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ABSTRACT The demand for wireless communication capacity continues to increase with the extensive
usage of smartphones, tablets, and devices that are related to the Internet of Things (IoT). However, devices
and base stations are diversified, and base stations of various sizes are mixed. In existing cellular networks,
the transmission powers of the base stations are different. If the downlink received power from the base
station that belongs to the device is maximum, the uplink received power from the device at the base
station is not always the maximum. This study maximizes the power that is received from the device
through downlink-uplink decoupling (DUDe). DUDe can improve the spectral efficiency by selecting the
downlink base station and the uplink base station independently in a network with base stations with different
transmission powers. This study focuses on two technologies, DUDe and the dynamic channel assignment
(DCA). It proposes an association algorithm to solve the dynamic combinational optimization problem
for uplink and downlink cellular networks separately using DUDe. When a user device arrives, it first
connects to the base station that has the maximum capacity at that time. Subsequently, by using the base
station assignment at that time as an individual, the proposed method performs a more optimal base station
assignment with DCA by using a genetic algorithm. The computer simulations demonstrate that the proposed
method can achieve up to a 140 % higher spectral efficiency than the existing DUDe in the fixed channel
assignment (FCA).

INDEX TERMS Downlink-uplink decoupling (DUDe), dynamic channel assignment (DCA), wireless
networks, device association, multi-channel.

I. INTRODUCTION
The demand for wireless communication is increasing with
the increasing usage of smartphones, tablets, and the Internet
of Things (IoT) devices. Massive multiple-input multiple-
output (MIMO), millimeter-wave, optical free-space com-
munication, and energy harvesting technologies have been
studied in the context of 5G, B5G, and 6G to increase the
wireless communication capacity [1], [2], [3], [4], [5].

This study focuses on the association between wireless
network devices and base stations to cope with the increasing
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FIGURE 1. Current cellular networks: Case 1: the device connects both
the downlink and uplink to the macro cell base station.

capacity. Fig. 1 shows the connection method that is used
in current cellular networks. The macro cell base station
transmits data with strong power. The small cell base station
and the user device transmit data with a weak power at the
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FIGURE 2. Downlink and uplink decoupling: Case 2: the device connects
the downlink to the macro cell base station and the uplink to the small
cell base station.

same frequency. In current cellular networks, the base station
notifies the available channels, and then the device selects
and connects to the channel so that it can be used from the
available channels.

Currently, cellular phone networks use a fixed channel
assignment (FCA) that does not change the channel once it is
connected. More specifically, the device connects the uplink
and downlink to the same base station that has the highest
downlink received signal strength indication (RSSI) from the
base station to the device. Fig. 1 depicts an example where the
RSSI at the device is stronger for the signal from the macro
cell base station. Thus, the device connects to the macro cell
base station for both uplink and downlink.

This work adopts two technologies for the proposed
method: downlink-uplink decoupling (DUDe) and a dynamic
channel assignment (DCA). DUDe is a system that improves
the spectral efficiency by selecting a downlink base station
and an uplink base station independently in a network with
multiple types of base stations. Several studies have revealed
its effectiveness [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25].
Fig. 2 shows the basic concept of DUDe. By comparing
Fig. 1 and Fig. 2, it is clear that DUDe can improve the
spectral efficiency of the system. Fig. 1 and Fig. 2 assume
that the distance between the small cell base station and the
device is closer than the distance between the macro cell
base station and the device. In DUDe, the device connects
the uplink to the small cell base station that is nearer and
achieves a higher RSSI than that of the macro cell base
station. In our previous study [25], we proposed a Signal
to interference and a noise ratio BaseD First-Come First-
Association (SBD-FCFA) method, which uses DUDe with
the FCA mechanism. However, SBD-FCFA has poor perfor-
mance because FCA is used and devices, once connected,
do not change connection.

In contrast, DCA is amethod to improve spectral efficiency
by connecting to an optimal base station by dynamically
changing the channel [26]. DCA is more suitable than FCA
for use with DUDe. When using DUDe, the uplink inter-
ference changes depending on the base station to which the
new-arrival device connects. When using FCA, an originally
connected device does not change base station or frequency
when a new device joins. Thus, with FCA, the connection
pattern cannot optimally adapt when a new device joins, and
improved performance is achieved with DCA, for which the
connected base station changes.

In current cellular networks, each operator occupies one
frequency, such that the operator centralizes control by
collecting all the information with a controller. On the other
hand, when DUDe is not used, the uplink and downlink are
connected to the same base station. When considering only
the downlink, the device connects to the base station with the
highest power that is received to maximize the performance.
As a result, DCA changes the base station so it is connected
by the device. DCA does not have many advantages in terms
of the current cellular networks and it is not practically used.

When implementing DUDe and DCA on a mobile cell
phone network, the computational complexity of determining
the base station to which each terminal connects is a prob-
lem. Thus, Section II discusses the computational cost when
using mobile cell phone networks with DUDe and DCA.
The problem of determining which base station to form a
connection with DUDe and DCA is classified as a dynamic
combinational optimization problem [27], [28]. However, the
main object of the existing dynamic combinational optimiza-
tion problem is the graph problem. Therefore, we cannot use
the algorithm that is proposed in the dynamic combinational
optimization problem for the DUDe and DCA base station
allocation. To the best of our knowledge, no other dynamic
channel allocation schemes in the literature are comparable
to the DUDe system. This is because they cannot be adapted
to the uplink channel allocation that is considered in DUDe.

From this point of view, this study proposes an algorithm
that considers the dynamic combinational optimization prob-
lem while separating the uplink and downlink of the cellular
network by usingDUDe. In this algorithm, first, the controller
connects each device in the order of arrival to the base station
with the maximum capacity at that time. Next, the controller
uses the current base station assignment as a parent and it
performs a more optimal base station assignment with the
DCA by using a genetic algorithm. To solve the combination
optimization with an approach such as machine learning, the
same or a similar situation must arise repeatedly and the
computer must learn the situation.

However, in wireless networks, the placement of the base
stations varies from place to place, and the location of the
devices changes from time to time. Under such circum-
stances, when using machine learning, it makes a decision
that is based on past information. This is not practical in terms
of not being able to secure the time that is necessary for learn-
ing. The genetic algorithm, on the other hand, does not require
a large amount of past information. In an environment with
two macro cells, 20 small cells, and 50 devices, the proposed
method yields a performance improvement of approximately
40 % in comparison with SBD-FCFA by using FCA when
analyzed through a computer simulation.

The rest of this paper is organized as follows. Section II
presents the DUDe’s system model in the heterogeneous
wireless networks and discusses the computational prob-
lem. Section III describes the proposed method. Section IV
presents and discusses the performance evaluation results
that are obtained by the simulation, and it confirms the
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FIGURE 3. Case 3: device connects the uplink to the macro cell base
station, and the downlink to the small cell base station.

FIGURE 4. Case 4: device connects both downlink and uplink to the small
cell base station.

effectiveness of the proposed methods. Finally, Section V
concludes this paper.

II. SYSTEM MODEL
This study assumes that a device can use different frequency
bands for uplink and downlink communication in the DUDe
system. We can also assume that the transmission power
of the macro cell base stations is larger than the small cell
base stations. In addition, uplink and downlink communica-
tions are performed using time division multiplexing. In a
Non-DUDe scenario, the uplink and downlink connection
pairs are the same, and so there is no need to consider the
uplink destination. However, in the case of DUDe, the uplink
destination can be changed to a destination that maximizes
the uplink capacity regardless of the downlink connection.
During uplink connection, use of the same frequency as those
of neighboring devices causes interference. Therefore, the
interference in the uplink connection must be considered.

A. BASE STATION SELECTION METHOD
Fig. 1 to Fig. 4 show examples of connections in DUDe
where the macro cells and small cells use different frequency
channels, as assumed in this work. The green arrow represents
the frequency band that is used by the macro cell base station.
The blue striped arrow represents the frequency band that is
used by the small cell base station. As DUDe uses multiple
frequency channels, the following four types of communica-
tion methods to the base stations are conceivable.

• Case 1: The downlink and uplink to the macro cell base
station (Fig. 1)

• Case 2: The downlink to the macro cell base station and
the uplink to the small cell base station (Fig. 2)

• Case 3: The uplink to the macro cell base station and the
downlink to the small cell base station (Fig. 3)

• Case 4: Both downlink and uplink to the small cell base
station (Fig. 4)

B. COMPARISON OF INTERFERENCE MODEL
This work considers DUDe in which the macro cells and
small cells use randomly allocated frequency bands from the
same multiple frequency pool. Thus, the interference model
becomes different from the existing research [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. Many existing studies assume that the macro
cell base station and the small cell base station communicate
with the same frequency band. For example, the following
previous studies [8], [9], [10], [11] are pioneering studies
in which stochastic geometry is used to clarify the outage
and association probabilities when using DUDe in single-
channel multi-tier heterogeneous networks. In contrast to [8],
[9], [10], and [11], we propose a method for dynamic channel
and connection assignment in a heterogeneous network using
multiple channels; this approach is then evaluated through
simulation. In this study, each base station is assumed to use
one of several shared channels (resource blocks). Another
difference is that the system model in the present study is not
for analysis, but for concrete clarification of the simulation
environment.

A few investigations [12], [13], [14], [15], [16], [17], [18],
[19] have studied the base station selection problem based on
the premise that the frequency channels are the same for the
uplink and downlink when using DUDe. The other studies
assume that the macro cells and small cells use completely
different frequency bands [20], [21], [22], [23], [24]. These
studies assume a different interference model for the macro
cells and small cells.

In contrast, this study assumes an interference model in
which a macro cell base station and a small cell base station
use a common channels pool in which DUDe uses multiple
channels. Specifically, the macro cell base station and the
small cell base station each select one channel. Next, the
device connects to the same channel as the base station. Fur-
thermore, this study assumes a model in which each device
randomly joins and leaves to represent a practical changing
environment.

Note that, in this work, the channel is assumed to be a
divided channel within the allocated frequency. In particular,
we assume the resource blocks that are considered in cellular
systems. A base station continues to use a randomly allocated
frequency and the channel allocated to a base station does not
change dynamically. In this work, we do not study channel
allocation to the base stations, but rather propose a method
to dynamically change the base station to which a device
connects. It is common and realistic for existing cellular
systems for base stations to continue to use the assigned
channel and for devices to change the channel to which they
connect depending on the base-station frequency channel.

Note also that the assumed sharing channel mechanism
differs from orthogonal frequency division multiple access
(OFDMA). OFDMA requires either subcarrier orthogonal-
ization at one base station or very accurate synchronization
among multiple base stations when attempting to orthog-
onalize OFDMA subcarriers among base stations. In this
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TABLE 1. Main notation of interference model.

study, we assume a wider channel than OFDMA subcarriers
for channel allocation in an environment holding multiple
base stations and multiple devices. The only control signals
required for the proposedmethod are the location information
estimated from the received power provided by the device to
each base station and the base station exchange performed
by the device. The proposed method does not require precise
time synchronization, unlike multiple-base-station OFDMA.

C. INTERFERENCE MODEL
This study defines the signal to interference and noise ratio
(SINR) model of DUDe by using multiple frequency chan-
nels. This is an extended model of the SINR model that is
adopted from [14]. The interference model incorporated in
this study is not for analysis, but for concrete clarification of
the simulation environment. Table 1 lists the major symbols
that are used in this section. 8M, 8W, and 8d represent the
set of points that depict the positions of the macro cell base
stations, small cell base stations, and devices, respectively.
The base stations and devices have a continuous uniform
random distribution in an area of d × d km2. The number of
devices, macro cell base stations, and small cell base stations
are set to |8M|, |8W|, and |8d|, respectively.
xMj (∈ 8M) represent the position of the jth macro cell

base station (Mj). xWk (∈ 8W) represent the position of the
kth macro cell base station (Wk ). xdl (∈ 8d) represent the

position of the lth macro cell base station (dl). j, k , and l are
the natural numbers that are assigned to each macro cell base
station, small cell base station, and device, respectively. This
study defined PM, PW, and Pd as the transmission powers of
the macro cell base station, the small cell base station, and the
device, respectively.

We can consider the downlink SINR of the lth device (dl)
from the base stations. The downlink received power (SDMjdl

)
from the jth macro cell base station (Mj) for the lth device is
SDMjdl

= PMhMjdl∥xMj−xdl∥
−α . hMjdl represents the Rayleigh

fading path between the jth macro cell base station (Mj)
and the lth device (dl) which is an exponentially distributed
random variable with a unit mean. ∥xMj − xdl∥ is the distance
between the point xMj and xdl , and α is the path loss exponent.
The downlink received power (SDWkdl

) from the kth small
cell base station (Wk ) is SDWkdl

= PWhWkdl∥xWk − xdl∥
−α ,

where hWkdl is an exponentially distributed random variable
with a unit mean representing the Rayleigh fading of the path
between the kth small base station (Wk ) and lth device (dl).
∥xWk − xdl∥ represents the distance between the point xWk

and xdl .
In DUDe that uses multiple frequency channels, the inter-

ference in the downlink depends on the frequency channel
that is used by each base station. Specifically, a device that is
connected to the base station by the downlink has interference
from communication on the same frequency channel. There-
fore, we can define 8n

M (∈ 8M) as a set of device positions
of the macro cell base stations that communicate by using
channel n, and 8n

W (∈ 8W) as a set of device positions of
small cell base stations that communicate by using channel
n, where n is a natural number.
When the l̂th device (dl̂) connects to the ȷ̂ th macro cell

base station (Mȷ̂ ) by the downlink with channel n, the SINR
for the device is obtained as follows.

SINRDn
Mȷ̂ dl̂

=

SDMȷ̂ dl̂∑
xMj∈8n

M\

{
xMȷ̂

} SDMjdl̂
+

∑
xWk ∈8n

W
SDWkdl̂

+ σ 2
,

(1)

where σ 2 represents the noise power.
Similarly, when the l̂th device (dl̂) connects to the k̂th small

cell base station (Wk̂ ) by the downlink with channel n, the
SINR for the device is obtained as follows.

SINRDn
Wk̂dl̂

=

SDWk̂dl̂∑
xMj∈8n

M
SDMjdl̂

+
∑

xWk ∈8n
W\

{
xW

k̂

} SDWkdl̂
+ σ 2

.

(2)

The interference in the uplink with DUDe that uses mul-
tiple frequency channels also depends on which frequency
channel it is used by the base station that is connected to
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FIGURE 5. Uplink optimal connection: device B should not connect the
uplink to the nearest base station (Small BS 1).

each device. Specifically, a device that is connected to a base
station by the uplink is affected by the interference from
the communication of the other devices by using the same
frequency channel. This study defines 8̃n

d (∈ 8d) as the set
of device positions that connect the uplink to the base station
by using channel n.

Similar to the downlink, the uplink received power (SUdlMj
)

from the lth device (dl) in the jth macro cell base station
(Mj) is SUdlMj

= PMhdlMj∥xMj − xdl∥
−α . From this, hdlMj

is the exponentially distributed random variable with a unit
mean that represents the Rayleigh fading. In the lth small
cell base station network, the uplink received power (SUdlWj

)

is SUdlWk
= PWhdlWk∥xWk − xdl∥

−α , where hdlWk represents
Rayleigh fading.

When the l̂th device (dl̂) connects to the ȷ̂ th macro cell
base station (Mȷ̂ ) by the uplink with channel n, the SINR at
the macro cell base station is obtained as follows.

SINRUn
dl̂Mȷ̂

=

SUdl̂Mȷ̂∑
xdl∈8̃n

d\
{
xd
l̂

} SUdlMȷ̂
+ σ 2

. (3)

When the l̂th device (dl̂) connects to the k̂th small cell base
station (Wk̂ ) by the uplink with channel n, the SINR at the
small cell base station is obtained as follows.

SINRUn
dl̂Wk̂

=

SUdl̂Wk̂∑
xdl∈8̃n

d\
{
xd
l̂

} SUdlWk̂
+ σ 2

. (4)

D. COMPUTATIONAL PROBLEM TO SEARCH FOR THE
OPTIMAL CONNECTION
The computational cost to search for the optimal connec-
tion in DUDe networks increases exponentially due to two
problems. One problem is that the optimal uplink connection
of each device is not always the closest base station when
maximizing the spectral efficiency. Fig. 5 shows an example
of the uplink optimal connection problem. In Fig. 5, when
devices A–C connect to the nearest base station as shown
by the blue striped lines, device A and device B can cause
interference to each other. As a result, the uplink spectral effi-
ciency decreases. To increase the spectral efficiency, device B

FIGURE 6. Optimal connection changes drastically before the new device
arrives.

FIGURE 7. Optimal connection changes drastically after the new device
arrives.

should connect to a distant macro cell base station that is not
the nearest neighbor base station.

In detail, when device B uplinks to Micro-cell Base
Station 1, the SINR of the device B uplink is

SINRW =
Pd

σ 2 + IA

(
λ

4πdW

)2

, (5)

where the strength of the received power at Base Station 1
from device A is defined as IA, the device B transmission
power is Pd, λ is the wavelength, and the distance between
device B and Base Station 1 is dW. In contrast, when device B
is connected to themacro-cell base station, the signal-to-noise
ratio (SNR) of the uplink connection is

SNRM =
Pd
σ 2

(
λ

4πdM

)2

. (6)

Therefore, it is optimal to connect to a more distant
macro-cell base station rather than to the nearest small cell
base station when the following condition is satisfied:

SINRW < SNRM

↔ dM < dS

√
σ 2 + IA

σ 2 , (7)

where the distance between device B and Base Station 2 is
dM. At this time, evaluating all the connection combinations
to achieve the optimal uplink spectral efficiency causes a
computational explosion. Therefore, a method that can find
a suboptimal solution with a small number of calculations is
necessary.

The other problem is that the optimum connection changes
significantly when a new device joins the network. Fig. 6
and Fig. 7 show an example of a drastic optimal connection
change after the new device arrives. In Fig. 6, device A con-
nects the uplink to the small cell base station 1, and device B
connects to the macro cell base station. We can suppose that a
new device arrives in this situation as shown in Fig. 7. In the
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FIGURE 8. Overall algorithm of the proposed method.

situation where these three devices operate in the network,
the optimal uplink connection is that the new device connects
to the small cell base station 1, device A connects to the
macro cell base station, and device B connects to the small
cell base station 2. Similar to this situation, the participation
of new devices changes the optimal connection base station
for many devices. Every time a new device is joined, it is
necessary to find a good combination of connections, which
includes changing the existing connections. Since mobile
devices move quickly, it is necessary to find a good connec-
tion adaptively with a small number of computations. Note
that formulating the optimization problem is prohibitively
difficult due to the dynamic switching of connections and
channels among the devices. Even if the devices are placed
randomly, their positions while using a particular channel
will not be random due to the dynamic switching behavior.
This makes it difficult to define coordinates that are not
random and incorporate them into the optimization problem
formulation.

III. PROPOSED METHOD: GA-BASED DCA
A. OVERVIEW
We proposed a genetic algorithm based DCA (GA-based
DCA) for multi-channel DUDe networks to calculate
a near-optimal connection combination in a short time.
Fig. 8 shows the whole algorithm of the proposed method.
Algorithm 1 shows the overall algorithm of the proposed
method. First, the proposed method recognizes the current
location of each base station.

Algorithm 1 Overall Algorithm of the Proposed
Method
Initial State: Recognizing the current location of each
base station
while do

Detects participation, withdrawal, and movement
of the devices
Temporarily connect arriving devices based on the
SINR
Base station assignment genetic algorithm

return

Second, the proposed method updates the device sounding
reference signal (SRS) information [29], which is used in
the long term evolution (LTE) when a device joins or leaves.
The newly joined device connects to the base station with the
highest SINR of the downlink at that time. The signal strength
information, such as the received power from the device,
is known by the base station that uses SRS [29]. We assumed
that the signal strength information is obtained by using SRS
in the proposed method along with the other comparable
methods. We also assumed that all the information is aggre-
gated in one server to achieve control. This was conducted
since this study considers the operation in a specific divided
area. This method of collecting local information and opti-
mizing it is similar to the method that is used in enhancing
the inter-cell interference coordination (eICIC) for cellular
networks [29]. The backhaul networks for aggregating the
information are assumed to be ideal and free of capacity and
delay constraints. This is because the wired line is considered
to have a larger capacity for the information aggregation.

The signal strength information, such as the received power
from the devices, is updated periodically by using SRS. The
SRS are sent at carrier-defined time intervals that range from
2 ms to 160 ms [29]. This study assumes that the addition and
removal of devices are caused by humanmovement. Thus, the
proposed method can obtain the SRS in a sufficiently short
interval. In this investigation, we can assume that the SRS is
acquired periodically, not only for the proposed method, but
also for all the other methods.

Third, the proposedmethod calculates the uplink SINR that
is based on (3) and (4). Finally, the proposed method updates
the device association by using the base station assignment
genetic algorithm that is described in Section III-B to maxi-
mize the sum of the spectral efficiency.

B. GENETIC ALGORITHM
A general genetic algorithm is a randomized parallel search
strategy that can find the optimal solution for a particular
problem. This is obtained by seeking themaximum/minimum
of the appropriate fitness function [30], [31]. The strength
of the genetic algorithm is that it can find the near-optimal
solution quickly by restricting the search space in an intricate
manner. In general, no reasonable assumption for the genetic
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FIGURE 9. Structure of the population strings.

algorithms assures that a fast convergence to the global
optima have been obtained [31]. However, by considering
the suitable choices of all the genetic algorithm probabilities,
this can prove that the asymptotic convergence results are
similar [31]. The proposed method aims to find a suboptimal
solution in the problem space of DCA in DUDe in a suffi-
ciently short time while considering device participation and
withdrawal. This is why the proposed method uses a genetic
algorithm rather than other optimization techniques such as
neural networks and simulated annealing.

The proposed base station assignment genetic algorithm
proceeds iteratively to improve a set of solutions. This is
referred to as the population P(t) for each iteration t . At each
iteration t , the proposed algorithm creates a new population
P(t) from the previous population P(t − 1) by using a set
of genetic operators. This study defines the population as an
array of strings Sp (1 ≤ p ≤ P, P is population size) as shown
in Fig. 9. Each row of the array represents the chromosome
strings in a population, and each column represents the genes.
The gene of the lth columns represents the base station in
which the lth device connects to (1 ≤ l ≤ L(= |8d|)). The
fundamental genetic algorithm uses binary bits as the geno-
type; however, the proposed method uses natural numbers
as the genotype to represent a base station that each device
connects to.

Fig. 10 shows the details of the proposed base station
assignment genetic algorithm.Algorithm 2 shows the details
of the proposed base station assignment genetic algorithm.
The algorithm consists of the following operations: 1. Make
the initial population (set the latest connection as an initial
individual and make the other initial individuals random);
2. Crossover; 3. Evaluation with the fitness function;
4. Reproduction; and 5.Mutation. The proposed genetic algo-
rithm repeats 2–4 operations times the number of generations.

1) INITIAL POPULATION
The proposedmethod generates the initial population for each
chromosome string as follows.

• The proposed method sets each gene in S1 as the number
that represents the latest connection.

FIGURE 10. Base station assignment genetic algorithm.

• Each gene in S2, S3, . . . , SP is a randomly chosen natural
number from 1 to I (I is the number of base stations).

2) CROSSOVER
The proposed method executes a uniform crossover to create
⌊P×{γ /(1−γ )}⌋ children, where γ represents the crossover
rate. The parent chromosome strings Su and Sv (1 ≤ u, v ≤ P)
are selected randomly. The random probability Prfl is gen-
erated for each lth gene in the chromosome string. If the
random probability Prfl is greater than or equal to 0.5, the lth
gene of the child chromosome string is set as lth gene of Su.
In contrast, if the random probability Prfl is less than 0.5, the
lth gene of the child chromosome string is set as lth gene of
Sv. This operation is repeated to create ⌊P × {γ /(1 − γ )}⌋
children.

3) FITNESS FUNCTION
We can define the fitness function Ep for each string Sp from
the SINRs of all the devices. The fitness functionEp is defined
as follows.

Ep =

L∑
l=1

log2
(
1 + SINRU

l

)
, (8)

where SINRU
l represents the uplink SINR for the lth device.

4) REPRODUCTION
The proposed method preserves the chromosome string,
which achieves the best fitness function (Ep) value and then
it chooses P− 1 strings with a simple biased roulette wheel.

5) MUTATION
A uniform mutation is proceeded in the proposed method to
avoid converging the local optima. One chromosome string
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Algorithm 2 Base Station Assignment Genetic
Algorithm
Input: Information of the latest connection
Output: Base station assignment
// 1. Initial population
Initial chromosome individual S1 based on the latest
connection information
Initial individuals with the other chromosome
S2, . . . , SP, randomly
for i = 1, . . . , ngen do

// Repeat the number of generation operations ngen
times.
for j = 1, . . . , ⌊P× {γ /(1 − γ )}⌋ do

// 2. Crossover to create ⌊P× {γ /(1 − γ )}⌋
children
Randomly select the parent chromosome Su,
Sv
for l = 1, . . . ,L do

if Prfl ≥ 0.5 then
lth gene of Schild,j is set as the lth gene
of Su

else
lth gene of Schild,j is set as the lth gene
of Sv

// 3. Fitness function
Evaluation with the fitness function (Ep)
// 4. Reproduction
Preserve the best chromosome
Choose other P− 1 chromosome strings with a
simple biased roulette wheel
// 5. Mutation
Select one chromosome string (Sp) randomly
for l = 1, . . . ,L do

if Prl > PrMu /L then
Set the lth gene of Sp as a randomly
chosen natural number from 1 to I

Select the best chromosome individual from
S1, . . . , SP
Decide the base station assignment by interpreting the
best chromosome
return

is selected for the mutation. The proposed method generates
random probabilities Prl for each gene in the string Sp. If the
generated random probability Prl is greater than the mutation
probability that is divided by the number of devices PrMu /L
(Prl > PrMu /L), the proposed method sets the lth gene as a
randomly chosen natural number from 1 to I (I represents the
number of base stations).

IV. EVALUATION
This section shows the performance of the proposed method
by using a computer simulation. Specifically, we can verify

TABLE 2. Simulation parameters.

Algorithm 3 Overall Algorithm of the RSSI Base
Method
Initial State: Recognizing the current location of each
base station
while do

Detects participation, withdrawal, and movement
of the devices
A new device connects to the base station with the
highest SNR

return

the effectiveness of the proposed GA-based DCA method by
evaluating the spectral efficiency and the computational cost
in small-scale networks and large-scale networks.

A. EVALUATION ENVIRONMENT
We evaluated the spectral efficiency and computational cost
by performing computer simulations of the proposed method.
The base stations and devices are randomly placed within the
1×1 km2 area.We used the typical transmission power values
of DUDe system in [6]. We set the transmission power of
the macro cell base station (PM) to 46 dBm, the transmission
power of the small cell base station to 20 dBm (PW), and the
transmission power of the device (Pd) to 20 dBm. We set the
noise floor σ 2 as −90 dBm and the path loss coefficient α as
4. In this study, we assume aRayleigh fadingwireless channel
with a log-distance path loss model as shown in Section II-C.
For simplicity, the simple isotropic antenna is used at both
the transmitter and receiver. As for the mobility scenario,
we considered a static environment where devices do not
move. However, the performance is evaluated on the situation
in which a device appears at a new location as the device
moves, etc. Table 2 lists the simulation parameters. This
work assumes full-buffered traffic. The spectral efficiency
is the sum of the Shannon capacities between the devices
and base stations. The simulation was performed 100 times,
and this section shows an average of the 100 simulations
that were performed. We evaluated the computational cost by
measuring the computational time of the simulation by using
the Xeon(R) CPU X7542 that has a speed of 2.67 GHz.

We used the RSSI base, the SINR-based decoupling with
the first-come first-association (SBD-FCFA), and applying a
brute-force search as the comparison methods.
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Algorithm 4 Overall Algorithm of the SBD-FCFA
Method
Initial State: Recognizing the current location of each
base station
while do

Detects participation, withdrawal, and movement
of the devices
New device connects the base station with the
highest SINR

return

• Non-DUDe
In the non-DUDe method, a device makes an uplink
connection to the base station with the strongest RSSI
in the downlink.

• RSSI Base (FCA)
The RSSI Base is an FCA method that is used in
[14]. Algorithm 3 presents the details of the RSSI base
scheme. Every new device connects to the base station
where the uplink received power is the highest when the
device arrives. The received power is estimated from
the SRS information. The SRS is used in the cellular
networks [29]. Once the uplink destination of a device
is determined, the destination is not changed.

• SBD-FCFA (FCA)
SBD-FCFA is an FCA method that we proposed in
[25]. Algorithm 4 shows the details of the SBD-FCFA
scheme. In the SBD-FCFA scheme, as for the SINR base
scheme, a new device determines its uplink destination
when it is connected. The new device connects to the
base station with the highest SINR, which is estimated
based on the RSSI that is calculated from the SRS
information. Once the uplink destination of a device is
determined, the destination is not changed.

• Brute-force (DCA)
Brute-force search is a method that can achieve the
optimal spectral efficiency, but it requires a lot of com-
putational costs. When a new device arrives in the net-
works, applying the brute-force method can solve the
optimal connection pattern and it renews all the existing
connections.

We performed comparisons with the above three methods,
and the GA-based DCA. In this section, we set the parameters
of the GA-based DCA as follows. The crossover rate is γ =

0.75, and the mutation probability is PrMu = 0.01.

B. ANALYTICAL EVALUATION ON COMPUTATIONAL COST
To show the computational costs of the proposed method
and other methods, we evaluated this property analytically.
The RSSI base method calculates the SNR for all devices;
therefore, the RSSI base calculation complexity is O(|8d|).
Second, SBD-FCFA calculates the SINR for all devices; thus,
the computational complexity of SBD-FCFA is O(|8d|

2).
The computation times of RSSI base and SBD-FCFA differ

FIGURE 11. Sum of the spectral efficiency in the small networks.

because RSSI base computes the SNR whereas SBD-FCFA
computes the SINR; thus, the computational complexity of
the latter is |8d| times higher because of the need to com-
pute interference. In the Brute-force method, the computation
complexity is O((|8M| + |8W|)|8d|

2) because this method
computes all device and base station path combinations.

In contrast, for the GA-based DCA, the SINR is calcu-
lated for the number of genes for each device (|8d|) in each
generation. Therefore, the computational complexity of the
GA-based DCA is O(ngen ×P×|8d|

2). The GA-based DCA
is ngen × P more computationally intensive than SBD-FCFA
because the GA-based DCA performs the same calculations
as SBD-FCFA for the number of genes multiplied by the
number of generations. However, for the proposed GA-based
DCA, the number of generations and the number of genes
are fixed at ngen and P, respectively. Thus, the computational
complexity of the GA-based DCA is O(ngen × P× |8d|

2) =

O(|8d|
2).

C. EVALUATION IN SMALL NETWORKS
First, we evaluated the fundamental evaluation in the small
size networks with one macro cell base station and four
small base stations by using two common channels. This
assumed that the network size is sufficiently small to avoid
a calculation explosion when using the brute-force method.
Fig. 11 shows the uplink spectral efficiency when the number
of devices (|8d|) was changed from 1 to 10. The spectral
efficiency of the non-DUDe decreases as the number of
devices increases. Because of the high transmission power of
the macro cell base station, many devices in the non-DUDe
system attempt to connect to the samemacro cell base station.
As a result, the amount of interference between the devices
increases, and the total spectral efficiency decreases.

In contrast, the four methods that use the DUDe can
achieve a higher total spectral efficiency than the non-DUDe
method, even when the number of users increases. Even with
DUDe methods, the total spectral efficiency hits a ceiling
despite the increase in the number of devices. This is because
the amount of inter-device interference increases as the num-
ber of devices increases. As a result, this suppresses the
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FIGURE 12. Computational time in small networks.

increase in the total spectral efficiency. The GA-based DCA
achieved a 130 % spectral efficiency of the SBD-FCFA. This
is an effect of the DCA mechanism in the proposed method.

In addition, the GA-based DCA achieved a 95 % spec-
tral efficiency of the brute-force search. In the proposed
GA-basedDCA, when considering the number of generations
in the GA, the number of generations (ngen) was set to a cer-
tain value a priori. Therefore, the genetic algorithm will ter-
minate regardless of whether it has converged to the optimal
solution. In this simulation, we specifically set the number
of generation (ngen) to 100. From the simulation results that
are shown in Fig. 11, we can see that the proposed method
is almost equal to the brute-force method, which achieved
the optimal solution. This indicates that the proposed method
approaches the suboptimal solution. The simulation results
show that the proposed method that is based on the GA can
obtain the suboptimal solution in the problem space of DCA
in DUDe even with a certain number of computations.

When using the connection selection algorithm in a prac-
tical environment, the computational cost of the connection
selection algorithm should be low. Fig. 12 shows the com-
putation time of each method in the simulation environ-
ment.We performed the evaluation on the computational time
to measure the computational cost. The computational cost
of the GA-based DCA is less than the brute-force search
when the number of devices is larger than three. This is
because the computational cost of the GA-based DCA is
bounded to the maximum number of generations (ngen =

100). The simulation evaluation shows that the computation
can be completed within a sufficiently short computation time
for the actual user participation and withdrawal, even with
the GA-based DCA. Note that the SBD-FCFA and GA-based
DCA results exhibit curvilinear trends because the computa-
tion time is expressed on a log axis in Fig. 12.

D. EVALUATION IN LARGE-SCALE NETWORKS
In order to clarify the performance in more detail,
we performed the evaluation under large-scale networks.
Large-scale networks have two macro cell base stations and
20 small cell base stations, which use four common channels.

FIGURE 13. Sum of the spectral efficiency in large networks.

We evaluated the sum of the spectral efficiency and computa-
tional cost by varying the number of devices (|8d|) from one
to 50.

Fig. 13 shows the sum of the uplink and spectral efficiency.
The spectral efficiency of the brute-force method cannot be
evaluated due to the large computational cost. In the non-
DUDe method, when the number of devices exceeds five, the
total spectral efficiency decreases as the number of devices
increases. Similar to the simulation results for the small net-
works, this behavior is observed because many non-DUDe
devices establish their uplinks with the macro cell base sta-
tion. This increases the amount of interference in the device
dynamics. In contrast, for the four DUDe methods, more
devices establish the uplink to the small cell base station, and
the total spectral efficiency increases as the number of devices
increases.

Even with DUDe methods, the total spectral efficiency
hits a ceiling despite the increase in the number of devices.
This finding is similar to the results for the small net-
works. In addition, the amount of the inter-device interference
increases as the number of devices increases; thus, suppress-
ing the increase in the spectral efficiency. The GA-based
DCA achieved a 140 % spectral efficiency of the SBD-FCFA
and a 160 % spectral efficiency of the RSSI base when the
number of devices is 50. These results suggest that the DCA
mechanism increases the spectral efficiency under large-scale
networks.

To clarify whether the proposed method can be used in
large-scale networks, we evaluated the computational time.
Fig. 14 shows the computational time for the different meth-
ods. The GA-based DCA was within 1 s even when the
networks consist of 50 devices. Similar to the results for the
small networks, the proposed method achieves a sufficiently
short computation time for human motion. Therefore, the
GA-based DCA can be applied to a practical large-scale net-
work environment. Note that the SBD-FCFA and GA-based
DCA results exhibit curvilinear trends because the computa-
tion time is expressed on a log axis in Fig. 14.

We performed the evaluation in an environment that
repeats the device arrival and another device removal to clar-
ify the effect of the DCA mechanism of the GA-based DCA.
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FIGURE 14. Computational time in large networks.

FIGURE 15. Sum of the spectral efficiency transition with the user arrival /
left in the large networks.

FIGURE 16. Computational time transition with the user arrival / left in
the large networks.

In this simulation, a device arrives and another device leaves
100 times. Fig. 15 shows the sum of the uplink spectral effi-
ciency transition when there were 50 devices. The GA-based
DCA maintains a 140 % uplink spectral efficiency of the
SBD-FCFA. The results of Fig. 15 suggest that the proposed
method adapts the network change.

We performed a simulation of the computational time
under the same environment, which repeats the device arrival
and removal. Fig. 16 shows the computational time. The

GA-based DCA keeps the computational time under 1 s. The
result shows that the GA-based DCA computational cost is
not significantly affected by the network environment.

V. CONCLUSION
This study focused on two technologies, DUDe and DCA,
to enhance the capacity of the wireless networks. We pro-
posed an association algorithm, the GA-based DCA, as a
dynamic combination optimization problem under cellular
networks with a separated uplink and downlink using DUDe.
By using SINR as the base station selection index and using
GA, the GA-based DCA selects the base station while con-
sidering the interference while using a small number of
calculations. Finally, we evaluated the proposed method by
performing a computer simulation. We confirmed that the
SBD-GA can achieve a spectral efficiency that is up to 140 %
more efficient than the existing DUDe in FCA. Moreover,
the GA-based DCA is stable within 1 s. A study on the
performance of DUDe system when incorporating massive
MIMO at the macro-BS is future works.
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