of Ethereum in terms
of total transaction volume [26], claims a throughput of up to
65 000 tx s−1 [27].

Recent experiments with Ethereum have identified the
EVM as a key performance bottleneck. The average time for
the EVM to interpret a smart contract has been reported as
0.2ms in [28], implying a throughput limit of 5000 tx s−1.
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Likewise, in an experiment that executed the initial 9M
blocks of the Ethereum mainnet, the EVM’s throughput
was below 4208 tx s−1 [29]. Both experiments measured the
net performance of the EVM itself, excluding the consen-
sus protocol and world-state database updates. The reported
figures are thus indicative of the bytecode interpretation
overhead and are not mitigated by Ethereum’s recent con-
sensus protocol shift from proof-of-work (POW) to proof-of-
stake (POS) [30].

It is necessary for the community to understand the exe-
cution characteristics of smart contracts to reduce the EVM’s
execution overhead and to design and implement more effi-
cient virtual machines and environments for the evergrowing
blockchain applications.

However, in the blockchain domain, no established bench-
mark suite exists that could be adopted for the performance
evaluation of the EVM. This is in stark contrast to the ubiquity
of standardized benchmark suites in general-purpose comput-
ing areas, including embedded, compute, JVM-based, edge,
cloud, and HPC [31], [32], [33], [34], [35], [36], [37], [38],
[39]. Althoughmany attempts [25], [40], [41], [42], [43], [44]
have already been taken to understand the performance char-
acteristics of smart contracts, they relied on the availability of
the source code, hence focused more on high-level language
elements. Note that only 5.1% of all smart contracts deployed
on the Ethereum blockchain have been open-sourced [45],
up from 2.2% by 2018 [25]. Given the lack of available
source code, we argue that performance analysis based on
open-sourced smart contracts will not be representative of
real-world blockchain workloads.

We thus turn our attention to bytecode, which is the pro-
gram representation for the deployment of smart contracts on
the blockchain. Programmers typically write smart contracts
in a high-level, specialized language such as Solidity [46],
[47] or Vyper [48], which is then compiled into an immutable
bytecode representation for the EVM. Bytecode is deployed
persistently on the blockchain and invoked for execution on
the EVM through transactions. Because all deployed byte-
code and the entire execution history of all transactions—
including input data—is available on the chain, we base our
workload analysis on smart contract bytecode.

To provide a scalable and representative benchmarking
tool for blockchains, we introduce an offline dynamic tracing
system called EVMTracer, which replays the transactions
locally and collects the runtime dependence graph of the
transactions. The runtime dependence graph is an alternative
representation of the original program’s execution trace con-
taining data flow and control information. This information
can be used to determine the execution characteristics of
smart contracts.
EVMTracer is based on an existing efficient transaction

replay system [29] that enables us to collect runtime infor-
mation for millions of transactions without the substantial
overhead experienced with client software [49]. We collect
the runtime dependence graphs for all transactions in the
initial 12M blocks of Ethereum and use them to determine

two performance characteristics of smart contracts. Two met-
rics are presented to showcase that EVMTracer can dis-
cover useful metrics from millions of blocks and help the
community to get a better understanding of overall runtime
characteristics of transactions. The first metric is the degree
of parallelism at the bytecode instruction level. This metric
can help the community to understand the potential paral-
lelism in smart contracts and determine whether developing
a contract-level parallel execution model is beneficial for the
EVM. The second metric is the number of redundant mem-
ory and storage computations in the smart contract runtime,
in which we count the number of redundant instructions1

that the EVM executes. This metric reveals the potential for
overlooked optimizations and the execution characteristics of
a stack-based instruction set.

This paper makes the following contributions:
• An offline dynamic tracing system that produces run-
time dependence graphs of smart contract executions for
large volumes of transactions.

• At-scale investigation of contract-level parallelism on
the Ethereum blockchain.

• At-scale investigation of redundant computations for
memory and storage IO operations on the Ethereum
blockchain.

We have released the EVMTracer framework as open
source, as described in the paper’s availability statement.

The remainder of this paper is organized as follows: In
Section II, we provide the background for Ethereum and the
EVM. In Section III, we discuss technical details about the
system and the runtime dependence graph. In sections IV
andV, we explain how to obtain the contract-level parallelism
and redundant computation metrics from the runtime depen-
dence graph. Section VI contains the experimental results.
We discuss the related work in Section VII and draw our
conclusions in Section VIII.

II. BACKGROUND
Ethereum can be viewed as a transaction-based state machine
that maintains a world state as shown in Figure 1. The
world state comprises information about the accounts on the
blockchain. Each account is referred to by its account address
and contains the following information: (1) A nonce, which
is a counter used to prevent replay attacks (double-spending),
(2) an account balance representing the endowment of the
account, (3) a code section with the smart contract bytecode
(although an account is allowed to have an empty code sec-
tion), and (4) the storage space of the account. The storage
space provides smart contracts with a persistent state across
transactions. Storage is represented as a key-value map where
the key is the storage address, and the value is the actual data
stored at the address.

1The EVM specification [24] describes operations (I/O, arithmetic, com-
putations, etc.) categorically and instructions (e.g., ‘‘the SSTORE instruction
performs an I/O operation on the storage of an account.’’). We adopt this
convention in this paper.
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FIGURE 1. Overview of Ethereum as a transaction-based state machine.

Each transaction results in a side effect that advances
the state of Ethereum. Transactions are further collated into
blocks, and each block’s transactions are applied sequentially
on the Ethereum blockchain. We classify transactions into
three types. First, an asset transfer transaction takes an asset
from the sender and transfers it to the recipient. Next, a
contract creation transaction creates a new account on the
chain and initializes and stores the smart contract bytecode
in the storage space of the account. Finally, a message call
transaction invokes a target contract on the blockchain.

Dynamic tracing [50] refers to the action of collecting
and investigating runtime behavior of the target program
by recording the executed instructions at program runtime.
Hence, we enable dynamic tracing only on transactions that
result in the execution of smart contracts, i.e., tracing is
performed on message call transactions. Note that tracing
depends on the program’s input, unlike static program anal-
ysis [51] such as abstract interpretation [52], which is not
concerned with a concrete input.

For our purpose, we need to understand four of the nec-
essary fields in a message call transaction. A from and a
to address, which specifies the sender (caller) and recipient
(callee) addresses. A gas limit variable, which specifies the
amount of gas that the sender is willing to pay to execute the
contract. Finally, a call data section that is part of Ethereum’s
application binary interface (ABI), specifies the entry func-
tion to call and its input arguments. Once the miners confirm
a block, the EVM executes the block’s transactions sequen-
tially.

The EVM is a stack-based virtual machine that is specified
in the Yellow Paper [24] and interprets (executes) the byte-
code of smart contracts. The following components define the
internal state of the EVM:
1) Stack: A stack data structure that stores 256 bit values

and has a maximum depth of 1024 stack slots.
2) Memory: An unlimited, linear byte array that supports

random access at runtime. Memory is accessed through
the MLOAD and MSTORE instructions of the EVM.

FIGURE 2. Interworking of the components that comprise the internal
EVM state.

Memory grows dynamically. The MSIZE instruction
reports the current memory size (in bytes).

3) Storage: The global storage contains all storage vari-
ables in Ethereum. Unlike memory and stack, storage
variables are persistent and thus part of the global state of
Ethereum. Storage is accessed through the SLOAD and
SSTORE instructions of the EVM.

4) Program counter (PC):The PC points to the EVM’s next
instruction.

5) Gas: The remaining gas available for the current execu-
tion. The EVMwill terminate a transaction that runs out
of gas.

Figure 2 shows the interworking of the components that
comprise the internal state of the EVM. The PC determines
the next instruction to be executed. The executed instruc-
tion may have a side effect that modifies the stack, mem-
ory, or storage. The executed instruction consumes gas and
updates the PC to point to the next instruction to be executed.
We present a smart contract in Solidity syntax in Figure 3

to familiarize readers with basic EVM operations. For the
sake of demonstration, the depicted bytecode is a simplified
version of the bytecode generated by the Solidity compiler.
In line 2, the 32B wide unsigned storage variable MyVar
is declared. The contract contains a single public function
setStorage, which sets the value of MyVar to input
argument val. A message call transaction has a call data
section (a byte array specifying the target function to be
invoked and its input arguments). In the call data, the first
four bytes represent the ID of the target function, which we
assume to be the function setStorage in this example.
After receiving the call data, the EVM identifies the target
function, dispatches control to the specified function, and
starts execution.

The right-hand side of Figure 3 shows the bytecode repre-
sentation of function setStorage. The purpose of the first
line is to push the value 0× 4 onto the stack, which is the
offset of the first argument in the call data. In the second line,
the CALLDATALOAD instruction pops the top of the stack,
uses it as the offset and pushes a 32B value from call data onto
the stack. (This effectively pushes the argument value Val
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FIGURE 3. Smart contract (left) and the corresponding EVM bytecode of function setStorage (right).

FIGURE 4. Tracer: Dependence graphs are constructed from the shadow state, which is the tracer’s extension of the EVM’s internal
state with runtime dependence information.

onto the stack.) Finally, the code in lines 3–4 stores the result
at the address of variable MyVar in storage.

In Figure 1, the storage variables that belong to a particular
account are located in the account’s <Key, Value> map
that is stored in the <Address, Account> map in the
Ethereum world state. The SSTORE instruction implicitly
takes the current contract as the execution environment. The
Key of MyVar in our example is 0 × 0. Hence, the code in
line 3 pushes 0 × 0 onto the stack. In line 4, SSTORE will
pop the Key and Value from the stack and perform the write
operation on the storage.

III. ETHEREUM DYNAMIC TRACING SYSTEM
The runtime dependence graph (RDG)—or dynamic program
dependence graph [53], [54]—is a dynamic variation of the
program dependence graph [55], [56], [57] (PDG) encoding
data and control dependencies among statements in a pro-
gram. The PDG has been used in compiler optimizations [58]
such as program parallelization [59], and program analyses
such as slicing [60].

As a variation of the PDG, our RDG encodes the dynamic
data and control dependencies for executing the EVM byte-
code for a concrete state on the ledger. A node in the RDG rep-
resents an executed bytecode instruction of a smart contract
execution, and edges represent data- and control-flow depen-
dencies between executed EVM instructions. Our RDGs are
acyclic, whereas the original graphs [53], [54] treated each

statement as an individual node and produced cyclic multi-
graphs.

Our EVMTracer uses the RDGs to reveal the execution
characteristics of smart contracts. Computations may involve
EVM’s stack, memory or storage operations. The data flow
of the EVM is produced from the inputs and outputs of the
computations and is captured in the RDG in the form of edges.
The task of EVMTracer is to capture the data flow of the
EVM faithfully. In addition to data flow, control flow must
be captured as well. Control-flow dependencies are induced
by jumps and calls while executing a smart contract.
EVMTracer extends the EVM interpreter to build RDGs

as a side effect of the smart contract execution; we call this
component the tracer. For each message-call transaction,
EVMTracer invokes the tracer to replay the transaction,
instruction by instruction. During replay, the tracer observes
how run-time data is combined via the stack, memory and
storage for each instruction. From these observations, RDGs
are constructed. The sequence of executed instructions con-
stitutes an instruction trace, or trace, for short.

Figure 4 illustrates the internals of the tracer. The internal
state of the EVM (cf. Section II) consists of five elements (i.e.,
PC, memory, storage, stack, and message buffers). During
execution, these elements affect each other and produce data
dependencies. To record the effect of an executed instruction,
the state of the EVM is observed by the tracer and recorded
into the shadow state, which contains:
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FIGURE 5. Register-based and stack-based program representations and their corresponding RDGs.

1) Trace step: An integer variable i that starts from 1 and
increments by one for each instruction executed until the
contract terminates. We can then uniquely identify the
state of the EVM by referring to a specific trace step.

2) Last Branch (LB): This variable records the trace step of
the last branch instruction, such as JUMPI and JUMP.
It is used to construct control-dependence edges in the
graph.

3) Shadow Structures: The shadow structures record the
data flow in the corresponding parts of the EVM state
and are used to construct the data-dependence edges in
the graph.

4) Last Memory Modifier (LMM): An ad-hoc variable that
is used to record the last instruction that extended the
memory size of the EVM, which is used for recording
the dependency for the MSIZE instruction.

Our RDG consists of trace steps and edges representing
data and control dependencies. Data dependencies describe
the data flow of the instructions, such that the instruction
at trace step i must use the result of another instruction at
trace step j to compute the correct state of the EVM. The
control dependencies describe the program’s path through the
control-flow graph. An instruction at trace step i is executed
only if a certain path was taken from a branch statement
at trace step j. Formally, the graph G(V ,E) is defined by
a set of nodes G.V representing the trace steps i, and a set
of edges G.E ⊆ V × V × L where L indicates the type
of dependency. We employ the following four dependence
types from the literature [56], [57]: read-after-write (RaW),
write-after-read (WaR), write-after-write (WaW), and con-

trol dependency. For each RDG G, we use a unique entry
node Root and a unique exit node End. The Root node repre-
sents trace step 0 and is used for graph initialization. The End
node represents the last trace step in the graph. Both nodes
are used to cover corner cases that we will discuss later.

A. SHADOW STRUCTURES
Figure 5(a) depicts a source code example where we want
to determine the dependency relations for the add operation
in line 6. In the process of compiling this source code to
assembly code of a register-based CPU, variables b and c
have been assigned to registers r1 and r2, which are the
input operands of the add instruction in line 3 of Figure 5(b).
To reveal those data dependencies at runtime, a tracer would
have to record for each CPU register the trace step of the
most recent update (line 1 for register r1, and line 2 for
register r2). When execution reaches line 3, the register
operands induce the dependencies of the add instruction for
trace steps 1 and 2. Thus, the RDG in Figure 5(c) contains the
dependence edges (1, 3) and (2, 3).

However, the EVM uses a stack-based execution model,
where instructions encode the operation only, while operands
are implicitly consumed from the stack and results produced
onto the stack. The ADD instruction in the EVM bytecode
in Figure 5(d) thereby relies on the MLOAD instructions in
lines 3 and 5 to push its operands on the stack. Additional
bookkeeping is thus needed in the tracer to capture these
relations. Figure 5(e) shows the EVM stack for the bytecode
in Figure 5(d) before the execution of the ADD instruction.
For each stack slot, the numbers in parentheses depict the
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trace step from which the stack value originated. The tracer
maintains this bookkeeping information at runtime. Thereby
it becomes evident that the top-most two stack slots that
constitute the operands b and c of the ADD instruction orig-
inated from lines 3 and 5 in the executed bytecode, which
is reflected in the dependence edges (3, 6) and (5, 6) in the
RDG in Figure 5(f). Each MLOAD instruction depends on a
prior PUSH instruction for the addresses of variables b and c,
reflected in the dependence edges (2, 3) and (4, 5).
Similar bookkeeping information is required for the mem-

ory of the EVM, and for the storage of an account. For this
purpose, we introduce shadow structures. Instead of storing
actual values from the EVM state, the shadow structures store
a set of trace steps by observing the state of their correspond-
ing parts in the EVM state. In this section, we explain the
details of each shadow structure. We apply function tsop(i) to
map from trace step i to the opcode of the instruction executed
at trace step i.

1) SHADOW STACK
Most of the intermediate results within the EVM are trans-
ferred through the stack. Therefore, dependencies occur when
data from instruction a is transferred through the stack to
instruction b. In this case, instruction a must strictly execute
before instruction b, which constitutes a RaW dependency.
We implement a shadow stack named SSTACK to trace

stack dependencies. The shadow stack stores trace steps and
observes the effect that instructions executed by the EVM
exhibit on the stack (we call the reader’s attention to the subtle
but vital distinction between the terms shadow stack and stack
for the remainder of the exposition). We utilize the shadow
stack and the following stack-related rules (s1) and (s2) to
construct the dependence graph G.
(s1) When a value is pushed onto the stack at trace step i, the

trace-step value i is pushed onto the shadow stack.
(s2) When a value is popped from the stack at trace step i,

we pop the shadow stack’s top-of-the-stack j and add the
dependence edge (i, j,RaW) to the dependence graphG.

Intuitively, this means that when an instruction x pushes a
value onto the stack, the subsequent instruction that uses that
value has a RaW dependency on instruction x.
Two EVM instructions do not create values on the stack

and need special treatment, i.e., SWAP and POP.
The EVM specification [24] employs a zero-indexing

scheme for the stack such that stack[0] denotes the top-of-
the-stack (the first stack item), stack[1] denotes the stack
slot below the top (the second stack item), and stack[n]
generally denotes the nth stack slot below the top (stack item
n+ 1). We adopt this indexing scheme for the shadow stack.

Let tsop(i) be aSWAP⟨n⟩ instructionwhich swaps the values
of stack slots stack[0] and stack[n]. After execution of
trace step i, we create dependencies (i,SSTACK[0],RaW)
and (i,SSTACK[n],RaW). Finally, we overwrite the values
at SSTACK[0] and SSTACK[n] by i.
The POP instruction pops the top-of-the-stack and discards

it, i.e., the discarded value is not needed for the computation.

Therefore, no data nor control dependencies are required for
this instruction—it is ignored in the dependence graph.

2) SHADOW MEMORY
The EVMprovides a memory area representing a linear, zero-
indexed sequence of bytes. Memory instructions like MLOAD
andMSTORE can read from andwrite to this memory. Instruc-
tions like CALL and CALLCODE rely on memory to retrieve
function arguments and provide a return value. The EVM
automatically extends the memory size whenever necessary,
and the MSIZE instruction returns the current memory size
in bytes.

We apply an idea similar to the shadow stack by imple-
menting a data structure called shadow memory (SMEM),
which stores a linear sequence of trace steps. We use index
operation SMEM[i] to represent the ith value stored in the
shadow memory, corresponding to the ith byte of memory,
i.e., mem[i]. The EVM initializes memory to zero. To com-
ply with this convention, we initialize the shadow memory
with our artificial Root node. Unlike the stack, memory is
not restricted to last-in-first-out semantics, which allowsWaR
andWaW dependencies in addition to the RaW dependencies
that occur on the stack.

If the instruction at trace step i interacts with memory
at index n, we employ the following two memory-related
rules (m1) and (m2) for constructing the dependence graphG.

(m1) For a value read from mem[n], we create a RaW
dependency from trace step i to SMEM[n].

(m2) For a value written to mem[n], we create a
WaW dependency from trace step i to SMEM[n].
We then search the dependence graph G for nodes
{v | (v,SMEM[n],RaW ) ∈ G.E}. For each node v, we
create a WaR dependency from step i to step v. Finally,
we update SMEM[n] to i to record the trace step that
wrote memory location n.

Rule (m1) models the standard RaW dependency we have
discussed so far where an instruction depends on the result
of a previous instruction. The reason for rule (m2) is that
if an instruction at trace step i overwrites the result of trace
step j, we need to ensure that all instructions use the result of
step j before executing step i. Otherwise, the input of those
instructions would be overwritten by step i. Note that WaR
andWaW are both known as false dependencies because they
can be eliminated by using different memory locations to
store different values [57]. E.g., a WaR dependency between
tsop(i) and tsop(j) can be eliminated if the program is rewritten
such that tsop(i) and tsop(j) operate on different memory
locations. However, such transformations are not in the scope
of this paper.

Finally, the MSIZE instruction reports the current size of
the memory at runtime. The EVM grows the memory on
demand. E.g., if the current size of the memory is 32B and a
write operation occurs that writes to the 42nd byte in memory,
the EVM will resize the memory to satisfy the request of the
operation. Therefore, we record the last instruction’s trace

47164 VOLUME 11, 2023



X. Hu et al.: EVMTracer: Dynamic Analysis of the Parallelization and Redundancy Potential

step that extended the memory size in variable Last Memory
Modifier (LMM ) of the shadow state initialized to the Root
node. Execution of instruction MSIZE entails the creation of
a RaW dependency on the trace step stored in variable LMM.

3) SHADOW STORAGE
Unlike linearly-indexed memory, access to a variable in
EVM storage requires two key-value maps: an <Address,
Account> map to retrieve the target account and a <Key,
Value>map to retrieve the value of the targeted storage vari-
able of the selected account. For the purpose of this paper, it is
sufficient to regard storage as a single <Key, Value>map
where the Key comprises the account address and the key
of the variable. Storage accesses exhibit the same ordering
constraints as memory, i.e., RaW, WaR, and WaW. Similar
to our approach with memory, we create a shadow storage
(named SSTORAGE) to express dependencies between exe-
cuted storage instructions.

Like the EVM storage, our shadow storage is a key-
value map. Similarly, as the already introduced shadow data
structures, it stores trace steps instead of actual values for
tracing dependencies. Conceptually, each value in the shadow
storage is set to the Root note before the start of the tracer.
Practically—as the index space of the key-value map is infi-
nite, and the actual keys are unknown ahead of the trace—
the tracer starts with an empty key-value map. Whenever
a non-existing entry is visited, it is initialized to the Root
node to represent the initial state of the execution. The EVM
instruction set contains only one storage write instruction,
SSTORE, and one storage read instruction, SLOAD.
We collect dependencies similar to our approach for mem-

ory. In the following, let k be the storage key accessed at trace
step i.

(p1) For a value read from storage at index k , i.e.,
storage[k], we create a RaW dependency from step i
to SSTORAGE[k].

(p2) For a value written to storage[k], we create a
WaW dependency from step i to SSTORAGE[k].
We then search the dependence graph for nodes
{v | (v,SSTORAGE[k],RaW) ∈ G.E}. For each
node v, we create a WaR dependency from step i
to step v. Finally, we update the shadow storage
SSTORAGE[k] to i to record the trace step that wrote
storage location k .

4) CONTROL DEPENDENCIES
A control dependency is a constraint due to the control flow
of a program [56]. E.g., the instruction following a branch
instruction can only be executed after the branch target has
been decided. For this purpose, we employ variable LB to
record the tracing step of the last branch instruction (variable
LB is initialized to the Root node). For each instruction at
trace step i, add edge (i,LB,Ctrl) to graphG. This effectively
creates a strict control dependency among all basic blocks, so
each basic block must be executed in order. Finally, after the

trace is completed, we create an artificial node End such that
End is dependent on all leaf nodes in the dependence graph.

5) EFFICIENT DEPENDENCE GRAPH CONSTRUCTION
In this section, we provide the technical details of how depen-
dence graphs are represented inside EVMTracer. In our
implementation, shadow structures store references to graph
nodes instead of raw trace steps. (We chose trace steps in
the exposition of the paper to facilitate reading and highlight
the correspondence between graph nodes and trace steps.)
A node in the dependence graph contains references to its
dependent nodes (i.e., outgoing edges), dependencies (i.e.,
incoming edges), dependency types, and the corresponding
trace step. During tracing, whenever a new node is created, its
dependencies are fetched from the shadow structures in the
form of references to graph nodes. Therefore, construction
can be done immediately by creating a new graph node and
connecting it with its dependencies which become the new
node’s incoming edges. A WaR dependency represents a
special case that requires the tracer to search one level deeper:
instead of fetching the immediate dependency directly from
a shadow structure, the outgoing edges of the dependency
need to be searched. This pertains to the implementation of
Rule (m2) of the shadowmemory andRule (p2) of the shadow
storage as introduced above.

B. RUNTIME DEPENDENCE GRAPH EXAMPLE
The left-hand side of Figure 6 depicts an example of a smart
contract written in Solidity. It contains two storage vari-
ablesstorage1 andstorage2 and a functionreset that
sets both storage variables to the value 42. The right-hand side
of Figure 6 shows the EVM bytecode snippet corresponding
to the reset function.

We show the process of the RDG construction in Figure 7.
The example contains only RaW dependencies. Because the
bytecode contains no branch instruction, it generally holds
that line i of the bytecode from Figure 6 is executed at trace
step i. Figure 7 provides one subfigure (i.e., 7(a)–7(g)) per
trace step (i.e., 1–7). For each subfigure, the caption specifies
the trace step and the executed instruction.

In trace steps 1 and 2, the EVM interpreter pushes two
values onto the stack. The shadow stack observes those effects
and records each stack value in the trace step. I.e., trace step
values 1 and 2 are pushed on the shadow stack.

In trace step 3, DUP2 is executed, duplicating the stack’s
second item. Therefore, a RaW dependency is created in the
RDG from trace step 3 to trace step 1, which is the trace step
that produces the duplicated value. (Note that the RDG node
labeled ‘‘R’’ represents the Root node. Trace steps 1 and 2 do
not depend on any actual trace step. To keep the RDG con-
nected for practical matters to be discussed later, trace steps
without dependencies depend on the Root node.)
In trace step 4, instruction SWAP1 swaps the first two

values on the stack. As shown in the previous shadow stack
in Figure 7(c), those stack values were created in trace
steps 2 and 3. Thus trace step 4 has RaW dependencies on
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FIGURE 6. Smart contract (left) and the corresponding EVM bytecode of function reset (right).

FIGURE 7. RDG construction example, all dependencies are RaW dependencies.

trace steps 2 and 3. The first two values of the shadow stack
are updated to trace step 4, which produces the corresponding
swapped stack values.

In trace step 5, the SSTORE instruction is executed, which
consumes the first and second stack items. The first stack item

constitutes an address in storage (for the sake of the example,
we assume that the Solidity compiler has allocated storage
variable storage1 to storage location 0). The second stack
item constitutes the value stored at the given address (0× 2A
in this example). The dependence edge (4, 5) is added to the
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RDG to record the dependency of trace step 5. Meanwhile,
the value of storage1 in the shadow storage is rewritten
to trace step 5, reflecting the last trace step that modified the
storage value.

Trace steps 6 and 7 follow along the same lines. The
final state of the EVM’s stack and storage and the generated
RDG are shown in Figure 7(g). The RDG node labeled ‘‘E’’
represents the End node.

C. EFFICIENT TRACING
Collecting the trace information of the whole chain requires
the execution of all transactions. Therefore, EVMTracer is
built on a transaction replaymechanism to replay transactions
locally and collect metrics efficiently.With millions of blocks
on the blockchain, it is crucial to have an efficient tracing
system for rapid collection. However, blockchain programs
are inherently sequential to execute block n, and the world
state after block n − 1 is required to be the input state. The
Ethereum world state contains the data of all the accounts on
the blockchain. Data is encoded with a recursive length prefix
(RLP, [24, Appendix B]) and is associated with each account
by key-value (KV) pairs. The KV pairs are then stored as
Merkle Patricia tries (MPTs). The storage information can
be accessed or updated at runtime by executing the SLOAD
andSSTORE instructions. However, because of the size of the
MPTs, theSLOAD andSSTORE instructions are prohibitively
expensive in terms of performance [49].

There are several options when it comes to historical
transaction replay. An Ethereum client can be configured as
an Ethereum archive node to store the entire history of the
Ethereumworld state locally. A server likeGeth then provides
a JSON RPC server, where the client sends the request to the
server containing the arguments and the ID of the block it
wants to replay. The server then retrieves the world state at
block n− 1, replays block n and sends the result back to the
client. However, this approach suffers from scalability issues
due to the overhead of the JSON RPC API and the large
amount of disk space occupied by the world state database.
It requires 14 TB of disk space [61] to support full chain
replays up to block 14M and can take on the order of several
weeks to complete the replay [29].

An alternative approach configures the client as an
Ethereum full node. A client can download the world state
at block n − 1 and then replay and verify block n. However,
to download a particular state, the client must be able to find a
peer in the P2P network that can provide the requested world
state. Such a peer may not be available, and a sought world
state far behind the tip of the chain will likely not be provided.
If such an absence is encountered, the client must compute
all the local states to produce the state at block n − 1. The
empirical data reported in [29] suggests that replay from full
nodes is essentially faster than archive nodes but still suffers
from severe performance and storage issues.

Finally, the above approaches all lack built-in multi-
threading features. Although it is possible to run multiple

Geth JSON servers to increase replay throughput with archive
nodes, the performance of the archive node is inherently slow.
Adding more instances does not help much in practice. For
full nodes with multiple instances, it is currently impossible
to allow multiple full nodes to share the same copy of the
world state. Therefore, each instance must obtain its copy of
the database, further aggravating the storage issue.

We built our EVMTracer system on top of the Substate
Replayer, a scalable and efficient replay system developed
in [29]. By encoding the states of each transaction to their
minimal form, the Substate Replayer can reproduce the trans-
actions efficiently and in parallel. Figure 8 illustrates the
overall replay system. To record a transaction in the Substate
Replayer, it first executes the transaction by the EVM. It then
records the minimal information necessary to reproduce the
result faithfully. This includes the storage information, which
is a map of <Address, Key> to Value that are accessed
or modified during the execution, the transaction descrip-
tion and the transaction result. That related information is
stored in the substate database.Most importantly, the replayer
records only the set of KV pairs accessed or modified by
a transaction. In practice, a transaction only involves a few
account addresses. As a result, a substate’s size is much
smaller than the size of the complete world state at a given
block height. The recording step is required only once. After
all the substates are recorded, the replay can be performed off
the chain. In comparison, the substate replayer can perform
2817 tx s−1 when replaying blocks from 0–9M, being on
average 4.54× faster than the full node replay from Geth and
consuming 59% less disk space [29]. More importantly, the
substate replayer provides multi-threading support without
disk-space overheads. Those characteristics make the Sub-
state Replayer a viable candidate for collecting execution
traces for EVMTracer.

For our work, we first obtained the recorded substates up to
12M blocks from the Substate Replayer. Given the substate
database, we replayed those transactions locally through the
EVMTracer system. Because the analysis of each transac-
tion is conducted off the chain and in isolation, EVMTracer
parallelizes the tracing of transactions through the use of
multiple threads. For each transaction, a tracer is invoked to
record the runtime dependence graphs of the EVM. A tracer
takes as input a substate, which contains the contract bytecode
and the program input, and outputs the runtime dependence
graphs. The dependence graphs are collected for subsequent
analyses and thus constitute the input for our parallelization
and redundant computation metrics. Figure 9 demonstrates
the overall workflow of the tracer.

IV. CONTRACT-LEVEL PARALLELISM
Leveraging the parallelism inherent in computations through
parallel programming [62], [63], [64], [65], [66], [67], [68]
is an important aspect of high-performance systems. A par-
allel execution model calculates a schedule based on the
dependencies between tasks to take advantage of the multiple
computation units available on modern hardware to execute
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FIGURE 8. Substate Recorder Components from [29].

FIGURE 9. EVM tracer system (EVMTracer).

multiple tasks concurrently, thereby potentially increasing
system performance.

In this section, we investigate the potential gain from
contract-level parallelism, i.e., the performance improve-
ment that can be obtained from scheduling the tasks of a
message-call transaction so that the EVM can execute mul-
tiple instructions in parallel. The runtime dependence graph
describes the dependence relations among tasks. E.g., from
the final runtime dependence graph in Figure 7(g) we observe
that the two SSTORE instructions at trace steps 5 and 7 do not
have to be executed sequentially. Because SSTORE instruc-
tions generally incur a high execution-time overhead [49],
executing them in parallel can substantially improve EVM
performance.

The parallel execution model considers all dependence
types, including false dependencies (WaR and WaW) and
control dependencies. Although false dependencies can be
avoided by replicating data in memory, extending the mem-
ory space is not free in Ethereum and consumes gas. Note
that EVMTracer is an analysis tool and does not conduct
program transformations in the manner of optimizing com-
pilers. The model assumes zero communication cost among
processors. The basic principle to calculate the theoretical
speedup is first to obtain a cost function fc which returns the
estimated cost for the instruction at trace step i. Then, based
on the cost of each task, calculate an instruction schedule L,
which determines the execution order of instructions. Finally,
we simulate the execution on n processors and compute the
performance gain Tn.
We obtained our cost function from the empirical result of

Baird et al. [49]. In their work, they measured the execution
time of EVM instructions in segments of one million blocks.

The performance model varies with block height because
of (1) implementation changes in the EVM client due to
protocol updates, performance improvements, and bug fixes,
and (2) the costs of storage instructions like SSTORE and
SLOAD that increase with block height.
We then devise a list-scheduling algorithm to compute the

schedule L for the tasks. The scheduling problem is known to
be NP-complete even with the assumption of zero communi-
cation cost and uniform resource distribution [69]. However,
Graham [70] showed that any valid list-scheduling heuristic
would be within a factor of 2× of the optimal schedule.
Even better, it has been shown empirically [71] that a greedy
scheduling heuristic using the critical path (CP) is within
5% of the optimal schedule in 90% of all cases. Hence,
for our experiment to obtain task schedules at scale, it is
advantageous to employ greedy CP scheduling.

The CP scheduling algorithm always picks the node v
with the longest path to the artificial end node (i.e., End).
Intuitively, the CP scheduling algorithm greedily picks the
node that leads to the path with the highest workload. We first
calculate the priority function pri() with the help of backward
induction. Let N+(v) denote the out-neighborhood of node v,
which is the set of nodes o adjacent from v, i.e., connected
by an outgoing edge (v, o). Then, pri(v) denotes the cost from
node v to the End node:

pri(v) =

{
0 if v is the End node,
fc(v)+max({pri(v′) : v′ ∈ N+(v)}) else.

After obtaining the priority function, we simulate the byte-
code execution on n processors to calculate its expected
execution time. Our simulation, as stated in Algorithm 1,
employs the dependence graph to identify instructions that
have all dependencies met and are thus ready to execute. (For
such a ready instruction, the corresponding node in the depen-
dence graph has no incoming edges.) Ready instructions are
scheduled for execution on the executor, a simulated n-way
superscalar EVM interpreter that we employ to record the
overall execution time of the bytecode instructions. When
the executor has completed the execution of an instruction,
the node of the corresponding trace step is removed from
the dependence graph, which will render subsequent instruc-
tions ready for execution. The simulation terminates when all
nodes of the dependence graph have been executed.

Our simulator employs priority queues [72], which are
sets of elements where each element has a key associated.
Given a set S, operation Insert(S, x) will add element x to the
set. A min-priority queue provides operation ExtractMin(S),
which will remove and return the element with the smallest
key from S. Likewise, a max-priority queue provides opera-
tion ExtractMax(S) to remove and return the element with the
largest key.

In lines 7–9 of Algorithm 1, the simulator inserts all nodes
from the vertex set G.V of the dependence graph that have
an in-degree of 0 into the ready-queue S. The nodes with an
in-degree of 0 are those nodes which do not have incoming
dependence edges and hence contain instructions that are
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Algorithm 1 Bytecode Execution Simulation for n Proces-
sors
Input:

pri: priority function
fc: instruction cost function
G: dependence graph
n: number of processors

Output:
t: execution time utilizing n processors

1: function simulateExecution(pri, fc,G, n)
2: t ← 0
3: S ← ∅ ▷ Ready instructions max-priority queue
4: Exec← ∅ ▷ Executor min-priority queue
5: while G.V ̸= ∅ do
6: ▷ Add nodes n with no incoming edges in G to

priority queue S, according to node’s priority
pri(n): ◁

7: for each n ∈ G.V s.t. deg-(n) = 0 do
8: n.key = pri(n)
9: Insert(S, n)
10: ▷ While instructions ready and executor has

vacant slots: ◁

11: while S ̸= ∅ and |Exec| ≤ n do
12: ▷ Get node i with highest priority: ◁

13: i← ExtractMax(S)
14: ▷ Insert instruction i in executor: ◁

15: i.key = fc(i)
16: Insert(Exec, i)
17: ▷ Execute shortest-running instruction i: ◁

18: i← ExtractMin(Exec)
19: ti = i.key
20: t ← t + ti
21: ▷ Update costs of instructions in executor: ◁

22: Temp← ∅
23: for each n ∈ Exec do
24: n.key = n.key− ti
25: Insert(Temp, n)
26: Exec← Temp
27: ▷ Update dependence graph G: ◁

28: remove node i and its outgoing edges in G
29: return t

ready to execute. The loop in lines 11–16 fills executor Exec
with instructions from the ready queue up to the execu-
tor’s maximum capacity of n instructions. Because S is a
max-priority queue where the key is the priority of a node, the
extraction operation in line 13 will always choose the ready
instruction with the highest cost towards the End node. (As
mandated by the CP scheduling algorithm.)

The executor itself is a min-priority queue, where the key
is the execution-time cost of instructions (see lines 15–16).
The executor will thereby always select the shortest-running
instruction for execution (line 18). The executor adds the
instruction’s execution time ti to the accumulated time t
(lines 19–20). Because execution is n-way parallel, the cost of

each of the remaining instructions in the executor is reduced
by ti (lines 22–26). We update the dependence graph by
removing node i and its outgoing dependencies (line 28).
The simulator iterates until all the vertices in the dependence
graph have been processed.

To find out the theoretical maximum speedup that can be
obtained from parallel execution of independent instructions,
we determine the bytecode execution time for a superscalar
EVM interpreter with an infinite number of parallel execu-
tion units. In this case, no simulation is needed because the
execution time is equivalent to the length of the critical path
in the dependence graph G, starting from the artificial root
node Root to the artificial end node End. In what follows,
we write Tn for the bytecode execution time achieved by an
n-way superscalar EVM interpreter, and T∞ for the execution
the time when utilizing an infinite number of execution units.
Note that T∞ is equivalent to the cost of the critical path inG,
which is computed during the scheduling step, i.e., pri(Root).

V. REDUNDANT COMPUTATIONS
Let EVMi be the input state of the EVM at trace step i.
The instruction executed at trace step i constitutes a side
effect fi that produces an output state fi(EVMi). The instruc-
tion at trace step i is considered redundant if there exists a
previously-executed instruction of the same operation type
with side effect fj that results in fi(EVMi) = fj(EVMi). Intu-
itively, this means that there is no need to compute the result
of the instruction at trace step i if we can memoize and reuse
the result of the instruction at trace step j.

For this work, we are interested in the number of redun-
dant memory and storage instructions, i.e., MLOAD, MSTORE,
SLOAD and SSTORE. Instructions MLOAD and MSTORE
are used for accessing the EVM memory. They enable
features like dynamic data structures and customized data
types in high-level smart-contract languages. The SLOAD
and SSTORE instructions are the only means for the user to
interact with the storage of an Ethereum contract, and they
are the most expensive instructions in terms of gas cost and
execution-time overhead [49]. Therefore, we are focusing on
those four instructions for investigating redundant computa-
tions on the Ethereum blockchain.

We use the runtime dependence graph to determine redun-
dancy. This is done by finding instructions that have the same
sequence of data dependencies in the dependence graph. For
these metrics, we ignore WaR, WaW, and control dependen-
cies because they do not concern the input data flow of an
instruction, but only the order in which the instructions should
be executed.

Our redundancy analysis focuses on each contract in iso-
lation, that is, an external contract call will generate its own
(separate) metrics. We accomplish this distinction by identi-
fying contract call instructions (e.g., CALL, CALLCODE) in
the dependence graph such that redundancy is only counted
within the same contract call.

The dependence graph we build represents each trace step
as an individual node. To find the instructions that share
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FIGURE 10. Smart contract (left) and the EVM bytecode of function reset (right).

FIGURE 11. Reduction of the runtime dependence graph (a) to its minimal form (c).

the same data dependencies, we reduce the data dependence
graph to its minimal form, i.e., we merge redundant instruc-
tions into a single node.

We classify the data input of instructions into two cate-
gories, either stateless or stateful. Stateless input constitutes
input values that are always the same for each execution
of a given instruction. E.g., the PUSH instruction pushes a
constant onto the stack; the value being pushed is statically
encoded in the bytecode format and hence stateless. Another
example is the SLOAD instruction, where one of its input
values is the address of the target contract. The context is the
current contract address if invoked through the CALL instruc-
tion. If invoked through the DELEGATECALL instruction, the
context is the caller’s address. This value is predetermined
before execution starts and is always the samewithin the same
contract execution; therefore constitutes a stateless input. Our
dependence graph records the stateless inputs for each trace
step. We use function fstateless(i) to return an ordered list of
stateless inputs for the instruction at trace step i. Likewise,
function fRaW(i) returns an ordered list of inputs from RaW
dependencies at trace step i.

A stateful input is an input value that has been created
by another instruction and that is dependent on the EVM
state (i.e., stack, memory, or storage). Stateful inputs are
described by the data dependence graph. For example, the

second argument of SLOAD is the storage key to load from.
This value is always read from the top of the stack.

We can then find redundant instructions and merge them
into the same node incrementally. Starting at trace step i = 1,
for each trace step, an instruction is redundant if there exists
another instruction at trace step j such that the following four
conditions hold.

(c1) j < i ∧
(c2) tsop(i) = tsop(j) ∧
(c3) fstateless(i) = fstateless(j) ∧
(c4) fRaW(i) = fRaW(j).

Intuitively, the instruction at trace step i is redundant if there
exists a trace step j prior to step i in the trace, trace steps i
and j contain the same instructions, and the instructions agree
on the stateless inputs and on the RaW dependencies.

E.g., consider the example program and its corresponding
bytecode in Figure 10. The example is similar to the one
in Figure 6, with the only difference that the two storage
values are reset to another storage value init. Figure 11(a)
shows the final dependence graph produced by the tracer. All
edges represent RaW dependencies; With each trace step i
we depict the stateless input fstateless(i) next to it. E.g., trace
step 1 is a PUSH instruction associated with the value 0× 2,
and the SLOAD and SSTORE instructions are associated with
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TABLE 1. Hardware specification for experiments.

the contract address, which is represented by @ (they are
all the same in this example). Starting at trace step 1, the
first redundancy is found at trace step 5, where the two
push instructions 1:PUSH 0 × 2 and 5:PUSH 0 × 2 are
associated with the same stateless input 0 × 2 and only
dependent on theRoot node. After merging trace step 5 into 1,
the next redundancy is found at trace step 6 which coincides
with trace step 2, where the two SLOAD instructions share
the same data dependencies (trace step 1 and Root) and are
associated with the same contract address. The remaining
trace steps 7 and 8 do not yield further redundancies showing
that the dependence graph in Figure 11(c) is in its minimal
form, and one redundant PUSH and one redundant SLOAD
instruction have been identified.

VI. EVALUATION
The hardware specification of our evaluation platform is
stated in Table 1. This platform is an on-premise bare metal
server maintained by the authors of this study. To accommo-
date the substate database and the trace data, an array of five
6 TB Seagate HDDs was used.

Our tracing stage employed 64 worker threads and col-
lected statistics for the initial 12M blocks of the Ethereum
mainnet. The details of the runtime dependence graphs for
each segment of 1M blocks are depicted in Table 2. Tracing
finished within three days and resulted in 614million runtime
dependence graphs, which amount to 29.13 TB of data. The
number of traces and the size of the dependence graphs
increase in the number of blocks (i.e., with block height),
which indicates that the number of transactions per block and
the complexity of the computations inherent in transactions
have been steadily increasing since the inception of Ethereum
in 2015.

A. PARALLELISM METRIC
Regarding our parallelismmetric we investigate the following
research questions:

1) How much parallelism can be leveraged at runtime?
2) How many execution units do we need to obtain a given

speedup?
3) Is it worth developing contract-level parallelism for

future smart contract execution models?

Table 3 depicts the average speedup for each segment of
1M blocks. We write T∞ to denote the theoretical maximum

TABLE 2. Experimental results per segment of 1 M blocks.

TABLE 3. Average obtainable speedup Tn for an n-way superscalar EVM
interpreter, per segment of 1 M blocks.

speedup from an infinite number of execution units, and
Tn for the speedup using n execution units. It follows from
column ‘‘T∞’’ that the parallelism inherent in the bytecode
is similar across all segments. The largest speedup of a fac-
tor of 2.29× is observed with the segment 2–3M, but we
note that in this segment, the Ethereum network was facing
denial-of-service (DOS) attacks that exploited underpriced
EVM instructions to slow down block processing [73]. The
2–3M segment may thus not be the most representative wrt.
the performance of main-stream smart contract workloads.
Leaving out this segment, we obtain a geometric mean [74]
for the theoretical maximum speedup T∞ of 1.90×. As can
be observed from columns ‘‘T2’’–‘‘T8’’, the speedup from
increasing the number of execution units levels off quickly.
Four execution units already leverage a large part of the
inherent parallelism, and the performance with eight execu-
tion units is very close to the theoretical maximum speedup.

Figure 12 shows the distribution of the theoretical max-
imum speedup. We define the performance ratio as 1/T∞
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FIGURE 12. Distribution of parallelism potential. Performance
ratio = 1/T∞.

to normalize the speedup. E.g., a performance ratio of
0.2 corresponds to a 5× speedup. We observe a median per-
formance ratio of 0.56 at a speedup of 1.79×. The lower and
upper quartiles are 0.47 and 0.61, respectively. Half of all
transactions thus exhibit a speedup in the range 1.63–2.12×.
Only 0.48% of all transactions have a performance ratio less
or equal to 0.3 to achieve a theoretical maximum speedup
≥3.33×.

It is instructive to draw a comparison of these performance
figures from the EVM with the instruction-level paral-
lelism (ILP) observed with CPU architectures. The com-
puter architecture field has a 25-year history of research
and development into ILP, which has produced compre-
hensive quantitative data about the performance of various
workloads on contemporary, register-based microarchitec-
tures [75], [76], [77], [78], [79]. The EVM, in comparison, is a
novel, stack-based virtual machine architecture with smart
contracts as its only workload.

Despite these inherent differences, we observe the follow-
ing striking similarity: the reported speedup that ILP yields
from leveraging the parallelism within basic blocks is on
average 1.74×, median 1.5× [77]. In comparison, the median
speedup obtained in our study is 1.79×. (Note that our use of
control dependencies between basic blocks enforces in-order
execution of basic blocks.) Although advances in computer
architecture (e.g., speculative execution [75], register renam-
ing [80], alias analysis [81], predicated execution [82]) and
compilers (e.g., loop unrolling, software pipelining [56]) fur-
ther increased ILP, the diminishing returns from those mea-
sures prevented modern CPU designs from exceeding 8-fold
instruction issue [75, Fig. 3.46], and gains have been found
diminishing already beyond 4-fold instruction issue [76].

To assess the question as to what extent the ILP in EVM
bytecode can be further leveraged by the before-mentioned

TABLE 4. Redundant computations and wasted resources in the initial
12 M blocks of the Ethereum mainnet. For each instruction, we provide
the total number of occurrences (non-redundant plus redundant), the
number of redundant occurrences (out of the total), and the wasted
resources in terms of Ethereum gas and USD. All quantities stated in units
of million (M). Gas price and Ethereum price are averaged at 80.50 gwei
per gas unit and 2453.65 USD per Ether, using the historical average
price [84], [85] from Jan. 2021 until Nov. 2022 (the time of writing).

computer-architectural measures, we note that the EVM
meters the execution of bytecode instructions in units of
gas, and that any measure that increases the number of
executed bytecode instructions (including failed speculative
execution across basic blocks due to branch misprediction)
will inevitably increase the gas cost of transactions and thus
will not be economical on the Ethereum platform. Likewise,
the amount of storage used by a smart contract is metered,
and measures that may increase the storage size of a smart
contract (including duplication of storage locations to elimi-
nate false dependencies) will not be economical. In contrast,
compilation techniques such as software pipelining and loop
unrolling can potentially be adopted for the economic con-
straints of the EVM’s execution model. We consider this as
an area of future research that exceeds the scope of this paper,
which focuses on the bytecode deployed on the Ethereum
mainnet. The contribution of EVMTracer for such work
will be the provision of a suitable metric that can readily be
computed for a smart contract deployed on a testnet.

To answer our third research question, our experiments
suggest that the bytecode already deployed on the Ethereum
mainnet contains a non-negligible amount of ILP (1.79×).
To make its exploitation profitable, optimizing compilers
may be required to further increase the inherent amount of
ILP in bytecode. But optimizing-compiler support for the
blockchain domain is reported to be immature and lacking
optimizations for ILP [41]. Smart contracts have been found
to contain a sufficient amount of loops [83], which provides
the potential for the before-mentioned optimizations on soft-
ware pipelining and loop unrolling, as long as the inherent
economic constraints of the Ethereum gas cost model can
be met. The Ethereum community has been found to antic-
ipate new language and compiler versions quickly [42], but
already-deployed contracts are immutable and hence unaf-
fected by future changes in the compiler.

B. REDUNDANT COMPUTATIONS
With our redundancy analysis, we focus on the MLOAD,
MSTORE, SLOAD and SSTORE instructions to conduct
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TABLE 5. Average number of redundant instructions per transaction.

a quantitative analysis to answer the following research
questions:

1) What is the amount of redundant computations that
smart contracts execute at runtime?

2) What is the cost overhead of redundant computations in
terms of gas and USD?

Table 4 summarizes the redundant computations and
wasted resources for the initial 12M blocks of the Ethereum
mainnet. Among the surveyed instructions, SSTORE exhibits
the most efficient utilization with a redundancy rate
below 0.1% of all executed instructions. Next, in terms
of efficient utilization is the MSTORE instruction, with
a redundancy rate of 14%. Efficiency decreases further
with the SLOAD and MLOAD instructions, of which we
find that 34.97% of all SLOAD instructions and 54.54%
of all MLOAD instructions are redundant. Consequently,
the amount of wasted gas and its monetary equivalent
of 253.79millionUSD for SLOAD and 7.03millionUSD
for MLOAD are substantial. Connecting these findings with
quantitative performance data reported for the Ethereum
blockchain [49], we note that with the later blocks in the
cited study (i.e., the range 5–8M), the EVM on average had
to spend more than 75% of the overall bytecode interpreta-
tion time on SLOAD instructions. Therefore, the execution-
time overhead of the SLOAD instructions that EVMTracer
detected to be redundant can be expected to be non-negligible
and must be tackled to reach the transaction throughput goals
of Ethereum (cf. Section I).

We attribute the low redundancy rate of SSTORE to its
prohibitively high gas cost. The Ethereum specification as of
Oct. 2022 [24] charges 2900 units gas for anSSTORE instruc-
tion (category Gsreset), compared to 3 units gas for MSTORE
(Gverylow). Programmers of smart contracts thus always had a
high incentive to eliminate redundant storagewrite operations
already in the source code, e.g., by deferring updates to the
storage until after the entire computation has been accom-

plished. Related, a study from the year 2020 already found
the Solidity compiler solc [46] to cache the most frequently
accessed storage data in memory [41]. The historical data that
EVMTracer collected for redundant instructions per trans-
action as depicted in Table 5 supports these facts: the overall
number of SSTORE instructions (column ‘‘SSTORE.Total’’)
per transaction does not significantly change across the
1-million segments of blocks on the Ethereummainnet. How-
ever, we observe a steady increase in the number of MSTORE
instructions (column ‘‘MSTORE.Total’’).

We present two contributors for the high redundancy
rate of MSTORE instructions. First, compilers of smart con-
tracts will cache storage data in memory, as mentioned
above, which will convert redundant SSTOREs into redun-
dant MSTOREs. Second, it has been reported on the Solidity
GitHub repository that the Solidity compiler will generate
redundant MSTORE instructions under certain circumstances.
In particular, we have found two issues related to redundant
MSTOREs, and both can be detected by our analysis. Issue
12211 [86] mentions that redundant MSTORE instructions are
issued when copying struct objects. Issue 10755 [87] outlines
a possible improvement of the compiler so that MSTORE will
no longer store zero values in locations that are known to be
zero already.

The high number of redundant MLOAD instructions are
expected as they are related to the EVM’s stack model of
execution. Interpreters that employ a stack instead of reg-
isters to hold temporary results during the evaluation of a
program are attractive for their compact bytecode represen-
tation, which spurred the network computing ecosystem of
Java [88], Microsoft’s .NET common language runtime [89],
and several VM infrastructures for sensor networks [90], [91],
[92], [93]. Stack-based interpreters found renewed interest
with blockchains where the small code size of smart contracts
reduces the on-chain storage requirements, e.g., with the
EVM [24], TVM [94], and WebAssembly [95]. Stack code
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is compact because instructions only encode the operation
(op-code), while operands are implicitly consumed from the
stack and results produced on the stack. Operands in registers
can be used several times, but a stack operation consumes
its operands. To reuse a value computed on the stack at
a later time, the compiler will have to generate code that
spills the value into a temporary local variable in memory
from where it can be later reloaded onto the stack (facili-
tated by the EVM’s MSTORE and MLOAD instructions). Stack
access is more efficient than access to local variables, which
spurred research into optimizations that convert local vari-
able accesses to stack accesses [96], [97], [98], [99], [100].
But their adoption for the Solidity compiler has not been
confirmed yet [41], [46]. The EVM instruction set provides
the bytecode instructions SWAP⟨n⟩ and DUP⟨n⟩, which allow
to directly address the 16 top-most stack slots and hence
facilitate such optimizations. However, the margin of profit is
narrow: the MSTORE and MLOAD instructions are in the same
gas-cost category as the before-mentioned stackmanipulation
instructions (Gverylow). Storing and later reloading a tempo-
rary value will thus cost six units gas, and any optimization
that caches the temporary value on the stack must stay below
this limit to be profitable.

In our metric, if a value is referenced more than once in the
program, subsequent loads will result in data redundancies
in the trace. Therefore, the high redundancy observed with
MLOAD instructions is an artifact caused by the EVM archi-
tecture. Even for a highly-optimized, register-based inter-
preter the code size overhead has been found to be 26% [101],
which means that the stack-based architecture of the EVM is
likely to stay and the before-mentioned optimizations, as well
as design changes in the EVM instruction set that benefit such
optimizations are necessary means to mitigate the runtime
overhead. As mentioned with the parallelism metric, the con-
tribution of EVMTracer can be the provision of a metric that
is readily computable to guide the design and development
effort.

Finally, it follows from Table 4 that 34.97% of all
SLOAD instructions have been identified as redundant.
UnlikeMLOAD, where the current infrastructure does not have
a more economical solution to cache a repeatedly used value,
storage values can indeed be cached in memory or on the
stack to reduce gas consumption and improve performance—
storage instructions are much more expensive compared to
memory and stack instructions. E.g., as of Oct. 2022 [24],
loading a value from storage for the first time during contract
execution costs 2100 units of gas (Gcoldsload). For subsequent
loads (Gwarmaccess), the cost is 100 units of gas. Those costs
are substantially higher than the costs of the MLOAD and
MSTORE instructions and thus make caching a profitable
target for further performance optimizations.

VII. RELATED WORK
A. ILP IN COMPUTER ARCHITECTURE
Research in computer architecture has a 25-year history in
ILP, which has produced comprehensive quantitative data

about the performance of a variety of workloads on con-
temporary, register-based microarchitectures [75], [76], [77],
[78], [79]. In comparison, the EVM is a stack-based virtual
machine architecture implemented in software, with opera-
tions for persistent storage, and smart contracts as the sole
workload. Our parallelism metric models all dependencies
of the EVM runtime environment, including dependencies
related to the EVM stack and to persistent storage. By restrict-
ing our metrics to EVM bytecode, they are applicable to
all smart contracts deployed on the Ethereum mainnet, and
they can be readily applied with testnet-based development
environments. As discussed in Section VI-A, the cost model
of the EVM charges a nominal gas fee per executed byte-
code instruction, which renders many ILP mechanisms from
computer architecture infeasible on the EVM. Prior work in
the area of ILP in computer architecture does not support our
redundancy metric.

B. CONCURRENCY CONTROL MECHANISMS IN
SOFTWARE
A large body of work [102], [103], [104], [105], [106], [107],
[108] focuses on execution schemes that facilitate the execu-
tion of multiple smart contract transactions in parallel. This
is different from exploiting parallelism within the contract
itself. Muchhala et al. [109] purpose a system that allows
multiple nodes to execute smart contracts using a MapRe-
duce approach with a focus on Big Data applications. Other,
more generic approaches in the virtual machine community
enable parallelism by redesigning the execution model of
Python interpreters [110], [111], adding specialized instruc-
tions to access data and compute resources in parallel for
Java [112], enabling thread-safe built-in collections [113],
and facilitating accelerator-assisted garbage collection [114],
[115]. However, no work has been done yet in the context
of smart contract virtual machines. Our study is the first to
investigate the parallelism inherent in Ethereum transactions,
and at scale.

C. REDUNDANT COMPUTATIONS
Our redundancy metric determines the number of redundant
computations that occur in a smart contract at runtime. Many
optimizations exist that aim at eliminating redundant com-
putations. They can be categorized into static and dynamic
approaches. Common subexpression elimination and partial
redundancy elimination are static optimizations that are based
on control flow analysis [51], [56], [116].Memoization [117],
[118], [119] is a dynamic redundancy elimination technique
that trades memory space for performance. For each executed
function call, the input argument values and computed results
are cached in a lookup table. If the function is subsequently
called with the same argument values, the cached results will
be returned to avoid re-computation. For the stack model
of execution, a large body of work has been conducted on
compiler optimizations that replace local variable accesses by
stack accesses [96], [97], [98], [99], [100]. In [120], dynamic
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instruction scheduling is performed to reduce the stack usage
of a JVM. In the process of improving the compiler optimiza-
tion pipeline, the Ethereum community has identified several
optimization opportunities regarding redundant operations,
as evident in issues 10690, 10755, 12211, 12460, 12735,
and 12755 from the Solidity GitHub repository [121]. Those
issues are open and waiting to be fixed.

D. TRACING
Tracing has found various applications, including cover-
age analysis [122], performance profiling [123], and vali-
dation [124]. On the topic of blockchain, Chen et al. [125]
introduce Forerunner, which pre-executes transactions and
generates constrained-based, highly-optimized program rep-
resentations. The technique is similar to a tracing just-in-time
compiler [126] and relies heavily on tracing to collect run-
time information for future optimization. Different from
EVMTracer, their system is an optimizer and works in
real-time to speed up the transaction throughput through
speculative execution. Ding et al. [127] introduce a proto-
type system, SCMon, for monitoring smart-contract runtime
behavior such as function execution time, function call graphs
and gas consumption. The system uses an instrumented trac-
ing technique that requires the source code of a smart con-
tract. A similar shadow stack is implemented to track function
calls. Their experimental results are restricted to a set of syn-
thetic smart contracts. In contrast, our system does not require
the smart-contract source code and is able to provide at-
scale statistics of all historical transactions on the Ethereum
blockchain. Because the metrics of EVMTracer require
more fine-grained statistics to construct runtime dependence
graphs, we had to implement a complete set of shadow data
structures, including stack, memory, and storage.

VIII. CONCLUSION
We have introduced EVMTracer, an offline tracing frame-
work to obtain runtime dependence graphs during transaction
execution on the EVM. From the runtime dependence graphs,
EVMTracer computes two valuable metrics: (1) contract-
level parallelism and (2) redundant computations. We used
EVMTracer to collect the runtime dependence graphs and
compute both metrics for the initial 12M blocks on the
Ethereum mainnet. We found that Ethereum smart contracts
include a non-negligible amount of contract parallelism, with
a geometric mean of 1.90× theoretical maximum speedup.
Wrt. redundant computations, we found that transaction exe-
cution is affected by a high number of redundant MLOAD and
SLOAD instructions. The redundant MLOAD instructions are
related to the EVM’s stack model of execution and further
work in compiler optimizations is required to mitigate this
overhead. Redundant SLOAD instructions, by their high gas
costs, have already caused significant economic damage and
should be treated as a priority. Overall, we have shown that
EVMTracer is capable of performing large, at-scale run-
time tracing of Ethereum transactions and we have used the
obtained runtime dependence graphs for the computation of

two metrics to shed light on the design of future blockchain
engines and smart contract compilers.

AVAILABILITY
The source code of theEVMTracer infrastructure is publicly
available at https://github.com/verovm/evmtracer.
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