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ABSTRACT The advancement of computer vision technology has led to the development of sophisticated
algorithms capable of accurately recognizing human actions from red-green-blue videos recorded by drone
cameras. Hence, possessing an exceptional potential, human action recognition also faces many challenges
including, tendency of humans to perform the same action in different ways, limited camera angles, and field
of view. In this research article, a system has been proposed to tackle the forementioned challenges by using
red-green-blue videos as input while the videos were recorded by drone cameras. First of all, the video was
split into its constituent frames and then gamma correction was applied on each frame to obtain an optimized
version of the image. Then the Felzenszwalb’s algorithm performed the segmentation to segment out human
from the input image and human silhouette was generated. Utilizing the silhouette, skeleton was extracted to
spot thirteen body key points. The key points were then used to perform elliptical modeling to estimate the
individual boundaries of the body parts while the elliptical modeling was governed by the Gaussian mixture
model-expectation maximization algorithm. The elliptical models of the body parts were utilized to spot
fiducial points that if tracked, could provide very useful information about the performed action. Some other
features that were extracted for this study include, the 3d point cloud feature vector, relative distance and
velocity of the key-points, and their mutual angles. The features were then forwarded for optimization under a
quadratic discriminant analysis and finally, a convolutional neural network was trained to perform the action
classification. Three benchmark datasets including, the Drone-Action dataset, the UAV-Human dataset, and
the Okutama-Action dataset were used for a comprehensive experimentation. The system outperformed the
state-of-the-art approaches by securing accuracies of 80.03%, 48.60%, and 78.01% over the Drone-Action
dataset, the UAV-Human dataset, and the Okutama-Action dataset respectively.

INDEX TERMS Classification, drone, deep leaning, Felzenszwalb’s segmentation, Gaussianmixture model,
human action recognition.
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I. INTRODUCTION
Artificial intelligence is playing a vital role in transform-
ing the world into its advanced form. Numerous modern
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applications pave the way to ease human life with their
admirable assistance. Human Action Recognition (HAR) is
one of those propitious applications that has caught and
retained the attention of the researcher’s community for a
long time now [1], [2], [3]. There can be two major cat-
egories into which the actions of humans can be divided
i.e., voluntary actions and involuntary actions. Voluntary
actions may include walking, running, punching, clapping,
kicking etc. while some examples of involuntary actions can
be falling, limping, panicking etc. Successful recognition
of human actions either voluntary or involuntary can serve
in applications for elder applications [4], smart homes [5],
anomaly detection [6], and life-logging [7].

Grounded or drone cameras are used to record video and
then that video data is processed to recognize the action
performed by the human in real-time. Working with drone
cameras is more challenging as compared to grounded cam-
eras because in the former case, the background is not static
and there is more chance of noise induction into the data.
Recognition of actions captured by conventional Red-Green-
Blue (RGB) video cameras has been the focus of numerous
previous works, e.g., [8], and [9]. Despite their usefulness,
RGB data is prone to limitations such as difficulties in dealing
with varying lighting conditions and cluttered backgrounds,
which can pose challenges to these works. Thus, it impedes
the effectiveness of the algorithm in real-world applications,
such as video surveillance. Different methods for detection
and representation, such as the bag of 3D points [10], skeleton
joints [11], and DepthMotionMaps (DMMs) [12], [13], [14],
[15], have been investigated to enhance the performance of
HAR through depth images.

In their study, Shotton et al. [16] suggested an object
recognition-based method that transformed pose estimation
into a per-pixel classification problem, enabling the predic-
tion of 3D positions of body joints from a single depth image.
They used a large training dataset to generate 3D positions
of several body joints and achieve state-of-the-art accuracy
in their comparison with related work. Mathis et al. [17] pro-
posed a method for marker less pose estimation that set its
basis on deep neural networks and transfer learning. They
were able to track different body parts of various species
while working on a large behavior collection. They were
able to score good accuracy even when only a small number
of frames were labeled. In [18], a gesture-based interface
for Computer-Aided Design (CAD) was introduced. The
interface utilized the pose, position, velocity, and direction
of fingers to perform various 3D operations, such as draw-
ing, extruding, scaling, translating, and rotating objects. The
system also featured simple binary switches that facilitated
basic CAD operations while minimizing the computational
cost of the system. In their work, Pareek et al. [19] employed
an inertial measurement unit to extract the hand trajectory
of subjects during rehabilitation tasks. The hand trajectory
was then compared with the ground-truth robot trajectory to
assess the real-time participation level of patients. A system

introduced by Shen et al. [20] was designed to track the 3D
posture of the entire arm through the use of motion and
magnetic sensors on smartwatches. The system implemented
a modified Hidden Markov Model (HMM) that combined
data from inertial measurement unit sensors and the anatomy
of arm joints to continuously estimate state variables.

The system begins by splitting the RGB video into frames
then each frame is passed thorough a gamma correction phase
as a preprocessing step for the image segmentation algorithm.
For the action recognition, the region of interest is the one that
contains the human. The Felzenszwalb’s algorithm is utilized
for the background rejection and extraction of the human. The
Felzenszwalb’s algorithm divides the whole image into small
patches and then merges the correlating patches together
to generate large segments that belong to a single object.
Human segment, coming out as the output of the segmenta-
tion algorithm, is used to generate a black andwhite silhouette
of the human performing the action. Afterward, a human
skeleton is obtained by performing an iterative morpholog-
ical erosion operation on the silhouette, which proves to be
significant for extracting body key-points. A total of thirteen
body key-points is extracted, consisting of the face, left upper
arm, right upper arm, left lower arm, right lower arm, chest,
abdomen, left thigh, right thigh, left knee, right knee, left
ankle, and right ankle. An elliptical modeling based on Gaus-
sian Mixture Model-Expectation Maximization (GMM-EM)
algorithm is implemented to trace the boundaries of the body
parts that are represented by the key points. The modeled
ellipsoids are utilized for the extraction of the fiducial points
that are trackedwhile the human action progresses.Moreover,
the 3d point cloud feature vector, relative distance, velocity,
and mutual angles of the key points are also extracted as the
features of the performed action. All of the features are then
optimized with the help of a Quadratic Discriminant Analysis
(QDA) and sent to a Convolutional Neural Network (CNN)
for classification.

The Felzenszwalb’s segmentation plays a key role in this
study, that’s why it is essential to specifically highlight
this technique. It is a highly sophisticated image segmen-
tation algorithm [21], [22], that undertakes unsupervised
approach to partition an image into regions based on sim-
ilarities in color, texture, and intensity, thereby providing
a highly detailed and comprehensive segmentation of the
image. A significant advantage of this algorithm is its hier-
archical nature, which enables it to produce a multi-scale
segmentation of the image. This feature allows the algorithm
to capture the finest details of the image while simultaneously
identifying larger-scale structures within it. In essence, the
approach represents the resulting segmentation as a tree, with
each leaf node representing a single pixel, and the root node
representing the entire image.

The algorithm’s success lies in its innovative concept of a
‘‘segmentation boundary’’. Unlike other image segmentation
algorithms that rely on clustering pixels based on their color
or texture, Felzenszwalb’s approach first identifies potential
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boundaries between adjacent regions. It then employs a
graph-based method to group these boundaries into con-
nected components, which are subsequently interpreted as
the final image segments. The robustness of the algorithm to
noise and clutter in the image is another significant advan-
tage. This is due to the fact that the algorithm does not
rely on a fixed number of segments and is thus able to
adapt to different levels of detail and complexity within the
image. Furthermore, its hierarchical approach enables it to
handle images with multiple scales of detail, making it highly
suitable for tasks such as object recognition and image clas-
sification.

The major contributions of this research article are as
follows:

• A novel system has been proposed that utilizes ellip-
tical modeling based on the expectation maximization
algorithm within the framework of the Gaussian mixture
model.

• The implementation of state-of-the-art Felzenszwalb’s
algorithm, to perform efficient extraction of human sub-
jects from their background, enabling accurate recogni-
tion of their actions.

• A 3D point cloud extraction algorithm has been pre-
sented that proved to be a very useful feature for accurate
recognition of human action.

• In addition, a comprehensive comparative analysis was
performed on three publicly available datasets, which
feature diverse human actions. The experimental results
indicate that the proposed system outperforms the state-
of-the-art methods, achieving accuracies of 80.03%,
48.60%, and 78.03% on the Drone-Action dataset, the
UAV-Human dataset, and the Oukutama-Action dataset,
respectively.

The remainder of this paper is structured as follows.
In Section II, a literature review of existing methods is pro-
vided. The proposed system is then discussed in Section III.
Section IV outlines the experimental structure and presents
the results obtained from the experimentation. In Section V,
the performance of the proposed system over the datasets
is discussed in the context of perceptions obtained from the
experiments. Finally, in Section VI, conclusions are drawn,
and recommendations for future research are presented.

II. RELATED WORK
Object detection [23], [24], semantic segmentation [25], [26],
and CNNs [27] are key concepts that are extensively used in
HAR. Object detection is a computer vision technique that
involves locating and identifying objects within an image
or video. This is typically done using a combination of
techniques, such as feature extraction, region proposals, and
classification. Object detection is widely used in applica-
tions such as autonomous driving, surveillance, and robotics.
Semantic segmentation is another technique used in computer
vision to segment an image into different regions based on
the semantic meaning of the objects within it. This involves

assigning a label to each pixel in the image, such as ‘‘sky,’’
‘‘tree,’’ or ‘‘car.’’ Semantic segmentation is commonly used
in applications such as medical imaging, autonomous vehi-
cles, and augmented reality. While CNNs are a type of deep
learning algorithms that is widely used in computer vision
applications. CNNs are designed to recognize patterns in
images by learning from a large set of labeled data. They are
highly effective at tasks such as image classification, object
recognition, and face detection. Multiple methods have been
proposed by different scholars for HAR utilizing a diverse
range of techniques related to machine learning and deep
learning. This section presents some related works on HAR
systems.

A. MACHINE LEARNING-BASED HAR SYSTEMS
In this section, HAR systems that rely on machine learn-
ing approaches including supervised, unsupervised, and
semi-supervised methods are presented. In [28], a unique
approach focusing on Spatio-Temporal Interest Points
(STIPs) was proposed for representing and recognizing
human actions in video streams. For the representation of
human actions, they used 2D and 3D Difference Intensity
Distance Group Pattern (2D/3D-DIDGP) and employed a
Support Vector Machine (SVM) for the classification. The
experimentation results conclude that a 3D-DIDPG algorithm
outperforms the state-of-the-art systems by a good margin
but the robustness of the system could be increased by using
more robust features. The proposed system adds robustness
into the method with the help of features based on indi-
vidual body parts. In their work, Chen et al. [29] suggested
a two-level hierarchical framework for recognizing actions
based on 3D skeleton data. The proposed framework aimed
to overcome challenges such as high intra-class variance,
movement speed variability, and high computational costs.
The framework included a part-based clustering module to
automatically cluster relevant joints, and a motion feature
extraction and action graph module to build action graphs
for recognition. The system largely depended upon the accu-
racy of the skeletal points. The more precise the position of
the joint points, the more accurate action classification. For
the precise identification of the body key points, our sys-
tem uses Felzenszwalb’s segmentation and extracts excellent
human silhouette that results in accurate key point identifi-
cation. Zhen et al. [30] implemented multiple local computa-
tion methods for HAR. The implemented methods included,
STIPs, bag-of-words, sparse coding, Improved Fisher’s Ker-
nel (IFK), and Vector of Locally Aggregated Descriptors
(VLAD). They also implemented naïve Bayes nearest neigh-
bor algorithm for the classification purpose. Although this
paper does not provide a complete architectural insight into
the recognition of human actions, it provided a compara-
tive analysis among various techniques, and shown that IFK
technique produces the best results when working with local
computation. In comparison, the proposed system provides an
end-to-end architecture for the HAR and produces excellent
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results. Yang et al. [31] utilized the polynormal in their work,
which refers to a cluster of neighboring hypersurface nor-
mals obtained from a local spatiotemporal depth volume.
Each adaptive spatiotemporal cell’s low-level polynormals
were aggregated by a designed scheme. The ultimate repre-
sentation of depth sequences was created by concatenating
the feature vectors extracted from all spatiotemporal cells.
The authors implies that the features of their system could
be improved by adding complementary information to them
while the proposed system uses more sophisticated features
that efficiently represent the actions performed by the sub-
ject. In [32], Jalal et al. extracted multi-features from the
skeleton joints and used a HMM for classification purpose.
They outperformed the state-of-the-art methods on the basis
of their unique and compact features. Although their system
performed well, but the Felzenszwalb’s segmentation, that
was implemented by the proposed system, generated much
accurate human silhouettes, resulting in better performance
as compared to them. Shahroudy et al. [33] combined RGB
dense trajectories with a histogram of oriented gradients,
histogram of optical flow, motion boundary histograms, and
skeleton joints and used multi-class SVM for the classifica-
tion. The multi-class SVM, shown comparatively lower accu-
racy while working with corelating actions. The proposed
system handles this problem with the help of CNN-based
classification. Farooq et al. [34] computed the body part of
an action by using a bounding box with an optimal window
size for each DMM, in order to perceive the action. The
system was not able to efficiently recognize the actions in
which background was coherent with the foreground. The
proposed system generates excellent human silhouettes by
rejecting the background using the Felzenszwalb’s segmen-
tation algorithm. A skeleton-based end-to-end model was
introduced by Cui et al. [35] that enabled both person iden-
tification and action recognition. Their system relied only on
skeleton-based data for both person identification and action
recognition, which may limit its applicability to scenarios
where only visual or other modalities of data are available.
Our system begins by taking RGB video as input and per-
forms skeleton-extraction, that enhances the applicability of
the system.

B. DEEP LEARNING-BASED HAR SYSTEMS
Deep learning models are used in some HAR systems to
learn features and recognize actions automatically. Zhu et al.
proposed a system using co-occurrence descriptors of the
skeleton-joints. The network used the trajectories of skele-
ton joints and a novel regularization scheme to learn co-
occurrence features. A new dropout algorithm that used gates,
cell, and output responses of Long-Short-Term-Memory
(LSTM) neurons, was used for effective training of the net-
work. They used three neighboring joints to represent a
body part while the proposed system uses a more sophis-
ticated approach i.e., elliptical modeling to represent the
body parts [36]. Li et al. stated that long-range dynamics

information is necessary and should be explicitly modeled.
In response, VLAD3 was proposed as a representation that
not only captured short-term dynamics using CNN but also
incorporated linear dynamic systems and the VLAD descrip-
tor to account for intermediate and long-range dynamics.
Actions having short-term motion pattern, like, jumping and
throwing, caused the system to be less accurate. Our system
deals with this challenge by tracking the individual body
parts during an action and performs better as compared
to their system [37]. Shi et al. proposed to extract three
stream-deep trajectory descriptors and project them on a
2D plane. They used a combination of CNN and Recurrent
Neural Network (RNN) for human action recognition and
classification. In their study, they do not take the complex
motion of the camera in consideration that limit the per-
formance of their framework in real-world scenarios. In the
proposed system, the gamma correction of the video frames
suppresses the effect of motion blur and enhances the robust-
ness of the algorithm. [38]. Hierarchical RNN (HRNN) was
used to learn temporal long-term contextual information. This
method divided the human skeleton into five subparts. Each
subpart was connected to one of five distinct subnetworks.
HRNN was put through its paces in five different experimen-
tal settings. The system was less accurate while distinguish-
ing between similar actions due to its high dependence on
skeleton joints. Our system deals with this issue by tracking
whole body parts and using 3D point cloud as an additional
feature [39]. Mihanpour et al. proposed a hybrid framework
consisting of CNN and a Deep Bidirectional LSTM (DB-
LSTM). They used a pre-trained CNN network known as
ResNet152 for the extraction of deep features from the video
frames. Then these features were forwarded to a DB-LSTM
for the training purpose. Their method had only been tested
on a single dataset, which may limit the generalizability of
the results to other datasets with different characteristics.
On the contrary, we took our system through a comprehensive
testing using three benchmark datasets to improve its gen-
eralizability [40]. Muhammad et al., used a combination of
Bidirectional LSTM (BiLSTM) and Dilated CNN (DCNN).
They selectively learned the features that had more impact on
the model’s accuracy with the help of DCNN. Then they for-
warded those features to BiLSTM for the final classification
of the human actions in the input videos. Using pre-trained
weights from various AI architectures during the training
stage to visually represent video frames could impact the
generalizability of the results across other domains, whereas
our system offers an end-to-end approach to HAR that is gen-
eralizable [41]. Kamel et al. [42] proposed an action-fusion
method for HAR from depth maps and posture data using
CNNs. The proposed method relied heavily on posture data
descriptors to provide features for the depth maps repre-
sentation. This could lead to a system failure in case of
insufficient or erroneous posture data. Our proposed system,
uses multiple features to tackle this issue and make more
reliable classification of human actions. A deep model was
proposed by Rahmani and Bennamoun [43] to effectively
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model human-object interactions and intra-class variations
while accounting for viewpoint changes.Model was designed
to work with depth sensors, and therefore might not be appli-
cable in scenarios where depth data is not available while
our framework works on RGB video data that is common as
compared to the depth data.

III. PROPOSED SYSTEM
The proposed system has been designed to analyze the input
video and recognize the action performed by the human in it.
First, the video is broken into frames then using the gamma
correction, frames are denoised. The denoised frames are then
forwarded to the segmentation block where Felzenszwalb’s
algorithm uses a grid graph to segment the human silhou-
ette out of the frame. An iterative morphological erosion
operation is then performed over the human silhouette to
extract human skeleton out of it. Skeleton possesses the same
properties as the silhouette but proves to be very useful to
extract body key points. The key points are extracted from the
skeleton that represent the parts of the human body and are
then utilized to extract features. The features that we extracted
for this research, include, the angle between the adjacent key
points within a frame, the distance between the current and
the previous position of the same key point while considering
two consecutive frames at a time, the velocity of the key
points while utilizing two consecutive frames at a time, the
3d point cloud that is extracted using the RGB image, and the
fiducial points for body parts. For the fiducial points, human
body parts are constructed using the elliptical modeling under
the GMM-EM algorithm. All these features are then con-
catenated into a single data frame and labelled accordingly.
After that, a QDA governed optimization process is carried
out over the data. Finally, the optimized data is forwarded to
train a CNN model to perform the classification. The overall
architecture of the proposed system is represented by Fig. 1.

A. FRAME EXTRACTION AND GAMMA CORRECTION
A video has been provided as the input to the system but
all of the analytical and computational algorithms are to be
implemented over the images. That’s why video has to be
split into its constituent images. Gamma correction is applied
on the extracted frames to denoise them [44]. It takes the
image through a smoothing operation and as a result, the
background of the image gets blurred and the human gets
more prominent. It serves as one of the key factors on which
the accuracy and efficiency of the proposed system depend.
Gamma factor is used for the nonlinear relationship between
the input brightness levels of an image and the perceived
brightness by the human eye. It applies an inverse power-law
function [45] to the pixel values of an image to make its
perceived brightness linear. The power law function used for
gamma correction is typically expressed as the gamma value
that is a measure of the slope of the power-law curve, and the
shape of curve depends upon the value of the gamma factor.
When the gamma value is greater than 1, the power law curve
becomes steeper, and the resulting image becomes darker

and with the gamma value less than 1, the curve becomes
shallower, and the resulting image becomes brighter. The
governing equation for gamma correction is given below:

VOUT = VINGamma (1)

where VOUT is the output luminance after gamma encoding
and VIN is the input luminance of the pixel. Positive but less
than 1 gamma values induce non-linearity in the relationship
while greater than 1 value tend tomake the relationship linear.
In our system, we used gamma equal to 3.5. Original and the
gamma corrected images are shown in Fig. 2(a) and 2(b).

B. FELZENSZWALB’S SEGMENTATION
Felzenszwalb’s segmentation is a powerful image processing
technique that has gained popularity in computer vision and
machine learning applications. This method is widely used
for image segmentation tasks, which involves partitioning an
image into multiple segments or regions that share similar
characteristics. The key idea behind Felzenszwalb’s segmen-
tation is to identify regions with similar colors and texture
using a hierarchical grouping strategy. This results in an
efficient and effective segmentation algorithm that can handle
complex images with a high degree of accuracy. It uses a
graph-based segmentation approach that captures visually
significant regions that also have a global impact on the
image. If an image is represented as a graph G with V as the
set of vertices and E as the set of edges where vi ϵ V and (vi,
vj) ϵ E. Every edge has a weight associated with it and this
weight depends upon the pixel attributes like color, motion,
intensity, and location. If segmentation of the input graph G
is represented by S, then S performs a division operation over
G and provides G′ at the output. G′ contains distinct regions
C, overall having V vertices and E′ edges while E′ ⊂ E.
There are three important factors that are used to conclude

the segmentation process.
• Intra-region difference: It is the maximum weight by
which two vertices lying in the same region get con-
nected.

• Inter-region difference: It is the minimum weight by
which an edge connects two vertices lying in two dif-
ferent regions.

• Minimum intra-region difference between two different
regions. It is given by the following equation:

d = min(di (rm−1)+ τ (rm−1) , di (rm)+ τ (rm)) (2)

τ (r) = k/|r| (3)

where d is a minimum intra-region difference, di represents
the intra-region difference, r shows the region under con-
sideration, and k is a constant. The value of k is directly
proportional to the size of the object to be segmented. Larger
values of k are beneficial for the efficient segmentation of
larger objects and vice versa. After the successful segmen-
tation of the RGB image, by using basic image processing
techniques, a binary human silhouette is extracted. The results
for the Felzenszwalb’s segmentation are represented in Fig. 3
and Algorithm 1 explains the flow of the operation.
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FIGURE 1. Architecture of the proposed system.

FIGURE 2. RGB Frame for (a) Hitting with stick original and gamma
corrected image and (b) Waving original and gamma corrected image.

FIGURE 3. Felzenszwalb’s Segmentation with (a) Kicking input and
segmented image and (b) Punching input and segmented image.

C. SKELETONIZATION AND KEY-POINT EXTRACTION
With the help of Felzenszwalb’s segmentation, the human
silhouette is extracted from the RGB video frame under con-
sideration. By performing an iterative morphological erosion
operation over the binary silhouette, the skeleton is extracted
which is shown in Fig. 4.
Skelton proves to be a very useful representation of the

human because we can easily locate the body parts and then
extract the features for the movement of each body part
individually and eventually perform accurate classification
of the action performed by the subject [46], [47]. The more
accurate the estimated body key points, the more accurate
the classification. To locate body key points, contours for the
skeleton are found, and using them, a convex hull is drawn
over the skeleton [48], [49]. Then extreme points of the hull

Algorithm 1 Felzenszwalb’s Segmentation for Silhouette
Extraction
Input: RGB Video Frame
Output: Binary Human Silhouette
Method: Felzenszwalb_Segmentation (RGB image, k)
Sort (E, ascending) = e1, . . . , em
Ri = vi
While q < m do

If Rq−1i ̸= Rq−1j and w
(
eq

)
≤ d(Rq−1i ,Rq−1j )

Segq = merge(Rq−1i ,Rq−1j )
Else

Segq = Segq−1

end while
S = Segm

Sil = binarize (S, threshold)
return Sil
∗k= constant ∗E= edges, ∗R= pixel regions, ∗Seg= segments, ∗d
= minimum intra-region difference, ∗Sil = human silhouette

FIGURE 4. Skeletonization with (a) Kicking silhouette and skeleton (b)
Hitting with bottle silhouette and skeleton and (c) jogging_side silhouette
and skeleton.

are located. In this way, five key points are extracted that
represent the face, the left lower arm, the right lower arm,
the left ankle, and the right ankle. With the help of Eq. 4,
moment M of the contours is calculated, and using Eq. 5, the
x and y coordinates of the centroid of the contour are found.
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FIGURE 5. Key point extraction with (a) Kicking (b) Hitting with bottle and
(c) jogging_side.

The centroid normally lies on to the lower abdomen area.

Mij =
∑

x

∑
y
x iyjI (x, y) (4)

x, y = (M10
/
M00,M01

/
M00) (5)

At this point, the system has computed six body key points,
including, face, left lower arm, right lower arm, left ankle,
right ankle, and abdomen. To locate a new key point, two
most suitable neighboring points among the already calcu-
lated six points are selected and their mid-point is calculated.
Afterwards, by using Euclidean distance, the nearest point
of the newly found mid-point is computed that lies on the
skeleton and this point is used to represent the body part.
For example, for the key point of the chest, the mid-point of
face and abdominal points is computed then the Euclidean
distance of all the points on the skeleton with respect to the
obtainedmid-point is calculated. The nearest skeleton point is
selected to represent the chest. Following the same procedure,
points representing the left upper arm, right upper arm, left
thigh, right thigh, left knee, and right knee were calculated.
The formula for the computation of the mid-points is given in
Eq. 6.

xm, ym =
(
xi + xj

2
,
yi + yj

2

)
(6)

where xm and ym are the coordinates of the mid-point of
two points (xi, yi) and (xj, yj). For the datasets that are used
in this study, this thirteen-key-points model worked the best
and produced excellent results. Visuals of key-points can be
observed in Fig. 5.

D. FEATURE EXTRACTION
Features have a direct impact on the performance of a system.
Good features can enhance the intelligence of the system
by many folds. We extracted multiple features and by con-
catenating them, we generated labeled feature vectors. The
feature vectors can be seen as a numerical description of
the actions that are performed by the subject. Algorithm 2
describes the process of feature vector generation.

1) RELATIVE JOINT ANGLES
Relative joint angles represent the orientation of the limbs
with respect to one another while performing an action.When
the subject acts, the mutual angles of the limbs change with
respect to one another. By keeping track of these angles, the
action recognition accuracy can be increased [50]. For this

Algorithm 2 Feature Extraction
Input: Skeleton, body_key-points
Output: feature vector
feature_vector← [ ]
Method: Features (Skeleton, body_key-points)
threeD_pCloud← [ ]
fiducial_points← [ ]
joint_angles← [ ]
relative_distance← [ ]
relative_velocity← [ ]
While exit condition not true do

threeD_pCloud← Extract_threeD_pCloud (Skeleton, body key-points)
fiducial_points← Extract_ fiducial_points (Skeleton, body key-points)
joint_angles← Extract_ joint_angles (body_key-points)
relative_distance← Extract_relative_distance (body_key-points)
relative_velocity← Extract_ relative_velocity (body_key-points)
feature_vector← [threeD_pCloud, fiducial_points, joint_angles,
relative_distance, relative_velocity]

end while
return feature_vector

FIGURE 6. Relative joint angles for body key-points.

purpose, the body key-points were used and a total of twelve
angles were computed. The twelve specific angles for this
study are shown in Fig. 6.

To calculate the angle between two points, following rela-
tion was used:

ϕ = tan−1(y2 − y1
/
x2 − x1) (7)

where (x1, y1) and (x2, y2) are the coordinates of the two
points under consideration. A one-dimensional representa-
tion of the computed angles is given in Fig. 7.

2) DISTANCE AND VELOCITY
While the subject is performing an action, his relevant body
parts stay in a state of continuous motion. The distance trav-
elled by each body key point during a transition from one
frame to the next and how fast the transition is performed [51],
both of these factors are used as action recognition features
in the proposed system. For the computation of the traveled
distance, we consider two consecutive frames and find the
distance between the previous and current position of each
key point. By going one step ahead, we also find the rate
of change of distance with respect to time to compute the
velocity of every individual point. The distance and velocity

VOLUME 11, 2023 75677



U. Azmat et al.: Elliptical Modeling Supported System for Human Action Deep Recognition

FIGURE 7. Relative joint angles for clapping, kicking, and boxing.

FIGURE 8. Relative distance for clapping, kicking, and boxing.

FIGURE 9. Relative velocity for clapping, kicking, and boxing.

of the key-points is represented in Fig. 8 and Fig. 9 respec-
tively.

3) GMM-EM-BASED ELLIPTICAL MODELING
Elliptical modeling using the Expectation-Maximization
(EM) algorithm is a method for fitting a Gaussian Mixture

Model (GMM) to data when the covariance matrix of each
component is constrained to be an elliptical shape [52], [53],
[54], [55]. The EM algorithm is a two-step iterative process
for finding the maximum likelihood estimates of the param-
eters of the GMM. The Expectation step (E-step) computes
the posterior probability of each data point belonging to each
component of the GMM, given the current estimates of the
parameters. Mathematically, this is given by:

P(zi = k|xi, θ) =
πk ∗ N (xi|µk , 6k )

6j(πj ∗ N (xi|µj, 6j))
(8)

where zi is the latent variable indicating the elliptical compo-
nent assignment for data point xi, θ is the set of all parameters
(π , µ, 6) for the GMM, and N (xi | µk , 6k ) is the probability
density function of the normal distribution for k th ellipse.
The Maximization step (M-step) updates the estimates of the
parameters by maximizing the expected complete data log-
likelihood, given the posterior probabilities computed in the
E-step. Mathematically, this is given by:

πk =
1
N
∗6i(P(zi = k|xi, θ)) (9)

µk =
1
nk
∗6i(P (zi = k | xi, θ) ∗ xi) (10)

6k =
1
nk
∗6i(P (zi = k | xi, θ) ∗ (xi − µk )(xi − µk )T )

(11)

whereN is the total number of data points, nk is the number of
data points assigned to ellipse k , and the notation (xi -µk )(xi-
µk )T denotes the outer product of the vector difference. The
E-step andM-step are repeated until convergence, which typ-
ically occurs when the change in the log-likelihood between
iterations is below a certain threshold. Algorithm 3 gives
complete insight into the working of the framework.

Algorithm 3 Elliptical Modeling Under GMM-EM
Input: Silhouette, Key-points
Output: elliptical model parameters (π , µ, 6)
Method: GMM_EM(sil, kp)
π ← mixing coefficient
µ← means
6← covariance
While exit condition not true do

for k in range (kp)
Pk ← Eq. 10
πk ← Eq. 11
µk ← Eq. 12
6k ← Eq. 13

end while
return π , µ, 6

For the problem under study, a binary image that consists
of a human silhouette and key points are provided to the
algorithm. First, circles of equal radii are drawn over the
silhouette while taking the respective body key points as their
centroids. The number of key points (i.e., 13) represents the
number of clusters in which the whole silhouette is to be
divided. After the circle assignment, the GMM-EMalgorithm
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FIGURE 10. Elliptical modeling for (a) waving (b) punching and (c) Kicking.

starts its work and iterates over Eq. 9 through Eq. 11 and finds
out the best-fit ellipses for the silhouette. In this way, we con-
struct such a representation of the human in which each body
part is represented by an independent ellipse. The elliptical
modeling of the body parts proves its significance by enabling
each body part to be independently trackable. Fig. 10 depicts
the elliptical modeling of the actions performed.

4) FIDUCIAL POINTS
Fiducial points [56], also known as markers or landmarks, are
specific points on an object or image that are used as reference
points for various computer vision tasks. In HAR, fiducial
points are typically used to track the movement and position
of various body parts such as the face, arms, legs, knees, and
ankles. By detecting these points in a sequence of images,
it is possible to track the movement of a person over time,
and estimate their pose, which can be used to recognize and
classify different actions.

Fiducial points were spotted over the boundary of the
individual body parts while utilizing the respective ellipsoids
provided by the elliptical modeling phase. For this purpose,
the ellipsoids were scanned in a horizontal fashion. As the
internal part of the ellipsoid is dark, the transition from a high
value to a low value represented a point belonging to the right
boundary of the ellipsoid while a transition from a low value
to high value meant the point belongs to the left boundary.
Mathematically:

RB = rbp1, rbp2, . . . , rbpm (12)

LB = lbp1, lbp2, . . . , lbpn (13)

where RB is the right-boundary points and m represents the
total number of points belonging to the right boundary. While
LB and n represent the left-boundary points and the total
number of points on the left-boundary respectively. After
successfully separating the left and the right-boundary points,
local minima and local maxima are to be located for both
boundaries. Consider a point pi (can be either from the right
boundary or the left boundary), it will be a local maximum if
the slope at pi is greater than or equal to zero and the slope
at pi+1 is less than zero. Following the same analogy, a point
pi would be a local minimum if the slope at this point is less
than or equal to zero and the slope at pi+1 is greater than zero.

FIGURE 11. Fiducial points for (a) waving (b) punching and (c) Kicking.

Mathematically,

max =
{
pi|p′i ≥ 0 and p′i+1 < 0

}
(14)

min =
{
pi|p′i ≤ 0 and p′i+1 > 0

}
(15)

where pi′ and pi+1′ represent the slope of point pi and
pi+1 respectively. These local minima and local maxima are
recorded as the fiducial points over the body part under con-
sideration. They are stored in a vectorized form and tracked
while moving from one frame to the next. We have shown the
fiducial points for different actions in Fig. 11.
The red points on the boundary of ellipses represent the val-

ley points while yellow points show the peak points. We keep
track of these points over the frames and use their location
information in the identification of the action.

5) 3D POINT CLOUD
A 3D point cloud is a representation of a real-world object or
scene in which a set of points in 3D space are defined by their
X, Y, and Z coordinates [57], [58]. These points can be used
to create a detailed 3D model of an object or scene, which
can be used for a variety of applications, including HAR. The
proposed system generates a 3D point cloud for the human
performing the action. For this purpose, we need to add an
extra dimension to the pixels of the image. To add that extra
dimension, we make use of the human silhouette. We first
calculate the coordinates of the central pixel of the image
and start iterating over the image in a horizontal fashion.
We also define the focal length and scaling factor for the
point cloud. By simultaneously using the RGB image and
gray scale silhouette, the Z dimension is calculated by finding
the intensity of the pixel that lies at the same coordinates as
the RGB image. Intensity of the pixel is scaled by using the
following relation:

Z =
1
SF
∗ Sil [u, v] (16)

where SFis the scaling factor, u is the x-coordinate, and v is
the y-coordinate of the pixel under consideration. The other
two dimensions i.e., X and Y are computed by the following
relations:

X =
Z
F
∗ (u− Cx) (17)

Y =
Z
F
∗ (v− Cy) (18)
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FIGURE 12. 3D point cloud for (a) jogging_side (b) kicking (c)
jogging_follow (d) Stabbing.

where F is the focal length, Cx is the x-coordinate of the
central pixel, and Cy is the y-coordinate of the central pixel.
Using these relations, we iterate all over the pixels of the
image and generate a 3D point cloud. Point clouds are very
complex by nature, we can simplify them using a voxel grid
filter. A voxel grid filter operates to simplify a 3D point cloud
by reducing the number of points it contains. This is done by
dividing the point cloud into a grid of small voxels, and then
only keeping the points that fall within the voxels that have a
high enough density of points. This can significantly reduce
the complexity of the point cloud while still preserving its
overall shape and structure. The down-sampled point cloud
is then stored in a feature vector for classification. After the
application of the voxel grid filter the 3D point cloud is shown
in Fig. 12.

E. QUADRATIC DISCRIMINANT ANALYSIS
Quadratic discriminant analysis (QDA) is an algorithm that
is used for feature optimization and classification. It uti-
lizes a quadratic boundary to separate multiple classes. The
algorithm starts by assuming that the data for each class
is normally distributed with a different mean vector and
covariance matrix. The QDA algorithm then calculates the
likelihood of a given feature vector belonging to each class by
using the normal density function. The class with the highest
likelihood for the feature vector is then selected as the pre-
dicted class. To optimize the features, QDA uses a technique
called regularization, which helps to prevent overfitting by
adding a small positive value to the diagonal of the covariance
matrix. This technique helps to make the algorithm more
robust by reducing the complexity of the model [59]. In math-
ematical terms, we have to maximize the following ratio:

P(x|y = k)P(y = k)
6P(x|y = c)P(y = c)

(19)

where y is the class variable, k is the specific class for which
the observation is being evaluated, x is the observation and
c is all the possible classes. P(x|y=k) is the class-conditional
density of x given y = k , which is modeled as a multivariate
Gaussian distribution. P(y = k) is the prior probability of
class k .

In our system, we have used QDA to optimize the features
such that the overlap among the features reduces to lowest
possible extent. A lower overlap among the features rein-
forces the distinctiveness of the feature vectors that represent
the action performed by the subject and eventually, results

FIGURE 13. Unoptimized features extracted for HAR.

FIGURE 14. Decision boundary drawn by QDA.

FIGURE 15. Optimized features distribution for (a) Angle (b) Distance
(c) Velocity (d) 3D point cloud and (e) Fiducial Points.

in a better classification of the human actions. To witness
the effect of QDA, we have displayed the original features
in Fig. 13.
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FIGURE 16. Confusion matrix for action recognition on the Drone-Action
dataset using CNN.

Fig. 14 demonstrates the decision boundaries drawn by
QDA optimization algorithm and the individual distributions
of the optimized features are displayed in Fig. 15.

F. HUMAN ACTION RECOGNITION USING
CONVOLUTIONAL NEURAL NETWORK
A CNN was used for the classification of the human
actions [60]. Let X be the input feature map of size
HinxWinxCin, W be a set of learnable filters of size
KxKxCinxF, and b be a set of learnable biases of size F . Then,
the output feature map Y of sizeHoutxWoutxF is computed by
the following convolution operation:

Yijk =
∑k−1

p=0

∑k−1

q=0

∑cin−1

c=0
WpqckXi+p,j+q,c + bk (20)

The output of the convolution operation is then passed
through a non-linear activation function like ReLU or sig-
moid. Finally, a softmax layer is implemented to obtain
a probability distribution over the possible classes. The
equation governing softmax layer, is given below:

σ (z)i =
ezi∑k
j=1 e

zi
(21)

where z is the previous layer’s output and value of e is 2.7183.
We used a blend of machine learning and deep learning
by processing and optimizing the data by machine learning
methods and for final classification, a CNN was utilized that
resulted in excellent HAR results.

IV. EXPERIMENTAL SETTINGS AND ANALYSIS
The experimentation conducted for this research has been
performed over a laptop having an Intel(R) Core (TM) i7-
7500U CPU@ 2.70GHz 2.90GHz processor, 16.0 GB RAM,
64-bits Windows 10 operating system, and visual studio
code as the programming tool. Furthermore, three bench-
mark HAR datasets namely, the Drone-Action dataset, the

FIGURE 17. Confusion matrix for action recognition on the UAV-Human
dataset using CNN.

FIGURE 18. Confusion matrix for action recognition on the
Okutama-Action dataset using CNN.

Okutama-Action dataset, and the UAV-Human dataset were
used for this study that recorded RGB videos with the help
of a drone camera from multiple angles. The 10-fold cross-
validation technique was used to ensure the reliability of our
research outcomes.

A. DRONE-ACTION DATASET
The Drone-Action dataset, created by Perera et al. [61] is a
unique dataset that was curated specifically for HAR using
footage captured by drones. It consists of 240 video clips
resulting in 66919 frames. A total of 10 subjects performed
13 different actions. Some of the actions were recorded
with font-view, some by side-view, and some of them were
recorded while the drone followed the subject while he was
performing the action. Punching, kicking, clapping, waving
hands, running-side, running-follow, hitting with a bottle,
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TABLE 1. Performance evaluation of the proposed system over
drone-action dataset.

TABLE 2. Performance evaluation of the proposed system over
UAV-human dataset.

hitting with a stick, stabbing, walking-side, walking-follow,
jogging-side, and jogging-follow are the actions that were
recorded by the team.

B. UAV-HUMAN DATASET
UAV-Human is a dataset [62] that covers a wide range of
human actions. It provides 67,428 videos that were recorded
with the contribution of 119 subjects over the span of three
months. Videos were recorded in urban as well as in some
rural areas also with the help of a UAV. Hence, provid-
ing a wide range of challenges in the form of different
backgrounds, occlusions, weather, and camera motion. Eight
human action classes from UAV-Human dataset that this

TABLE 3. Performance evaluation of the proposed system over
Okutama-action dataset.

TABLE 4. Comparison of detection accuracy for proposed system with
other state-of-the-art systems over the Drone-Action, UAV-Human, and
Okutama-Action datasets.

study addresses to are sit-down, stand-up, applaud, wave-
hands, run, walk, thumb-up, and salute.

C. OKUTAMA-ACTION DATASET
The Okutama-Action dataset [63] consists of 43 videos
and 77365 frames. It was collected with the help of two
unmanned aerial vehicles (UAVs) that were flying at a height
of 10 meters to 45 meters. Some recordings were done while
keeping the camera at 45 degrees and others were done at
an angle of 90 degrees. For the HAR, we only considered
the data that was provided for five non-interactional activities
including running, walking, lying, sitting, and standing.

D. SYSTEM EVALUATION VIA EXPERIMENTATION
We have evaluated the proposed system for HAR on the
Drone-Action dataset, the Okutama-Action dataset, and the
UAV-Human dataset. To produce the most reliable results,
we have repeated the experimentation three times for every
dataset. Fig. 16 demonstrates the confusion matrix for the
performance of the proposed system over the Drone-Action
dataset. The system scores the mean accuracy of 80.03% over
the mentioned dataset. While the results for the UAV-Human
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dataset were produced with a mean accuracy of 48.60% and
are shown in Fig. 17. The system was predicting 78.03%
accurate results on average while working over the Okutama-
Action dataset. The demonstration of the results can be found
in Fig. 18.

Table 1 represents the proposed system’s potential in the
form of precision, recall, and F1-score over all classes of the
Drone-Action dataset.

Table 2 displays the system’s precision recall, and F1-
score over all classes of the UAV-Human dataset. While
the performance evaluation of the proposed system over the
Okutama-Action dataset is provided in Table 3.
Finally, a performance comparison of the proposed sys-

tem with state-of-the-art systems is presented in Table 4,
which clearly indicates that our system achieved higher
accuracy and outperformed the available state-of-the-art
systems.

V. DISCUSSIONS
A HAR system was presented with gamma correction,
Felzenszwalb’s segmentation, GMM-EM-based elliptical
modeling, multi-feature extraction, QDA-based feature opti-
mization, and CNN-based classification as the highpoints.
The system is well-suited to a wide range of real-world sce-
narios, including human action monitoring systems, surveil-
lance systems, smart homes, and entertainment applications.
However, it also has some limitations, such as difficulty in
detecting actions in which the drone follows the subject.
It can be observed from Table 1 and Table 4 that the recog-
nition accuracy of running-side and running-follow actions
was comparatively lower than the other actions. One of
the reasons can be the angle by which the video is being
recorded. Other reasons might include continuously vary-
ing backgrounds, occlusions, and drone movement. Due to
these factors, the performance of the proposed system further
drops while working on the Okutama-Action dataset, and the
UAV-Human dataset. But still our system was able to beat
the available state-of-the-art methods. The difference was
made by the implementation of Felzenszwalb’s segmentation
algorithm and GMM-EM-based elliptical modeling.

VI. CONCLUSION AND FUTURE WORK
In this paper, a novel framework is proposed for human action
recognition. The proposed system is based on Felzenszwalb’s
algorithm for segmentation and feature extraction. A unique
approach that we used in our feature extraction module is to
address each of the concerned body part individually with the
help of GMM-EM-based elliptical modeling. The proposed
system takes advantage of both machine learning and deep
learning techniques to get excellent results for the algorithm.
Moreover, the proposed system is not only beneficial for the
recognition of human actions but can also be used for other
purposes like pose estimation, and body part segmentation.

Our future plans include exploring new features for multi-
human-based systems and working on more complex sce-
narios for human action recognition. Additionally, we aim

to improve the efficiency of labelling by implementing deep
learning techniques.
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