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ABSTRACT This paper uses a convex reformulation to deal with the robust, optimal energy management of
battery energy storage systems (BESS) and renewable energies in DCmicrogrids. This relaxed mathematical
model guarantees the global optimum regarding energy management problems, even when including
uncertainties in demand and renewable energy. The proposed robust model can reach the best scheduling for
energy management in worst-case cost scenarios while satisfying all requirements. Furthermore, a model
for power transfer losses in converter devices is added to the proposed model by using a binary polynomial
representation, which is convexified. This convexification is performed by transforming the nonlinear
non-convex equations of the optimal energy management model into second-order cone constraints. Four
scenarios implemented in the modified IEEE 123-bus radial distribution feeder are proposed in order to
analyze the robust optimal energy management strategy: the deterministic model, demand uncertainty,
uncertainty in solar and wind generators, and uncertainty in demand and solar and wind generators. In all
scenarios, the energy management model reduces the total energy costs. Simulation scenario 1 showed
daily operating costs of about US$ 4376.82, while simulation scenarios 2, 3, and 4, including demand and
generation uncertainties, increased the daily operating costs by about US$ 5243.23 (19.79%), US$ 5072.23
(15.88%), and US$ 5738.75 (31.12%), respectively. Scenario 4 showed the highest costs, as it involves
more uncertainty. Hence, the robust optimal energy management strategy dispatches more energy from
conventional generators, increasing the operating costs to satisfy those of the worst case.

INDEX TERMS Battery energy storage systems, energy management optimal, mixed-integer robust convex
model, power transfer losses.

NOMENCLATURE
ACRONYMS
AC Alternating current.
BESS Battery energy storage system.
DC-MG Direct current microgrid.
EMS Energy management system.
MINLP Mixed-integer nonlinear programming.
PV Photovoltaic.
SoC State of charge (BESS).

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

PARAMETERS
1t Duration of a single time period (s).
d̂ tk Deviation by renewable generation (or demand)

from its nominal value at node k and time t . (W).
φk Charging efficiency of the BESS connected to

node k (1/W).
Ck,t Conventional generator power purchase costs at

node k and time t ($/kWh).
ca0 Independent coeff icient of the AC-DC con-

verter polynomial loss model (W).
ca1 Linear coefficient of the AC-DC converter poly-

nomial loss model.
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ca2 Quadratic coefficient of the AC-DC con-
verter polynomial loss model (1/W).

cb0 Independent coefficient of the battery
polynomial loss model (W).

cb1 Quadratic coefficient of the battery poly-
nomial loss model (1/W).

cd0 Independent coefficient of the DC-DC
converter polynomial loss model (W).

cd1 Linear coefficient of the DC-DC con-
verter polynomial loss model.

cd2 Quadratic coefficient of theDC-DC con-
verter polynomial loss model (1/W).

pt Day-ahead market price at time t
($/kWh).

pmaxl Maximum power flow in branch l (W).
pkminb , p

k
maxb Minimum andmaximumpower capacity

of the BESS at node k (W).
pkmingen , p

k
maxgen Minimum andmaximumpower capacity

of the conventional generators at node k
(W).

pkminren , p
k
maxren Minimum andmaximumpower capacity

of the renewable energy generators at
node k (W).

SoCk
f Final SoC of the BESS at node k .

SoCk
t Initial SoC of the BESS at node k .

u0,t Squared voltage at the slack node at time
t (V2).

umin, umax Minimum and maximum limits regard-
ing squared voltage (umin = (vmin)2,
umax = (vmax)2) (V2).

SETS AND INDICES
�b Set of network branches.
�n Set of network nodes.
�t Set of network time periods.
Dt Uncertainty set of nodes at time t .
k, m Node indices (k , m ∈ �n).
l Branch indices km (km ∈ �b).
t Time indices.

VARIABLES
pk,tgen Power provided by the conventional

generator at node k and time t (W).
Pk,tlossb Power losses of the battery at node k and

time t (W).
Pk,tlossconv Power losses of the converter at node k

and time t (W).
θ
k,t
+ , θ

k,t
− Binary variable used to define the uncer-

tainty at node k and time t .
k Auxiliary variable for the converter

(W2).
kk,t Auxiliary variable for the converter at

node k and time t (W2).
kk,tb Auxiliary variable for the battery at node

k and time t (W2).

kb Auxiliary variable for the battery (W2).
pAC−lossconvv

k,t Power losses of the AC-DC converter at
node k and time t (W).

pk,tbess Power provided by the BESS at node k
and time t (W).

pk,tb Power provided by the battery at node k
and at time t (W).

pk,tDC−lossconv Power losses of the DC-DC converter at
node k and time t (W).

Plossb Power losses of the battery at time t (W).
Pk,tlossconv Power losses of the converter at node k

and time t (W).
pr,tl Receiving power flow in branch l at time

t (W).
ps,tl Sending power flow in branch l at time t

(W).
pk,tPV Power injected by the PV system at node

k and time t (W).
pk,tpv Power injected by the solar panels at

node k and time t (W).
pk,tren Power provided by the renewable energy

generator at node k and time t (W).
pk,tWIND Power injected by the wind power sys-

tem at node k and time t (W).
pk,twind Power generated by the wind generator

at node k and time t (W).
st Binary variable that defines the opera-

tion state of the converter at time t .
SoCk

t State of charge of BESS at node k and
time t .

uk,t Squared voltage at node k and time t
(V2).

vk,t Voltage at node k and time t (V).
wl,t Voltage product (vk,t × vm,t ) in branch l

at time t (V2).

I. INTRODUCTION
The continuing need to diversify the energy matrix has
sparked the study and development of new technologies such
as renewable energy (solar, wind, geothermal, bio-energy,
among others) and energy storage (batteries, superconduct-
ing magnetic, and flywheels, among others) [1], [2]. These
technologies have the attention of the global energy transi-
tion because of their significant advantages, such as lower
emissions by fossil fuels, cleaner air and water, and cheaper
ways to generate electricity, among others [3]. However, they
have some disadvantages, such as their dependency on envi-
ronmental conditions, higher capital costs than conventional
technologies, and the challenging management of energy
storage systems, among others. Despite all of the above, new
technologies continue to emerge in the energy development
path [4], [5]. Therefore, facing all challenges from the per-
spective of control and energy management strategies has
been a challenge for multiple researchers.
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On the other hand, DC microgrids have proven to be more
attractive than their AC counterpart, as they have several
advantages, including lower losses, higher efficiency, a more
straightforward connection, excellent reliability, and simpler
control schemes (no control frequency and reactive power
required) [6]. Furthermore, they allow for a direct connec-
tion between renewable energy sources, energy storage sys-
tems, and electronic DC loads, reducing investment costs and
energy conversion stages [7]. Even with all these advantages,
the DCmicrogrids still require good coordination and interac-
tion between the systems comprising it in order to guarantee
optimal resource management and enhance power quality [8],
[9]. Energy storage systems, such as battery energy stor-
age systems (BESS), help maintain better coordination and
interaction in DC microgrids, as they can respond quickly,
require small spaces and little time for installation, and reduce
pollution [10], [11]. They can also alleviate the load curve
by delivering power during energy shortages and absorbing
power during abundance periods [12], [13].

The design of energy management systems (EMS) for
microgrids is a complex task from an optimization perspec-
tive, given that the following criteria must be met:

i. An objective function indicator must be minimized,
which can be technical, economic, or environmental.

ii. Optimal power injection in the renewable energy
resources and the BESS charging/discharging profiles
must be determined.

iii. The efficient solution of the exact mixed-integer non-
linear programming (MINLP) model must represent the
studied problem, with themain complication of coupling
in the time variable.

Multiple works have been proposed in the specialized lit-
erature to address the complexities of designing an efficient
EMS for renewables and BESS in microgrids. Some of these
recent advances are discussed below. The authors of [14]
presented a grid-scale design for a BESS in the context of the
Colombian electricity market. The authors showed a design
of the BESS that considered the battery’s lifespan and its
operating characteristics regarding the state of charge and
deep discharge. A mixed-integer linear programming model
was used to determine the optimal operation of the BESS
by predicting the price and demand with historical data.
Numerical results showed that additional analysis is required
regarding economic incentives to make the integration of
BESS systems economically viable in the Colombian elec-
tricity market. The work by [15] presented the optimal inte-
gration and operation of BESS and renewables in distribution
networks, considering an MINLP formulation. In the first
stage, the optimal location of the BESS and renewable gen-
erators was determined by applying a metaheuristic method
based on simulated annealing to select the nodes where these
devices must be located. In the second stage, an optimiza-
tion model based on mixed-integer convex programming was
implemented to define the optimal size and operation of the
distributed energy resources, with the aim of minimizing the

expected annual investment and operating costs. Numerical
results in test feeders with 11 to 230 nodes demonstrated
the effectiveness of the proposed optimization model when
compared to linear approximations and conic programming
methods. In [16], a semi-definite programming formulation
of the problem regarding the efficient operation of BESS in
monopolar DC networks was proposed. The exact nonlinear
programming model was regulated using the semi-definite
representation of the product between the voltage variables
of all network nodes, which allowed transforming it into a
convex approximated model. Numerical results in the 21-bus
grid demonstrated the effectiveness of the convex approach in
comparison with the exact nonlinear programming solution
in the GAMS software [17]. The authors of [18] presented
a mixed-integer linear programming formulation to solve
the problem regarding the optimal placement and sizing of
renewable generators based on photovoltaic (PV) sources and
BESS in distribution networks while considering the load-
ability of the upstream transformer. Numerical results demon-
strated that, with adequate scheduling of the distributed
energy resources, the energy transference capability of the
distribution network could be increased to 1.7 times that of
the benchmark case (without BESS and PV sources), which
would allow supplying energy to new users with the same
electrical infrastructure. In [19], the application of a master-
slave optimization approach based on the parallel version of
the particle swarm optimizer and the successive approxima-
tions power flow method was proposed to define the optimal
operation of BESS in DCmicrogrids. Numerical results in the
21-bus grid demonstrated the effectiveness of the proposed
approach when compared to the black hole optimizer and
genetic algorithms. The study by [20] presented a convex
approximation to design an efficient EMS system for BESS
and PV sources in monopolar DC networks. The authors used
the McCormick approximation to relax the power balance
constraint in order to obtain a recursive quadratic convex
model. The minimization of the daily energy losses was con-
sidered as an objective function. Numerical results in the DC
version of the IEEE 33-bus grid showed the effectiveness of
the proposed EMSwhen compared to different combinatorial
optimizers, i.e., the particle swarm optimizer, the salp swarm
algorithm, the multi-verse optimizer, and the crow search
algorithm. In the work by [21], a day-ahead analysis was
conducted via a linear programming model to determine the
periods in which the BESS can be dispatched to reduce the
peak of load consumptions. Once the periods when the BESS
must be operated had been determined, a real-time control
approach was implemented in order to define the discharging
profile of the BESS, with the purpose of minimizing the total
grid energy purchasing costs, which was based on a variable
tariff methodology. The proposed EMS found reductions of
about 12% in the expected grid operating costs.

In light of the above, two main aspects are identi-
fied: (i) Most of the authors in the above-presented lit-
erature review neglect the effect of energy losses on the
power electronic converters that interface the BESS and
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renewable energy resources, which allows simplifying the
exactMINLPmodels that define the operation of the batteries
into mixed-integer linear programming or nonlinear (contin-
uous) programming models; and (ii) the stochastic nature of
renewable generation and demand profiles are not considered.
These two aspects allow this research to make the following
contributions:

i. A mixed-integer robust convex model for the optimal
scheduling of EMS in a DC microgrid is described.
The proposed robust model is solved in two adaptive
stages, as proposed in [22]. The first stage computes
the variables associated with energy management opti-
mization scheduling, which considers the worst-case
uncertainty in demand and renewable energy generation;
while the second stage determines the uncertainties in
certain ranges.

ii. A power transfer losses model for converter devices
is included in the optimal convex model using the
binary-polynomial constraint presented in [23]. This
model is relaxed, employs a second-order cone con-
straint, and allows considering power transfer losses in
each converter to correctly compute the optimal EMS
scheduling in the DC microgrid.

iii. Several proposed scenarios in the modified IEEE 123-
bus radial distribution feeder demonstrate that the robust
convex model can optimally schedule the EMS while
considering uncertainty in demand and solar and wind
generators.

It is essential to mention that the binary-polynomial con-
straints for the power transfer losses model for converter
devices have also been included in [23]. However, this study
focused on the optimal programming of the plug-in and plug-
off of the energy storage devices in two AC distribution
networks, with the aim to maximize the devices’ value in
several scenarios. This optimal programming also used robust
optimization.

On the other hand, within the scope of this research, it is
assumed that the distribution company has already estab-
lished the nodes for the distributed energy resources (i.e.,
BESS and renewable energy resources) and their sizes. This
implies that the main interest of this research is propos-
ing an efficient EMS system to operate/manage distributed
energy resources in the DC microgrid (DC-MG) under
analysis.

The remainder of this document is organized as fol-
lows. Section II models the power transfer losses in con-
verter devices as binary-polynomial constraints, which are
transformed into second-order cone constraints. Section III
describes the energy management model for optimally
scheduling BESS and renewable energy sources in DCmicro-
grids. This section also presents the deterministic and robust
optimization models. Section IV shows the test system, pro-
posed scenarios, and results. Finally, themain conclusions are
drawn in Section V.

FIGURE 1. Schematic of renewable energy and BESS integration: (a) PV
generator connects to the DC-MG via a DC-DC converter, (b) BESS
connects to the DC-MG via a DC-DC converter, and (c) wind generator
connects to the DC-MG via an AC-DC converter.

II. POWER TRANSFER LOSSES MODEL IN DEVICES
Models for renewable energy and BESS integration are usu-
ally constructed through power electronic converter devices.
Usually, these devices are modeled without considering their
power losses, which can lead to an error in the optimal
energy management of a DC microgrid. Therefore, the result
obtained may not be the optimal system. Fig. 1 illustrates the
typical integration of these systems, where PV power gener-
ation and BESS are integrated through a DC-DC converter.
In contrast, wind power generation is integrated via an AC-
DC converter.

The power losses in the AC-DC and DC-DC converters are
represented by combining a binary variable and the quadratic
polynomial of the active power [23], [24], as follows:

Plossconv = s(c0 + c1P+ c2P2), (1)

where s corresponds to the state of the converter (s = 1 if
the converter is energized and s = 0 if the converter is de-
energized); P represents the active power flow between the
systems and the DC-MG; the coefficients c0, c1, and c2 repre-
sent the different types of losses within a converter [25], [26];
c0 corresponds to no-load energization losses associated with
the converter’s passive components (filters and transformer);
and the coefficients c1 and c2 correspond to switching and
power conduction losses in the converter [27].

On the other hand, the battery losses Plossb can be modeled
as follows:

Plossb = cb0 + cb1P
2
b, (2)

where Pb is the power of the battery; the coefficient cb0 is
an auxiliary variable that represents the system losses in the
battery, and the coefficient cb1 represents the power losses
in the battery due to its internal resistance. Note that, in the
batteries, there are losses given by cb0 , even though there is
no load, which is due to the chemical processes taking place
in them [28].
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FIGURE 2. Efficiency for the AC-DC converter, the DC-DC converter, and
the battery as a power transfer function.

TABLE 1. Coefficient values for losses in the devices.

Fig. 2 depicts the efficiencies of the AC-DC and DC-DC
converters and batteries vs. their chargeability. The curves
shown in this figure are elaborated with the coefficients listed
in Table 1, which are taken from [23].

Note that the power losses in the AC-DC and DC-DC con-
verters are non-linear, non-convex equations. Therefore, it is
necessary to express these equations in convex form to ensure
a global optimal solution to the problem. The power losses in
the AC-DC and DC-DC converters (1) can be represented as
a linear constraint, as follows:

Plossconv = sc0 + c1Pabs + c2 k, (3)

where

Pabs = |P|, (4)

k = P2. (5)

The constraint (4) can be easily transformed into a linear
constraint:

−P ≤ Pabs ≤ P. (6)

The constraint (5) can be rewritten using a second-order
cone constraint representation, as follows:

P2 = ∥P∥
2

=k =
1
4
(k + 1)2 −

1
4
(1 − k)2

(1 − k)2 + ∥2P∥
2

=(k + 1)2∥∥∥∥ 2P
1 − k

∥∥∥∥ =k + 1.

(7)

This second-order cone constraint remains non-convex.
Hence, the equality is relaxed in order to transform it into
a convex constraint, namely∥∥∥∥ 2P

1 − k

∥∥∥∥ ≤ k + 1. (8)

Similarly, a process can be performed to transform the
battery losses (2) into a linear constraint:

Plossb = cb0 + cb1kb, (9)

with

kb = P2b, (10)

which can also be relaxed into a second-order cone constraint
by following the same procedure for the converter power
losses. Finally, the second-order cone constraint for the con-
straint (10) is ∥∥∥∥ 2Pb

kb − 1

∥∥∥∥ ≤ kb + 1. (11)

III. ENERGY MANAGEMENT MODEL
The optimal energy management problem for BESS deals
with minimizing the total energy costs in a DC-MG. The
formulation of this problem is presented in this section, which
is divided into the objective function, the constraints, and the
entire model.

A. OBJECTIVE FUNCTION
The objective function for the optimal energy management
of BESS in DC-MGs corresponds to the minimization of the
total energy costs. A single objective function (in monetary
terms) is considered in this paper, which contains the cost of
power transfer losses f device−lossescost (i.e., AC-DC converter for
wind power, DC-DC converter for solar power and the BESS,
and the battery), the cost of network losses f grid−losses

cost , and
the cost of the energy from conventional generation f gencost . The
objective function is described below:

min f = f device−lossescost + f gencost + f grid−losses
cost , (12)

with

f device−lossescost =

∑
t∈�t

(
Pk,tlossconv + Pk,tlossb

)
pt1t, (13)

f gencost =

∑
t∈�t

Ck,tpk,tgen1t, (14)

f grid−losses
cost =

∑
t∈�t

∑
l∈�b

(
ps,tl + pr,tl

)
pt1t, (15)

B. CONSTRAINTS OF THE ENERGY MANAGEMENT MODEL
1) POWER FLOW BALANCE
The power flow balance generates a set of constraints given
by the power flow in the branch, as well as the by power
generated and the demand in the nodes, which must satisfy
the energy balance. Fig. 3 illustrates an example of a generic
branch l = (km) ∈ �b at time t ∈ �t .
Note that the power flowing from k to m (ps,tl ) is called

the sending power flow, while the power flowing from m to
k (pr,tl ) is the receiving power flow. These power flows are
different (ps,tl ̸= pr,tl ) and given by

ps,tl =vk,tyl
(
vk,t − vm,t

)
, (16)
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FIGURE 3. Example of a generic branch in a DC-MG.

pr,tl =vm,tyl
(
vm,t

− vk,t
)

. (17)

The power flow loss in the branch l is computed as the
sum of the sending and receiving power flows in the branch,
as follows:

ptlossl =ps,tl + pr,tl =

=yl

((
vk,t

)2
− 2vk,tvm,t

+
(
vm,t)2) . (18)

Note that the power flow constraints (16) and (17) and
the power flow losses (19) are non-linear and non-convex,
indicating that a global optimum cannot be achieved in the
overall problem and its solution is difficult. However, it is
possible to transform them into linear constraints by defining
the following two auxiliary variables:

uk,t =

(
vk,t

)2
, (19)

wl,t =vk,tvm,t . (20)

Now, by substituting these auxiliary variables in (16) and (17)
and the power flow losses (19), the following is obtained:

ps,tl =yl
(
uk,t − wl,t

)
, (21)

pr,tl =yl
(
um,t

− wl,t
)

, (22)

ptlossl =yl
(
uk,t − 2wl,t + um,t

)
. (23)

Even though the above-presented constraints are already
linear, the auxiliary variables must still be transformed into
a second-order cone constraint, with the aim to generate a
non-convex model defined as

wl,t =vk,tvm,t

wl,twl,t =

(
vk,t

)2 (
vm,t)2∥∥∥wl,t∥∥∥2 =uk,tum,t∥∥∥∥ 2wl,t

uk,t − um,t

∥∥∥∥ =uk,t + um,t∥∥∥∥ 2wl,t

uk,t − um,t

∥∥∥∥ ≤uk,t + um,t . (24)

Fig. 4 presents the graphical representation of the power
flow equations. The constraint that represents the power flow
balance at node k and time t is given by

pk,tgen + pk,tren + pk,tbess − pk,td =

∑
l∈L

(
A+

klp
s,t
l + A−

kls
r,t
l

)
, (25)

where A = A+
+ A− is the incidence matrix, with A+

containing the positive values and A− the negative ones.

FIGURE 4. Graphical representation of the power flow equations in a
DC-MG.

2) BESS OPERATION
The battery operation is ruled by its state of charge (SoC),
which varies as a function of the power absorbed or injected
by the DC-MG plus its losses, as follows:

SoCk
t+1 = SoCk

t − φk (pk,tb + pk,tlossb ), (26)

SoCk
t=1 = SoCk

0 , (27)

SoCk
t=T = SoCk

f . (28)

The SoC of each battery has capacity limits for stored
energy (i.e., between 0 and 100%). There are also limits
regarding power transfer in the BESS, which is related to its
minimum and maximum capacity. Hence, these limits must
also be considered as constraints, as follows:

0 ≤ SoCk
t ≤ 1, (29)

pkminb ≤ pk,tb ≤ pkmaxb . (30)

It is important to highlight that the useful life of the BESS
depends directly on its storage limits, which can be increased
if lower limits are considered, as recommended by the IEEE
1561-2007 standard [29].

The whole power absorbed or injected by the BESS com-
prises battery power and losses and DC-DC converter losses:

pk,tbess = pk,tb + pk,tlossb + pk,tDC−lossconv , (31)

−pkmaxDC−conv
≤ pk,tDC−lossconv ≤ pkmaxDC−conv

, (32)

where pk,tDC−lossconv denotes the power losses of the DC-DC
converter at node k and time t .

3) GENERATOR OPERATION
A DC-MG includes conventional and renewable energy gen-
erators. Only the minimum and maximum limits of the con-
ventional generators’ capacity are considered, as follows:

−pkmingen ≤ pk,tgen ≤ pkmaxgen . (33)
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On the other hand, renewable energy generators are inte-
grated into the DC-MG through power electronic convert-
ers. If these generators are based on solar energy, they are
connected to the grid via DC-DC converters, whereas those
based on wind energy are integrated through AC-DC convert-
ers. Therefore, the injected power of these generators must
include the power losses in the converters. Hence, their power
is defined as

pk,tPV = pk,tpv + pk,tDC−lossconv , (34)

pk,tWIND = pk,twind + pk,tAC−lossconv , (35)

whose limits are

pkminren ≤ pk,tPV ≤ pkmaxren , (36)

pkminren ≤ pk,tWIND ≤ pkmaxren , (37)

− pkmaxAC−conv
≤ pk,tAC−lossconv ≤ pkmaxAC−conv

. (38)

4) OPERATING LIMITS OF THE DC-MG
The operating limits of a DC-MG are given by the nodal
voltages and the power flow capacity of the lines.

umin ≤ uk,t ≤ umax , (39)

−pmaxl ≤ ps,tl ≤ pmaxl , (40)

−pmaxl ≤ pr,tl ≤ pmaxl , (41)

where umin and umax are limits regarding the minimum and
maximum squared voltage.

5) ENERGY MANAGEMENT OPTIMIZATION MODEL
The convex representation of the full energy management
optimization model is shown below:

min f device−lossescost + f gencost + f grid−losses
cost

subject to

pk,tgen + pk,tren + pk,tbess − pk,td =

∑
l∈L

(
A+

klp
s,t
l + A−

kls
r,t
l

)
ps,tl = yl

(
uk,t − wl,t

)
pr,tl = yl

(
um,t

− wl,t
)

u0,t =
(
vnom

)2∥∥∥∥ 2wl,t

uk,t − um,t

∥∥∥∥ ≤ uk,t + um,t∥∥∥∥ 2P
kk,t − 1

∥∥∥∥ ≤ kk,t + 1∥∥∥∥∥ 2pk,tb
kk,tb − 1

∥∥∥∥∥ ≤ kk,tb + 1

pk,tDC−lossconv = sk,tckd0 + ckd1P
k,t
abs + ckd2k

k,t

pk,tAC−lossconv = sk,tcka0 + cka1P
k,t
abs + cka2k

k,t

Plossb = ckb0 + ckb1k
k,t
b

SoCk
t+1 = SoCk

t − φk (pk,tb + pk,tlossb )

SoCk
t=1 = SoCk

0

SoCk
t=T = SoCk

f

pk,tbess = pk,tb + pk,tlossb + pk,tDC−lossconv

pk,tPV = pk,tpv + pk,tDC−lossconv

pk,tWIND = pk,twind + pk,tAC−lossconv

0 ≤ SoCk
t ≤ 1

pkminb ≤ pk,tb ≤ pkmaxb
− pkmaxDC−conv

≤ pk,tDC−lossconv ≤ pkmaxDC−conv

− pkmingen ≤ pk,tgen ≤ pkmaxgen
pkminren ≤ pk,tPV ≤ pkmaxren
pkminren ≤ pk,tWIND ≤ pkmaxren
− pkmaxAC−conv

≤ pk,tAC−lossconv ≤ pkmaxAC−conv

umin ≤ uk,t ≤ umax
− pmaxl ≤ ps,tl ≤ pmaxl
− pmaxl ≤ pr,tl ≤ pmaxl (42)

The deterministic model (42) can be represented in com-
pact form:

min c⊤x + e⊤y (43)

subject to

A1x = b1 (44)

A2x ≤ b2 (45)

∥Fx∥ ≤ f ⊤x (46)

Hx + Ky = d (47)

M1x = r1 (48)

M2x ≤ r2 (49)

∥Gx∥ ≤ g⊤y, (50)

where x and y are the vectors of decision variables for the
first and second stages. Here, x corresponds to all energy
management scheduling variables, while y corresponds to
the power flow variables. The objective function (43) is
separated into two stages in order to deal with the robust
model more quickly in the next section. The first term of
(43) represents the two first terms of the objective function
of (42) (f device−lossescost and f gencost ), while the second term of (43)
represents the cost of grid losses in the objective function
(42) (f grid−losses

cost ). Moreover, constraints (46) and (50) are the
second-order cone inequalities for the first- and second-stage
variables. Constraints (47) denote the nodal power balance
equalities. Finally, (48) and (49) represent the linear equality
and inequality constraints for the second-stage variables.

6) ROBUST ENERGY MANAGEMENT OPTIMIZATION MODEL
The demand and the primary sources of renewable ener-
gies are constantly changed during the DC-MG’s operation.
In addition, they have an inherent uncertainty that requires
optimization methods such as stochastic programming [30],
[31], [32], chance-constrained optimization [33], or robust
optimization [34], [35]. Stochastic and chance-constrained
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methods need a deep knowledge of the probability distri-
bution function of the uncertain parameters to be applied,
which is not always the case in real applications, since
acquiring these data might not be possible. In contrast, when
implementing robust optimization, the probability distribu-
tion functions of the uncertain parameters are not required.
Moreover, robust optimization is computationally manage-
able and attractive [23], [36].

Now, the set that contains the demand and renewable gen-
eration uncertainty is defined as follows:

Dt (d̄
t
, d̂

t
) :={

dt ∈ R|�n| : d tk = d̄ tk + d̂ tk
(
θ
k,t
+ − θ

k,t
−

)
,

θ
k,t
+ + θ

k,t
− ≤ 1, ∀ i ∈ �n

}
, (51)

where θ
k,t
+ and θ

k,t
+ are binary variables employed to denote

the uncertainty set; d̄ tk is the power injected by renewable
generation (or the required power demand); and d̂ tk is the
power deviation by renewable generation (or demand) from
its nominal value.

In (51), it is possible to note that d tk can take the following
value:

d tk ∈ [d̄ tk − d̂ tk , d̄
t
k + d̂ tk ]. (52)

The proposed robust model is solved in two adaptive
stages, as described in [22], which, in compact form, is as
follows:

min
x

(
c⊤x + max

d∈D
min

y∈�(x,d)
e⊤y

)
,

subject to

A1x = b1,

A2x ≤ b2,

∥Fx∥ ≤ f⊤x, (53)

with

�(x,d) =

{
y : Hx + Ky = d, M1x = r1,

M2x ≤ r2, ∥Gx∥ ≤ g⊤y.

}
(54)

Separating the robust energy management optimization
model into two stages allows resolving the following. The
first stage computes the variables associated with energy
management optimization scheduling before the uncertainty
is revealed. Even though the power flows are calculated in this
stage, they do not represent their actual values, as they will be
adjusted in the second stage, which includes the realization of
uncertainty. Then, in order to determine the uncertainty, the
first stage solves the energy management optimization again.
All this shapes the two-stage, adaptive robust model proposed
in [22].

IV. TEST SYSTEM AND RESULTS
A. ANALYZED SYSTEM
The proposed optimal energy management was evaluated in
the modified IEEE 123-bus radial distribution feeder. This
feeder was transformed into a single-phase equivalent, and

FIGURE 5. Available power for the wind generators.

FIGURE 6. Available power for the PV generators.

the effects on the line reactances were neglected to obtain a
DC test feeder. The location of the solar and wind generators
and BESS were taken from [37], which considers seven solar
power generators, ten wind power generators, and five BESS.
The solar power generators are connected to nodes 19, 20, 37,
43, 50, 73, and 75, and thewind power generations are located
at nodes 2, 4, 6, 47, 48, 85, 87, 107, 109, and 113. The BESS
are connected to nodes 19, 33, 34, 64, and 75. Fig. 8 illustrates
the modified IEEE 123 node test feeder, including the solar
and wind power generators and the BESSs.

Figs. 5 and 6 present the available power to be delivered
to each of these systems. These curves were obtained by
employing information on wind speed, temperature, solar
radiation, humidity, and pressure for periods of 0.5 h,
which was taken from [38]. The demand variation through-
out the day, the entirety of the renewable energy genera-
tors’ available power, and the power purchasing costs are
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FIGURE 7. Energy purchasing cost (green line), hourly demand (orange
line), and the entirety of the renewable energy generators’ available
power (blue line).

depicted in Fig 7. The peak purchase cost is assumed to
be US$/kWh 0.1390.

B. RESULTS
The energy management mathematical model was imple-
mented on a Dell Inspiron 15 7000 Series (Intel Quad-Core
i7-7700HQ @2.80 GHz) personal computer, with 16 GB
RAM and 64-bit Windows 10 Home Single Language, using
the MATLAB 2021a software and the Yalmip toolbox [39],
and it was optimized via the Gurobi solver [40].

Four scenarios were proposed to analyze the performance
of the proposed convex model:

i. Scenario 1: Analysis of the deterministic model without
considering uncertainties.

ii. Scenario 2: Analysis of energy management optimiza-
tion while including demand uncertainty.

iii. Scenario 3: Analysis of energy management optimiza-
tion while considering uncertainty in the solar and wind
generators.

iv. Scenario 4: Analysis of the robust energy manage-
ment optimization model, including uncertainty in the
demand and solar and wind generators.

On the other hand, it was considered that the SoC of the
BESS should be kept within 10-90%, according to exper-
imental data presented in [41]. Furthermore, in two cases,
the initial and final SoC of the BESSs were fixed to 50%,
as recommended in [42].

1) DETERMINISTIC MODEL ANALYSIS
This subsection analyzes the optimal schedules generated by
the proposed optimal model (42), which includes the power
transfer losses in devices that interconnect renewable energies
and BESS in the DC-MG. Note that the solution model (42)
is defined as the deterministic solution, as it corresponds
to the ideal formulation of the efficient operation of BESS

and renewables in DC grids. This is due to the fact that
it considers all external inputs (i.e., demand behaviors and
generation profiles) as data without any noise or uncertainty
patterns. Under these simulated conditions, the expected daily
operating costs of the IEEE 123-bus grid in its DC version are
US$ 4376.82 per day.

Figs. 9a, 9b, and 9c present the total power dispatched by
the generators, the power dispatched by the batteries, and
their SoC, respectively. Based on these daily behaviors, it is
noted that:

i. Fig. 9a shows the total power dispatched by the con-
ventional, wind, and solar generators, as well as the
total demand. The conventional generator is not required
from 7:00 to 16:00, since the energy stored in the BESS
plus the available renewable energy is more than the
demand. From 8:00 to 13:00, renewable energy can sup-
ply the demand and charge the batteries, which allows
reducing the system’s operating costs.

ii. In addition, in Fig. 9a, it can be seen that the conven-
tional generator is needed at times when the energy costs
are higher. This is because the energy stored in the BESS
is insufficient, or the BESSs are charging when the
demand exceeds the distributed generators’ availability
(from 6:00 to 5:00 and at 16:00 hours).

iii. Figs. 9b and 9c show the behavior of the BESS during a
day of operation, where it is confirmed that, when power
generation is negative in these systems, they are storing
energy. This implies that the SoC variable will increase.
When the power injection in the BESS is positive, the
BESS deliver energy, and the SoC variables decrease.
Note, for example, that all batteries store energy from
00:00 to 5:00 and from 21:00 to 24:00. In addition,
between 15:00 and 21:00, the BESS provide their stored
energy to the grid in order to compensate for the signif-
icant reduction in power generation by PV sources, thus
contributing to reduce the amount of power generated in
the conventional source and aid in daily operating costs
minimization.

iv. The critical behavior of the BESS goes from 5:00 to
15:00 hours. During this period, these devices store
energy due to the energy surpluses from renewables,
to later return it when the total demand behavior
increases, with the aim to contribute to local energy loss
reduction in the vicinity of the batteries’ connection.
In addition, the BESSs store energy from 9:00 to 15:00
in order to deliver it when PV availability is reduced
during the afternoon and night.

2) OPTIMAL ENERGY MANAGEMENT WHILE INCLUDING
DEMAND UNCERTAINTY
This section analyzes the optimal schedules generated while
considering demand uncertainty in the proposed optimal
model (53). This scenario considers a demand uncertainty of
± 5% of the nominal value. According to [43], this value was
assumed because the prediction error of demand loads with

38176 VOLUME 11, 2023



W. Gil-González et al.: EMS for the Optimal Operation of BESS in DC Microgrids

FIGURE 8. Modified 123-IEEE DC test system.

FIGURE 9. Results for scenario 1: (a) total power dispatched by the generators and demand, (b) power dispatched by the BESS,
and (c) SoC of the BESS.

maximum generation was around 5%. Fig. 10 illustrates the
demand variation considered in this paper.

In this scenario, the operating costs are US$ 5243.23,
which is an increase of 19.79% compared to scenario 1.
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FIGURE 10. Demand with the uncertainty − ± 5% of the nominal value.

FIGURE 11. Results for scenario 2: (a) total power dispatched by the
conventional generators, (b) Total power dispatched by the BESS, and
(c) total SoC of the BESS.

This increase is expected, as the proposed optimal energy
management schedules the generators in a worse scenario.

Fig. 11a presents the total power dispatched by the conven-
tional generator for scenarios 1 and 2. Note that this power
increases from 00:00 to 7:00 and from 15:00 to 24:00 regard-
ing scenario 1 in order to satisfy demand uncertainty. At the
same time, the total power dispatched by the conventional
generator is still not required from 7:00 to 16:00. This is due
to two facts: first, the dispatched powers of the solar and wind
generators have not changed; secondly, the battery charge
and discharge schedules have changed (Figs. 11b and 11c) to

FIGURE 12. Total power available of the solar and wind generators with
± 5% uncertainties in their nominal value.

prepare for the worst possible scenario concerning demand
uncertainty.

As seen in Figs. 11b and 11c, the total scheduled power
of the BESS starts being delivered to the system one hour
later than in scenario 1 (5:00 hours). Meanwhile, the BESS
has been charging for an hour longer than scenario 1, which
allows for delivering more energy from 15:00 to 21:00–
during this period, the available solar energy drastically
drops.

3) OPTIMAL ENERGY MANAGEMENT WHILE INCLUDING
UNCERTAINTY IN SOLAR AND WIND GENERATORS
This section analyzes the optimal schedules generated while
only considering uncertainty in the solar and wind genera-
tors. This scenario only includes ± 5% uncertainties in the
nominal values for the solar and wind generators. This range
was considered [44] since a typical prediction error of 5%
regarding renewable energies with maximum generation has
been observed. Fig. 12 depicts the total power available for
the solar and wind generators, including their uncertainties.

In this scenario, the operating costs are US$ 5072.23,
which constitutes an increase of 15.88% compared to sce-
nario 1. Similar to scenario 2, the operating costs are higher
than those of scenario 1. This result is expected, given that
the generators are programmed for the worst-case scenario.
Additionally, the operating costs are less than those of sce-
nario 2. This indicates that the effect of demand uncertainty
has greater weight in the programming of the entire DC-MG.

Figs. 13a, 13b, and 13c show the total power dispatched by
the conventional generator and batteries, as well as the total
battery SoC for scenarios 3 and 1.

Fig. 13a illustrates the total power dispatched by the
conventional generator for scenarios 1 and 3. Note that it
increases from 00:00 to 7:00 and from 15:00 to 24:00 in
scenario 1. This is to satisfy demand uncertainty. Here, the
conventional generator dispatches power from 7:00 to 16:00
hours, which did not occur in the two previous scenar-
ios. This is because solar and wind power have the most
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FIGURE 13. Results for scenario 3: (a) total power dispatched by the
conventional generator, (b) total power dispatched by the BESS, and
(c) total SoC of the BESS.

significant impact on the available energy. Hence, a great
uncertainty, whereby the conventional generator may be
required, increases the operating costs of the microgrid.

Fig. 13b shows that the total scheduled power in the BESS
is delivered to the system one hour later than in scenario 1
(5:00 hours). Furthermore, the power absorbed by the batter-
ies in the period from 8:00 to 15:00 hours is less than that in
scenario 1. In turn, Fig. 13c reveals that the total BESS SoC
is charged for an hour longer at startup than in scenario 1,
alleviating the uncertainty of the renewable energies.

4) OPTIMAL ENERGY MANAGEMENT WHILE INCLUDING
UNCERTAINTY IN DEMAND AND THE SOLAR AND WIND
GENERATORS
This scenario analyzes the robust optimal schedules gener-
ated by the proposed optimal model (53) while including
uncertainty in demand and in the solar and wind generators.
This scenario includes uncertainties in demand and solar and
wind generators, and these uncertainties are illustrated in
Figs. 10 and 12.
The operating cost is US$ 5738.75, which is the highest

among the studied scenarios. This value exceeds the others
by 31.12%, 9.45%, and 13.14%with respect to scenarios 1, 2,
and 3. This result is logical since, in scenario 4, there is amore
significant uncertainty. Hence, the generators are scheduled
in the face of the worst-case scenario.

FIGURE 14. Results for scenario 4: (a) total power dispatched by the
conventional generator, (b) total power dispatched by the, and (c) total
SoC of the BESS.

Figs. 14a, 14b, and 14c show the total dispatched power
of the conventional generator and the batteries, as well as the
total battery SoC for all scenarios.

The total power dispatched by the conventional generator
for all scenarios is shown in Fig. 14a. As expected, for
scenario 4, this generator is scheduled and dispatched for
more time and power than in other scenarios. This behavior
is logical, as scenario 4 involves a more significant uncer-
tainty that must be supplied. According to Fig. 14a, at 8:00
and 15:00 hours, the conventional generator is required to a
greater extent in scenario 4.

By analyzing Fig. 14b, note that the total scheduled power
absorbed by the BESS in the DC-MG is maintained for a
longer time in scenario 4 (until 7:00 hours). In addition, from
9:00 to 13:00, the BESSs deliver greater power in scenario
4 than in the other scenarios, with the aim of compensating
for the considered uncertainties.

The total BESS SoC in Fig. 14c shows that scenario
4 involves charging for a longer time at startup than in
other scenarios, thus allowing to compensate in other peri-
ods, especially when there is a more significant uncertainty
in the DC-MG.

V. CONCLUSION
This paper proposed a robust optimal energy management
model for BESS and renewable energies in DC microgrids
via a convex formulation. This formulation ensured the global
optimum of the problem, even when considering uncertainty
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since it is minimized regarding the worst-case cost while
satisfying all of its constraints. Additionally, the power trans-
fer losses in power converter devices were included and
convexified in a robust energy management model. This con-
vexification was performed by transforming the non-linear
non-convex equations into second-order cone constraints.
Four scenarios were proposed to analyze the model: the
deterministic model, demand uncertainty, uncertainty in the
solar and wind generators, and uncertainty in demand and
solar and wind generators. In all four scenarios, the goal was
to reduce the total energy costs, including the costs of power
transfer and network losses, as well as the cost of energy.
Scenario 4 reported the highest costs of the problem, given
that, in this scenario, there was more uncertainty involved,
and the optimal robust energy management model dispatched
more energy from the conventional generator, thus increasing
the operating costs to be able to program all BESS and
renewable energies for the worst-case cost. The operating
costs, with respect to scenario 4, increased by 31.12%, 9.45%,
and 13.14% for scenarios 1, 2, and 3, respectively.

The following works could be conducted in the future:
(i) extending the proposed model to bipolar DC micro-
grids with asymmetrical loads, as well as to AC networks
with single- and three-phase topologies; (ii) including an
objective function regarding the minimization of the total
CO2 emissions by conventional sources (substations and
diesel sources) in the proposed convex model; and (iii) modi-
fying the proposed convex formulation to include monopolar
DC networks with meshed topologies.
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