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ABSTRACT The use of Convolutional Neural Networks (CNN) for the application of wood defects detection
has gained significant attention in recent years. In industrial settings, these tasks are typically performed in
a strict and consistent environment, making the use of large and complex CNNmodels unnecessary. Despite
this, recent research has continued to focus on the use of such models to achieve increasingly accurate
detections. These models require costly machines for inference, making adoption less likely especially for
manufacturers in the developing nations. In view of this limitation, this paper proposes a set of strategies to
achieve a highly efficient CNN model for fast and accurate wood defects detection based on the YOLOv4-
Tiny architecture. The model has been improved with Efficient Channel Attention (ECA) to better select
multi-scale features from the backbone network and has been drastically reduced in size through an iterative
pruning and recovery process. This results in an 88% reduction in model parameters while retaining accuracy
comparable to most state-of-the-art (SOTA) methods. Consequently, the model can perform near real-time
inference directly on a general-purpose embedded processor without external hardware accelerators. This
research hopes to motivate the development of efficient defect detectors that can run on low-cost embedded
devices.

INDEX TERMS Attention, channel pruning, CNN, defect detection, embedded, lightweight, wood.

I. INTRODUCTION
Wood is a scarce but essential resource. The wood prod-
ucts industry contributes significantly to the economies of
many developing nations. A common nuisance faced by
the wood industry is the presence of wood defects. This is
because defects negatively impact the appearance and struc-
tural strength of wood, thus reducing the commercial value
of its derived products [1]. In fact, the average yield reduc-
tion due to wood manufacturing defects are about 10% [2].
As quality wood is often in high demand, wood manufac-
turers have employed considerable manpower to identify and
eliminate defective woods during the manufacturing process
to avoid compromising the quality of their products.
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Traditional approaches to wood defects detection utilize
human labor to performmanual eye inspection. The downside
of this approach is that humans often suffer from eye fatigue
after long hours of work which can result in high human
error. Besides that, humans typically make subjective judge-
ments during decision making which can cause inspection
results to become inconsistent. However, with the advent of
machine vision technology, automated solutions now exist to
improve the efficiency of wood defects detection. By utilizing
automated visual inspection systems, it can not only improve
the inspection accuracy and consistency, but also increase its
efficiency and throughput due to the capability for high-speed
and non-stop operation of automated systems.

Conventional methods for automated wood defects detec-
tion are based on manually curated features. These features
are typically derived from the color [3] or texture [4] of wood.
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Prasitmeeboon and Yau [5] have performed wood defect
detection onwood particleboards based on the hue and satura-
tion channels of the input images. Riana et al. [6] performed
color conversion before segmenting defective regions from
wood images while utilizing the Gray Level Co-occurrence
matrix (GLCM) to extract textural features for the clas-
sification of wood defects of Swietenia Mahagoni wood.
Qayyum et al. [1] have also used the GLCMmethod as textu-
ral features while using a Particle SwarmOptimization (PSO)
trained neural network for the classification of wood defects.
Besides GLCM, other feature extraction algorithms have
also been proposed for wood defects detection. This include
the use of Local Binary Pattern (LBP) [7], Law’s Texture
Energy Measures (LTEM) [8] as well as the Dual-Tree Com-
plex Wavelet Transform (DTCWT) [9] algorithms. Some
researchers have also combined several textural features for
the recognition of wood defects. Li et al. [10] have combined
LBP with their newly proposed local binary differential exci-
tation pattern (LB_DEP) model to create a two-dimensional
(2D) histogram as the features for the classification of birch
wood defects. Hittawe et al. [11] have also proposed to com-
bine both LBP and the Speeded Up Robust Features (SURF)
for the classification of knot and crack defects. Besides
having different feature extraction algorithms, conventional
vision inspection methods also utilize various algorithms for
the detection and recognition of wood defects. These include
the use of Artificial Neural Networks (ANN) [1], [7], [8],
k-Nearest Neighbours (kNN) algorithm [12], Support Vector
Machines (SVM) [5], [11], gaussian distance [10] and com-
pressed sensing theory [9]. The problem with conventional
methods is that a high level of human expertise is required for
its development. This is a result of having no clear rules for
the determination of optimal features for wood defects detec-
tion [13]. Additionally, separate designs are required for the
feature extractor and classifier which makes the development
of wood detectors tedious and sub-optimal [14].

With the rapid increase in Graphics Processing Unit (GPU)
computational power and the advancement of CNNs, it is now
possible to train deep CNN networks to perform automatic
feature extraction from image data. These networks learn the
optimal set of features for a particular problem based on its
training dataset. CNN-based networks have proven effective
in various fields of engineering such as infrared target detec-
tion [15] and electroencephalography [16]. In manufacturing,
CNN have been extensively used for the purpose of visual
inspection including applications for civil works [17], [18],
railroad tracks [19], [20], electronic components [21], [22]
and steel surfaces [23], [24], [25], [26], [27], [28], [29].
In recent years, the use of CNN for wood defects detection
has quickly become established. The models used for wood
defects detection can be generally split into two categories,
namely two-shot detectors and single-shot detectors. A two-
shot detector performs defect detection in two stages. The
first stage is known as the region proposal stage where
suggestions are provided for regions of interests (RoI)

that contain defects. These regions are then sent to the
second stage which performs classification and localiza-
tion refinement for the RoIs simultaneously. For instance,
Urbonas et al. [30] have utilized a two-stage detector known
as the Faster R-CNN network with an AlexNet backbone to
achieve an 80% detection accuracy for wood veneer defects.
In 2021, Pan et al. [31] proposed a modification to the Faster
R-CNN network based on the Gaussian Proposal Network
(GPN) to allow for elliptic RoI to better suit the detec-
tion of knot defects. Mask R-CNN is also a variant of the
Faster R-CNN network that allows fine-grained segmenta-
tion in addition to normal detection. Both Li et al. [32]
and Shi et al. [33] have used Mask R-CNN networks in
the development of their wood defects detection models.
In contrast to two-shot detectors, single-shot detectors per-
form defect detection in a single pass, which makes them
faster than their counterpart. Two common single-shot detec-
tors are the Single-shot Multibox Detector (SSD) and the
You Only Look Once (YOLO) family of networks. For
instance, Ding et al. [34] have utilized the SSD network
with a DenseNet backbone to perform detection of live knot,
dead knot and checking defects. Tu et al. [14] have also
improved the YOLOv3 network by incorporating Complete
Intersection over Union (CIoU) metric and Gaussian mod-
elling for localization uncertainty to achieve accurate and
real-time wood defects detection. Other YOLO variants such
as YOLOv5 [35] and YOLOv5s-BiFPN [36] have also been
experimented to achieve highly accurate detection of wood
surface defects.

Despite the many research done on wood defects detection
using CNN-based networks, most of them focus on building
models with ever increasing complexity to achieve highly
accurate detections. These computationally intensive models
typically require a well-invested machine with a GPU to per-
form its task. However, the deployment of such machines for
the visual inspection of wood defects is very costly which can
create a high barrier to entry for manufacturers especially in
developing nations. Besides that, more computations implies
higher energy consumption which may result in higher run-
ning cost for the manufacturers. Improving the efficiency of
CNN detectors and supporting their use on embedded devices
can also equalize the access and prevent their exclusive use by
high-capital businesses [37]. This circumstance motivates us
to explore the possibility of highly efficient models for wood
defects detection that is fast, accurate and lightweight. During
the model’s development, several optimizations and modifi-
cations were performed to counteract the accuracy trade-off
of lightweight models. After obtaining the optimized model,
aggressive compression is performed to drastically reduce the
model’s number of parameters while maintaining its detec-
tion capability. This results in a highly compact wood defects
detection model that has minimal computational footprint.
The compressed model is then tested on an embedded device
without external hardware accelerators to achieve an accurate
and near real-time performance for wood defects detection.
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To summarize, the main contributions of this paper are as
follows:

1) Proposed a lightweight and optimized object detec-
tion model for wood defects detection based on
the YOLOv4-Tiny architecture. The model is greatly
enhanced through hyperparameter search, data aug-
mentation and architectural modifications. Efficient
Channel Attention (ECA) modules were added to the
model to enhance the detection performance with min-
imal impact on the model size.

2) Performed aggressive channel pruning iteratively based
on the L1 norm strategy to drastically shrink the model
size while maintaining high accuracy for high speed
inference on embedded devices without external hard-
ware accelerators.

This article is structured as follows: Section II reviews
the related literature and compares them with the cur-
rent research. Section III describes the methods employed
whereas Section IV explains the dataset, experiments and
metrics used. Lastly, Section V and VI give the discussions
and conclusions respectively.

II. RELATED WORK
Despite its importance, the subject of improving model effi-
ciency for detecting wood defects is still relatively under-
explored. The general method used by most researchers
is to replace part of their CNN model with lightweight
alternatives. This will result in a decrease in model com-
plexity and an increase in inference speed. For instance,
Wang et al. [38] have replaced the residual block in
the YOLOv3 algorithm with a Ghost module structure to
reduce model size by 38% while improving inference speed
by 11 FPS. Zhao et al. [39] also utilized the Ghost module
while replacing regular convolution with depthwise convolu-
tion to reduce model size of YOLOv5s by 64%. Architecture
modifications can be used to reduce model size significantly,
but the reduction is only fixed based on which components
are being replaced.

Another method to improve wood inspection efficiency
is proposed by Shi et al. [33] in 2020. They introduced an
auxiliary component known as a glance network to filter
out non-defective wood from their detector network. This
increases the overall inspection speed for a batch of wood
samples but did not introduce any improvements to the infer-
ence speed of the detector.

This research proposes a configurable approach to model
size reduction for wood defects detection. Rather than
replacing existing architectural components with lighter
ones, the entire model is trimmed uniformly based on a
reduction ratio. This process can then be repeated until
a desired level of lightening has been achieved. With
this method, the model is compressed so that it can
perform inference directly on an embedded processor,
whereas the aforementioned methods were all executed on
a GPU.

III. PROPOSED DETECTION METHOD
The wood defects detection model proposed in this paper is
based on the YOLOv4-Tiny architecture. The training hyper-
parameters are tuned so that optimal training conditions can
be achieved. Furthermore, several data augmentation strate-
gies are employed to allow the model to generalize better and
achieve higher accuracy. Subsequently, attention modules are
added to the features of the model so that the relevant fea-
tures for detection gets enhanced while insignificant features
are diminished. Lastly, the model is compressed by cutting
the model size via iterative structured pruning. The model
is retrained after pruning to recover its lost accuracy. This
allows us to develop a model that can perform inference on
embedded processors without any external hardware acceler-
ators like GPUs, Tensor Processing Units (TPUs), or Vision
Processing Units (VPUs).

A. YOLOv4-TINY ARCHITECTURE AND PRINCIPLES
The YOLOv4-Tiny model is a simplified and compressed
version of the YOLOv4 object detection model proposed
by Bochkovskiy et al. [40] in 2020. It drastically reduces
the total number of convolutional layers in YOLOv4 from
110 layers to a total of only 21 layers. YOLOv4-Tiny
model is suitable for object detection applications where
devices do not have the luxury of large computational
power, but still require accurate and high-speed detection.
The YOLOv4-Tiny architecture, despite being a heavily
reduced version of YOLOv4, still retains several features
of the former, such as having a backbone network made of
residual [41] and cross-stage partial (CSP) [42] modules;
and a multi-scale feature fusion neck [43] before each of its
prediction head. The architecture of YOLOv4-Tiny is shown
in Fig. 1.

YOLOv4-Tiny performs detection at two different scales
simultaneously. The detection is performed by two 3×3 con-
volutional layers right before the model’s output. YOLOv4-
Tiny uses the anchor box mechanism [44] for detection,
where each bounding box is predicted relative to a prede-
fined set of width-height dimensions. In YOLOv4-Tiny, each
prediction head is assigned A number of unique anchor box
dimensions as targets for regression. To perform prediction,
YOLOv4-Tiny divides the image into a grid of M × M
cells, and each cell will output A number of anchor predic-
tions. Each prediction is represented by 4 coordinate values
(xc, yc,w, h), 1 object-ness score (o) and N number of proba-
bility scores corresponding to each object class in the dataset.
The number of cells per grid dimension (M ) depends on the
scale of the prediction head, and given that the input image
size is W × W , the value of M for the detection head i can
be calculated using the formulaMi = W/(8 × 2i), where i ∈
{1, 2}. With two detection heads, YOLOv4-Tiny effectively
outputs (M1 ×M1 +M2 ×M2)×A× (4+ 1+N ) number of
predicted values for each input image.

After obtaining the predictions, a confidence threshold
value is set to remove predictions with confidence score
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FIGURE 1. YOLOv4-Tiny Architecture Diagram. Attention modules will be added at locations F1, F2, and F21 as discussed
in Section III-D.

lower than the threshold value. Following that, a standard
non-maximum suppression (NMS) algorithm is then per-
formed to remove overlapping predictions and the remaining
bounding boxes are treated as the valid outputs of the net-
work. Fig. 2 shows an illustration of the detection process for
YOLOv4-Tiny.

YOLOv4-Tiny optimizes its weights through an end-to-
end learning process using a single multi-part loss func-
tion. The loss function consists of three parts, namely the
localization loss (Lloc), the object-ness loss (Lobj), and the
classification loss (Lcls). The CIoU [45] metric as shown
in (1) is used by YOLOv4-Tiny for the localization loss as it
considers both bounding box distance as well as the bounding
box aspect ratio in addition to the degree of overlap between
the bounding boxes. The equations for v and α are shown
in (2) and (3) respectively. The localization loss is then
defined as Lloc = 1 − CIoU.

CIoU = IoU −
∥bgt − bpred∥22

c2
− αv (1)

v =
4
π2

(
arctan

wgt

hgt
− arctan

wpred

hpred

)2

(2)

α =
v

1 − IoU + v
(3)

Lobj of YOLOv4-Tiny is used to optimize the object-ness
score for each prediction, where the score resembles how
likely the prediction is to contain an object. Assuming that p̂
represents the predicted value while p represents the ground
truth label, both the Lobj and Lcls of YOLOv4-Tiny uses the
binary cross-entropy loss function for optimization as shown
in (4). The final multi-part loss function for YOLOv4-Tiny
is then defined as a linear combination of the three losses as
shown in (5), where λloc, λobj and λcls are scalar values used
to balance the contributions of each loss to the whole.

BCELoss =

{
− log p̂ if p = 1
− log 1 − p̂ if p = 0

(4)

Loss = λlocLloc + λobjLobj + λclsLcls (5)
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FIGURE 2. YOLOv4-Tiny Detection Process.

B. HYPERPARAMETER OPTIMIZATION
Other than model selection, there exists other variables that
can affect the performance of deep neural networks. Pri-
marily, the training criteria and the quality of the training
data both play critical roles in determining the performance
of the trained model. Currently, the most widely used opti-
mization methods for deep architectures still depend on gra-
dient descent via back-propagation. This method involves
several hyperparameters during training and researchers typ-
ically rely on best practices [46] that are validated through
numerous experimentation. Despite being a decent guide,
best practices do not guarantee optimal training as differ-
ent models and datasets require different sets of training
hyperparameters to achieve its fullest potential. Thus, per-
forming a thorough search through the training hyperpa-
rameter space is crucial before further improvements are
made.

Our hyperparameter search space include the initial learn-
ing rate, the training batch size, the optimizer type and
the learning rate scheduler type. The initial learning rate is
one of the most important training hyperparameters to tune.
An initial learning rate that is too large will cause model
training to diverge. Inversely, an initial learning rate that is
too small will take a long time for training to converge.
Given a reasonable number of training epochs, a suitable
initial learning rate should thus be selected to train the model
optimally. In addition, the training batch size can also have
a considerable effect on training performance. A smaller
training batch size can allow more updates per epoch and can
also act as a form of regularization for the model. However,
a training batch size that is too small might slow down
computation while also reducing the effectiveness of Batch

Normalization (BN) layers [47] for models that utilize them
such as YOLOv4-Tiny.

During model training, an optimizer is selected to perform
gradient descent and update the model weights. The typical
optimization algorithm is Stochastic Gradient Descent (SGD)
which uses a single learning rate throughout the training
procedure to update all model parameters. SGDwith momen-
tum (SGDm) [48] is later proposed to reduce oscillations in
each SGD step and speed up convergence. Recently, adaptive
optimizers were proposed as alternatives to SGD and its
variants. In adaptive optimization, the learning rate for each
parameter is different and is changed each iteration based on
previous updates. The most well-known adaptive optimizer
currently is the Adam [49] optimizer which combines SGDm
and the RMSProp [50] algorithm to reduce noisy gradient
updates and speed up convergence. Nonetheless, there is still
debate among researchers over the effectiveness of adap-
tive optimizers such as Adam over traditional non-adaptive
optimizers like SGDm [51], [52], [53]. Thus, to guarantee
optimal convergence of ourmodel, both the SGDm andAdam
optimizers are included into the hyperparameter search space.

Lastly, the learning rate scheduler is also a key element
when training deep architectures. Many well-known deep
neural networks [54], [55], [56] include learning rate sched-
ulers during their training process to achieve SOTA perfor-
mances. A learning rate scheduler works by reducing the
learning rate as training progresses, either continuously or
at specific intervals. This has the benefit of having fast
convergence during early stages of training due to a large
initial learning rate and stabilized convergence due to a grad-
ually decaying learning rate [57]. Two common learning
rate schedulers are selected for our hyperparameter search.
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The first scheduler is the step decay scheduler as shown
in (6) and (7) where t represents the current epoch, ηmax
represents the initial learning rate and T represents the total
number of training epochs. The step decay scheduler repeat-
edly decreases the learning rate (η) by a factor of α after
each interval (E) until the minimum learning rate (ηmin) is
achieved. The second scheduler chosen is the cosine anneal-
ing scheduler as proposed in [58]. Cosine annealing as shown
in (8) diminishes the learning rate after each epoch unlike step
decay and thus provide a more gradual decay for the learning
rate.

ηt = α⌊t/E⌋ηmax (6)

α =

(
ηmin

ηmax

)1/
(
T
E −1

)
(7)

ηt = ηmin +
1
2

(ηmax − ηmin)

(
1 + cos

(
t
T

π

))
(8)

C. DATA AUGMENTATIONS
Besides the training hyperparameters, the quality of the train-
ing dataset is also important to train better deep learning
models. Deep neural networks usually tend to have a large
number of trainable parameters. This makes them highly
susceptible to overfitting, especially when training data is
scarce or limited. To tackle this issue, various regularization
techniques such as Dropout [59] and Weight Decay [60]
have been proposed which have been shown to improve the
generalization capability of the model. Another type of regu-
larization method that directly acts on the training dataset is
known as data augmentation. To perform data augmentation,
various transformations are applied on the input image to
artificially inflate the training dataset. The selection of trans-
formations suitable for a specific problem is paramount as
these transformations should preserve the semantic meaning
of the labels.

Four data augmentation techniques have been considered
in this research. This include random flipping, scale jitter-
ing, color jittering and mosaic augmentation [40]. Random
flipping flips the input image in the horizontal and vertical
direction with each action having a 50% chance of occurring.
Scale jittering applies a random scale transformation on the
image and later modifies the aspect ratio of the image. The
scaling factor for the image ranges from [0.25, 2] while the
aspect ratio of the image is modified by a factor in the range
of [0.7/1.3, 1.3/0.7]. Color jittering is performed based on
the Hue-Saturation-Value (HSV) color space of the image.
The degree of jittering for the hue, saturation and value
channels of the image are within ±10%, ±70% and ±40%
respectively.

As opposed to the former transformative augmenta-
tions, Mosaic is a synthetic data augmentation method that
improves the model generalization capability by synthesiz-
ing images for training. The mosaic algorithm works by
splicing 4 different images into a single training image and
combines the labels for each of these images during training.

The 4 images are combined into a 2×2 grid with unequal cell
areas that eventually fit into a square image. Assuming that
(xs, ys) represents the bottom-left corner of the top-left grid
cell and the size of the square image is W ×W , the range of
values for xs and ys is set to fall within [0.3W , 0.7W ]. With
mosaic data augmentation, each object can be presented in a
different context [40] during training and thus help improve
generalization. An illustration of mosaic data augmentation
is shown in Fig. 3.

FIGURE 3. An Illustration of Mosaic Data Augmentation.

D. ATTENTION MODULES
Besides obtaining highly discriminative features, it is also
important for the model to focus on the salient features
while suppressing the unimportant ones. This can be achieved
via an attention mechanism. An attention mechanism per-
forms a feature selection process by applying a learn-able
weight to each feature of the model based on their impor-
tance [61]. Attention can be applied to a convolutional neural
network either via channel-wise attention or spatial atten-
tion. Channel-wise attention allows the model to discriminate
between semantic features while spatial attention allows the
model to pay attention to regions that matter.

In our model, attentionmodules are added at three different
locations denoted by the symbols F1, F2, and F21 in Fig. 1.
Locations F1 and F2 are the two sets of features extracted
from the backbone network of the model for the detection
of objects at two different scales. Applying attention at the
two locations can help the model emphasize on important
features extracted from the backbone network while reducing
unwanted noise. In addition toF1 andF2, an attentionmodule
is also added at location F21. The features at F21 are features
with high semantic value that are being accommodated to
a smaller scale to assist in the detection of small objects.
Attention module is added here to pick the relevant features
before feature fusion for small scale detection.

Three attention modules have been experimented and the
best attention module is selected for the final model. The first
attention module considered is the Squeeze-and-Excitation
(SE) attention module proposed by Hu et al. [62] in 2018. The
SE module is a channel-wise attention module that utilizes
a squeeze operation followed by an excitation operation to
perform attention. In the squeeze operation, global average
pooling (GAP) is applied to each channel output of a convo-
lutional layer to condense the channel’s global information
into a single descriptor. Later on, this one-dimensional vector
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FIGURE 4. The various attention modules tested in our research. (a) SE module (b) CBAM module (c) ECA
module.

is ‘‘excited’’ by passing through two fully connected (FC)
layers with non-linearity that learns the weights required to
scale the channels. This scaling effectively performs feature
selection for attention. In the excitation phase, the first FC
layer performs a dimensionality reduction with a reduction
ratio of (r) while the second FC layer recovers the dimen-
sion of the output for scaling the channels. This reduction
is performed to limit the number of learn-able parameters
while aiding generalization. The architecture for SE is shown
in Fig. 4(a).

The second attention module considered is the Convolu-
tional Block Attention Module (CBAM) [63]. It is a hybrid
attention module that combines both channel and spatial
attentions. The attentions are performed in a sequential man-
ner where channel attention is performed before spatial atten-
tion. CBAM uses a mechanism similar to SE for channel
attention. The difference is that CBAM performs two parallel
SE channel attention with one using GAP for the squeeze
operation while the other uses a global maximum pooling
(GMP) operation. Both branches share the same weights for
the FC layers. The final weights for channel attention is then
obtained by adding the output of the two branches followed
by a sigmoid activation function. For spatial attention, CBAM
passes the channel-wise attended features through two sepa-
rate branches. The first branch performs average-pooling in
the channel dimension to obtain a descriptor for each spatial
point on the feature map. The second branch performs a
similar operation but with max-pooling instead of average-
pooling. The weights for spatial attention is then obtained
by concatenating the output of the two branches and passing

it into a 7 × 7 convolutional layer followed by a sigmoid
activation function. The architecture for CBAM is shown
in Fig. 4(b).

The third attention module considered is the Efficient
Channel Attention (ECA) module [64]. The ECA module is
an improvement over the SE module without the dimension-
ality reduction. ECA retains the GAP used in the squeeze
phase of SE while replacing the two FC layers in the
excitation phase wtih a single 1D convolutional layer. The
1D convolutional layer is still able to capture cross-channel
interactions between channels like the two FC layers but
without the indirect correspondence introduced by dimen-
sionality reduction. Even though 1D convolution trade offs
full cross-channel interactions with local interactions to lower
the number of computations, the authors of ECA showed
that both can achieve similar results. In ECA, the kernel
size of the 1D convolutional layer is determined adaptively
based on the number of channels. Let C be the number of
channels and |t|odd represents the nearest odd number to t ,
the kernel size (k) for ECA can be determined using (9). The
architecture for ECA is shown in Fig. 4(c).

k =

∣∣∣∣ log2 C + 1
2

∣∣∣∣
odd

(9)

E. AGGRESSIVE STRUCTURED MODEL PRUNING
Despite the complexity of vision-based problems, deep learn-
ing models are still typically over-parameterized. Therefore,
there exists sufficient capacity for themodel to be compressed
so as to save memory and computation time. One such
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method is known as unstructured pruning whereby individual
connections from the network are removed based on a scoring
criteria. Han et al. [65] performed unstructured pruning based
on the magnitude of the weights and was able to compress the
model size of AlexNet by 9× without incurring any accuracy
loss. However in practice, despite the high sparsity of the
resulting model, this method does not accelerate inference
significantly as it requires specialized hardware and software
to do so. On the other hand, structured pruning removes
model parameters in groups such that model inference can
be sped-up using off-the-shelf libraries. Channel pruning [66]
is an instance of structured pruning where entire channels
are removed from a convolutional layer, which results in a
thinner and more efficient model. This is also the strategy
employed for pruning our model as it is relatively simple
to implement and can result in significant gains in model
compression.

In this research, model pruning is performed in an iterative
fashion. Each iteration is split into a model pruning stage
and a retraining stage. The first iteration of model pruning
starts after standard training of the model. Channel pruning
is then performed on all convolutional layers of the model
including layers involving residual connections and channel
splitting. Channel pruning is done by removing the filters of
the convolutional layer corresponding to the pruned channels
at the output. Whenever a filter is truncated, the filters in
the following layers will also be pruned to accommodate the
change in input channel size. In terms of pruning criteria, the
L1 norm is used to determine the importance of the channel’s
filter to the specific convolutional layer. Assuming that the
channel filter of size K ×K ×C is denoted byW where wijk
represents its individual weights, the L1 norm criteria forW is
then defined in (10). For each layer, the L1 norm of its channel
filters are ranked and the lowest 30% will be removed. After
pruning, the model is retrained from its remaining weights
to recover the lost accuracy due to pruning. Model pruning
and retraining is performed for a total of 7 times and the best
model is selected based on the trade-off between model size
and accuracy.

∥W∥L1 =

K−1∑
i=0

K−1∑
j=0

C−1∑
k=0

∣∣wijk ∣∣ (10)

IV. EXPERIMENTS
A. WOOD DEFECT DATASET
The dataset used in this research is the rubber wood defects
dataset provided by Tu et al. [14] in their GitHub repository.
This dataset contains 1545 images of sawn rubber wood.
Among them, 1112 images are allocated for training while
the remaining 278 and 155 images are set aside for validation
and test. The dataset contains four types of wood defects,
namely Intergrown Knot (IK), Dead Knot (DK), Growth
Shake (GS) and Inbark (IB) defects. Knot defects are circular
grain structures found on the surface of lumber. IK defects are
knot structures closely integrated with its surrounding wood

while DK defects are loose knots with a darker tone. The GS
defect presents itself as cracks or splits in the wood while
IB defects are embedded bark in the xylem which appear as
dark patches on the wood surface. An example for each of the
wood defects is shown in Fig. 5.

Within the dataset, themost common defects are the IK and
DK defects while the least occurring defect is the IB defect.
The distribution of the defects for the training, validation and
test dataset is shown in Fig. 6. From Fig. 6, it can be seen
that the training, validation and test dataset share a similar
distribution. Thus, the validation and test dataset can provide
a good benchmark to verify the performance of the trained
models.

FIGURE 5. The four types of wood defects in the dataset. (a) Intergrown
Knot (b) Dead Knot (c) Growth Shake (d) Inbark.

FIGURE 6. The number of wood defect occurrences in the dataset.

B. EXPERIMENTAL SETUP
The experiments were conducted in the following order.
Firstly, the optimal training hyperparameters were deter-
mined via a grid search of the initial learning rate, batch
size, optimizer type and scheduler type as discussed in
Section III-B. After obtaining the optimal training hyperpa-
rameters, all subsequent model training used the same set
of hyperparameters. The second step involves experimenting
with the various data augmentation strategies outlined in
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Section III-C. To find the best augmentations for our spe-
cific problem, each strategy has been evaluated separately by
excluding it and examining its effect on the overall accuracy.
Later on, different attention modules (see Section III-D) were
added to the model to further improve its detection accu-
racy. The attention module that gives the best performance
was selected and the final model is compared with other
SOTA models. Lastly, the model was aggressively pruned for
the purpose of achieving real-time inference on embedded
processors.

During training, the images were pre-processed using the
letterbox method to ensure that the input image size is square.
Given a target image size (W ), the letterbox method resizes
the training image so that its greater side equals to W . The
RGB channels of the remaining space is then filled with the
value of 128 to mimic the color of gray. For images that
are subjected to scale jittering as described in Section III-C,
letterbox is applied after the augmentation to ensure that the
final input image is square. For each experiment, the model
was trained for a total of 500 epochs and the model with
the lowest validation loss was selected. During evaluation,
the IoU threshold for the NMS algorithm is set to 0.5. All
other hyperparameters are determined by the hyperparameter
search.

To evaluate the performance of the model on embedded
processors, a bare Raspberry Pi 4 was used as the test bench.
The model was tested on the ARM Cortex-A72 Central Pro-
cessing Unit (CPU) of the Raspberry Pi 4 using Pytorch’s
CPU inference mode. All other experiments were conducted
on a machine running Ubuntu 20.04.3 LTS with an AMD
Ryzen 5 3600 CPU processor and a 12 GB NVIDIA GeForce
RTX 3060 GPU. The deep learning framework used in our
research is Pytorch 1.8.1 with CUDA 11.1 and the program-
ming language used is Python 3.7.10.

C. EVALUATION METRICS
The performance of the models were evaluated based on their
accuracy, speed and size. For accuracy, several universally
accepted metrics for object detection were used including
precision, recall, F1 score and the average precision (AP)
score. Precision and recall of the model are calculated from
the total number of true positives (TP), false positives (FP)
and false negatives (FN) of the model. TP represents the
total number of correct detections while FP represents the
total number of false predictions generated by the model.
FN is the total number of ground truth objects labelled
in the dataset but not detected by the model. It also represents
the total number of missed detections of the model. Hence,
the precision and recall of the model can be defined as shown
in (11) and (12). Subsequently, the F1 score can then be calcu-
lated from the precision and recall using (13). The precision,
recall and F1 score shown will be calculated at a confidence
threshold (θconf) of 0.5.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 = 2 ×
Precision × Recall
Precision + Recall

(13)

Even though precision, recall and F1 score are good met-
rics used for performance comparison, the most well known
metric to evaluate object detection models is AP. This is
because the precision, recall and F1 score all depend on the
value of θconf set during inference. To better evaluate the
performance of object detection models, the metric should
represent the accuracy of the model regardless of this thresh-
old. AP evaluates the accuracy across confidence thresh-
olds by integrating the area under the curve (AUC) for the
precision-recall (PR) curve of the model. The PR curve is
a parametric function of the θconf where the output is the
precision and recall values of the model. The AP metric is
independently calculated for each class in the dataset. The
mean average precision (mAP) score as in (14) is then defined
as the arithmetic mean of the AP metric across all classes and
is typically used as the de facto performance metric for all
object detection models.

mAP =
1
N

N∑
i∈classes

APi (14)

For inference speed, the frames per second (FPS) metric
is used. FPS is calculated by averaging the inference time of
the model over 100 passes. The size of the model is measured
using the number of parameters as well as the number of
floating point operations counted in the billions (GFLOPs).
During the calculation of GFLOPs, the addition and multipli-
cation operation in a convolution operation is considered as
two separate operations instead of one.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. RESULTS FROM HYPERPARAMETER SEARCH
Table 1 shows the mAP score for various combinations of
initial learning rate, batch size, optimizer type and scheduler
type for the YOLOv4-Tiny model. The results of the grid
search suggest that the best combination of training hyper-
parameters is a small initial learning rate of 0.0005 with a
batch size of 32 while using the Adam optimizer with a cosine
annealing scheduler. From the table, several observations can
be made. For the SGDm optimizer, mAP generally increases
as learning rate increases. The inverse can be observed for
the Adam optimizer where mAP decreases as learning rate
increases. Besides that, the mAP score for SGDm trends
upwards as batch size decreases. However, the trend of mAP
versus batch size for Adam is not that apparent as it depends
on other factors like the learning rate and scheduler type.
In terms of scheduler type, it can be seen that the step sched-
uler performs the worst as compared to the cosine annealing
scheduler or when no scheduler is used. As a whole, the
Adam optimizer performs better than SGDm in most cases
except at very high learning rates.
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TABLE 1. mAP for Different Sets of Training Hyperparameters for YOLOv4-Tiny.

B. DATA AUGMENTATION ABLATION STUDY
After obtaining the optimal set of training hyperparameters,
an ablation study is performed for different types of data
augmentation strategies. The effect of each data augmentation
method on the overall performance of the model is shown in
Table 2. In Table 2, the four data augmentation strategies
were individually omitted to observe their influence on detec-
tion accuracy.

From the table, it can be observed that the mosaic data
augmentation does not introduce any improvements to the
mAP score. This is likely due to the synthetic images being
too artificial and unlikely to happen in any real scenario.
In fact, the noise introduced by the synthetic images actually
caused a slight decrease in the overall mAP score. Therefore,
mosaic data augmentation is excluded from the set of optimal
data augmentation strategies. From there on, it can be seen
that excluding any of the three transformative augmenta-
tions will result in a decrease in mAP score. This means
that they all play a role in improving the accuracy of the
model. Scale jittering has the highest impact on the detection
accuracy where it caused a drop of 6.89% in terms of mAP
score when omitted. This finding shows that increasing the
scale variability of defects in the dataset is a key factor in
improving the generalization capability of the model. Among
the transformative augmentations, color jittering causes the
least improvement in terms of mAP score. This is expected
as the defect images were collected in a controlled envi-
ronment and thus do not benefit significantly from having
color and brightness invariability. In essence, the optimal
set of data augmentations is to enable scale and color jit-
tering together with random flipping without mosaic data
augmentations.

TABLE 2. Ablation Study for Various Data Augmentation Methods.

C. OPTIMAL ATTENTION MODULE
Table 3 shows the detection accuracy, model size and infer-
ence speed of YOLOv4-Tiny enhanced by the SE, CBAM

and ECA attention modules. From the table, it can be seen
that the CBAM module performs the best for knot detec-
tion such as IK and DK. For the GS defect, ECA performs
the best at a mAP score of 90.65%. All attention modules
slightly reduce AP score for the IB defect as compared to
the default YOLOv4-Tiny architecture. Nonetheless, in terms
of overall accuracy, it is apparent that the ECA attention
module performs the best with a mAP score of 94.53%. The
result suggests that having high quality channel attention
without dimensionality reduction works better than having
both channel and spatial attention. Besides that, the increase
in terms of model size due to the addition of ECA modules
is barely noticeable. ECA is also the fastest among all other
attention modules tested. Therefore, it is the obvious choice
to select ECA for the enhancement of YOLOv4-Tiny using
attention mechanisms.

D. PERFORMANCE COMPARISON
Fig. 7 shows a comparison of the validation loss curves for
each of the improved YOLOv4-Tiny models. The natural
logarithm of the validation loss is plotted on the vertical axis
to allow a clearer distinction between trends at extremely
small loss values. From the figure, it can be observed that
the YOLOv4-Tiny model with only optimized hyperparame-
ters (HYP) begins to experience stagnation in its validation
loss after approximately 100 epochs of training. However,
upon introducing data augmentation (DA) into the train-
ing pipeline, the models are able to further decrease their

FIGURE 7. Comparison of validation loss curves for the improved
YOLOv4-Tiny models. Meaning of symbols: HYP - optimized
hyperparameters, DA - optimized data augmentations,
ECA - YOLOv4-Tiny with Efficient Channel Attention.
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TABLE 3. Performance of YOLOv4-Tiny with Different Attention Modules.

TABLE 4. Comparison of YOLOv4-Tiny-ECA with SOTA Methods.

validation losses significantly. This suggests that data aug-
mentation plays an important role in improving the gener-
alization capability of the model and avoid overfitting. Fur-
thermore, the inclusion of ECA modules into the architecture
of YOLOv4-Tiny can improve the convergence of validation
loss and subsequently improve model performance. This is
supported by the observation that the slope of the validation
loss curve for the model with ECA is slightly steeper than that
of the model without it.

In the following sections, the ECA enhanced model with
optimal training hyperparameters and data augmentations
(HYP+DA+ECA)will be denoted as YOLOv4-Tiny-ECA.
Table 4 shows a comprehensive comparison of YOLOv4-
Tiny-ECA with other SOTA models for object detection.
As models such as SSD300 and Efficientdet-d0 require fixed
size inputs, YOLOv4-Tiny-ECA has been retrained at their
respective image sizes to provide fair comparison. To com-
pare with SSD300, the model was trained at an image size
of 320 × 320 instead of 300 × 300 because YOLOv4-
Tiny-ECA only accepts input image sizes that are multiples
of 32. From the table, it is evident that YOLOv4-Tiny-ECA
outperforms all SOTA methods in terms of mAP across all
image sizes. Furthermore, with the exception of Efficientdet-
d0 and YOLOX-Tiny, YOLOv4-Tiny-ECA has the lowest
model size as compared to other SOTA models. This shows
that despite having significantly fewer learn-able parameters,
YOLOv4-Tiny-ECA is still able to outperform other SOTA
models in terms of performance. Most importantly, the model
is still able to perform inference at a very high speed despite
the accuracy gains. This allows wood defects detection to be
performed on low-cost devices in real-time without sacrific-
ing accuracy.

E. MODEL PRUNING
Given the exceptionally high inference speeds of more
than 200 FPS on a GPU-enabled machine coupled with
a substantial accuracy margin when compared with SOTA
methods, there is an opportunity for YOLOv4-Tiny-ECA to
be further optimized to realize real-time inference on embed-
ded processors. The method used to achieve this is through
model pruning as outlined in Section III-E. Table 5 shows the
results of model pruning after 7 cycles for the image sizes of
320 × 320, 416 × 416 and 512 × 512. For each iteration of
model pruning, the number of parameters of the model is cut
by half. After 7 iterations of model pruning, the reduction to
the total number of parameters is around a 100× that of the
unpruned model.

Fig. 8 shows the mAP score of the model with respect to
the total number of model parameters. From Fig. 8, it can
be seen that the model is able to maintain a high mAP
score even when the model is heavily pruned. The model
accuracy only starts falling drastically when the model is
below 10% of its original total number of parameters. More-
over, it can be observed that a larger image size slows down
mAP degradation from model pruning more effectively than
smaller images. This is expected as larger images contain
more fine-grained features to aid detection. Fig. 9 shows the
mAP score of the model versus the FPS of the model infer-
enced on a CPU-only Raspberry Pi 4. The figure shows an
approximately linear relationship between themAP score and
the FPS of the model. However, in contrast with the previous
figure, mAP score decreases slower for smaller image sizes as
FPS increases. This is due to the lower number of GFLOPs
involved in the inference of smaller images as compared to
the larger ones.
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TABLE 5. Results of Model Pruning for Different Image Sizes.

FIGURE 8. mAP versus model parameter size (%) for each pruning
iteration.

FIGURE 9. mAP versus FPS on a Raspberry Pi 4 for each pruning iteration.

F. MODEL INFERENCE ON EMBEDDED PROCESSOR
From the results of the model pruning experiments, the opti-
mal number of pruning iterations for the model is 3. At this
stage, the model still maintains a high mAP score comparable
with other SOTA models. However, the model size has been

FIGURE 10. The defect detection prototype for embedded processing.
It utilizes a Raspberry Pi 4 to execute the pruned YOLOv4-Tiny-ECA model,
while a connected Raspberry Pi V2.1 camera module captures input
images in real-time.

reduced by a factor of 10 while the inference speed of the
model has been increased by a factor of 5. A prototype
as shown in Fig. 10 has been developed to test the final
model. The prototype has a small form factor which makes
it easily portable for demonstration. The prototype uses only
a bare Raspberry Pi 4 for inference, which is not connected
to any external hardware accelerators. The statistics for the
pruned models evaluated using the prototype on the test
dataset is given in Table 6. A series of sample outputs is
also shown in Fig. 11 to showcase the detection capabilities
of the pruned YOLOv4-Tiny-ECA models. From the results,
it can be seen that larger images generally improves accuracy
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FIGURE 11. The outputs of the pruned models. (a) IK (b) DK (c) GS (d) IB (e) Mixed defects.

TABLE 6. Evaluation of Pruned Models on the Test Dataset.

with 416 being the optimal image size but at the expense of
slower inference speed. Nonetheless, all the pruned models
can still perform wood defects detection decently despite
their extremely compact architecture. This shows that deep
learning based models for wood defects detection can be
deployed on cheap CPU-only machines to enable low-cost,
real-time and accurate wood quality inspections.

VI. CONCLUSION
In short, an extremely lightweight object detection model
has been presented for the detection of wood defects on the

surface of sawn lumber. A grid search has been performed to
find the optimal training hyperparameters and augmentations
have been performed on the training dataset to improve gener-
alization. ECA modules were then added as a means of atten-
tion to improve the model’s detection capability. Themodel is
ultimately compressed via model pruning to achieve fast and
accurate wood defects detection on embedded processors.
Future work is directed towards achieving actual real-time
performance of more than 30 FPS for embedded processing,
which include speeding up post-processing and improving
the channel pruning strategy to allow higher compression
ratios.
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