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ABSTRACT Meta-heuristic algorithms have been effectively employed to tackle a wide range of
optimisation issues, including structural engineering challenges. The optimisation of the shape and size
of large-scale truss structures is complicated due to the nonlinear interplay between the cross-sectional
and nodal coordinate pressures of structures. Recently, it was demonstrated that the newly proposed
Marine Predator Algorithm (MPA) performs very well on mathematical challenges. The MPA is a meta-
heuristic that simulates the essential hunting habits of natural marine predators. However, this algorithm
has some disadvantages, such as becoming locked in locally optimal solutions and not exhibiting high
exploratory behaviour. This paper proposes two hybrid marine predator algorithms, Nonlinear Marine
Predator (HNMPA) and Nonlinear-Chaotic Marine Predator Algorithm (HNCMPA), as improved variations
of the marine predator algorithm paired with a hill-climbing (HC) technique for truss optimisation on form
and size. The major advantage of these techniques is that they seek to overcome the MPA’s disadvantages
by using nonlinear values and prolonging the exploration phase with chaotic values; also, the HC algorithm
has been used to avoid locally optimum solutions. In terms of truss optimisation performance, the proposed
algorithm is compared to fourteen well-known meta-heuristics, including the Dragonfly Algorithm (DA),
Henry Gas Solubility optimisation (HGSO), Arithmetic optimisation Algorithm (AOA), Generalized Normal
Distribution Optimisation (GNDO), Salp Swarm Algorithm (SSA), Marine Predators Algorithm (MPA),
Neural Network Algorithm (NNA), Water Cycle Algorithm (WCA), Artificial Gorilla Troops Optimiser
(GTO), Gray Wolf Optimiser (GWO), Moth Flame Optimiser (MFO), Multi-Verse Optimiser (MVO),
Equilibrium Optimiser (EO), and Cheetah Optimiser (CO). Furthermore, seven algorithms were chosen
to test HNCMPA performance on benchmark optimisation sets, including MPA, MVO, PSO, MFO, SSA,
GWO, and WOA. The experiment results demonstrate that the optimisation techniques surpass previously
established meta-heuristics in the field of optimisation, encompassing both traditional and CEC problems,
by a margin of over 95% in terms of attaining a superior ultimate solution. Additionally, with regards
to solving truss optimisation difficulties as a large-scale real-world engineering challenge, the outcomes
indicate a performance boost of over 65% in obtaining significantly better solutions for problems involving
260-bar and 314-bar; conversely, in the case of 340-bar issues, the improvement rate is slightly lower at
almost 25%.

INDEX TERMS Bio-inspired algorithms, hybrid algorithms, Marine predators algorithm, meta-heuristics,
optimization method, truss optimization.
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I. INTRODUCTION
The development of variousmeta-heuristic optimisation tech-
niques over the last few decades has resulted in a significant
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increase in their application in a wide range of engineering
problems. These techniques explore the search area in an
optimisation problem without the need for a gradient, quasi-
randomly, while keeping some fundamental principles for
finding the optimal solution in mind. Their popularity in
a variety of fields can be attributed to characteristics such
as improved performance and efficiency, lower computing
capacity, and easier implementation than fixed algorithms.
These algorithms rely on simple principles to produce the
best results, and the search is conducted to find the best
results in a variety of fields. The use of random elements
in the structure of meta-heuristic algorithms allows these
algorithms to explore the entire search area to find the best
solution and reduces the risk of these algorithms becoming
trapped in local optimisation.

One of their notable shortcomings is the low convergence
rate of meta-heuristic algorithms in the face of direct and
straightforward problems. In other words, the use of gradi-
ent information in specific descending gradient algorithms
is far more helpful in dealing with these issues than these
algorithms [1].

Human, natural, physical, and artistic phenomena are the
four categories of meta-heuristic algorithms used in optimi-
sation problems. However, because many optimisation prob-
lems have an infinite and limitless solution space, using
basic versions of meta-heuristic algorithms to explore the
solution space of these problems may fail to find optimal
solutions.

Some meta-heuristic optimisation algorithms inspired by
animal social behaviour or human characteristics that have
been used in various fields include Genetic Algorithm
(GA) [2], Particle Swarm optimisation (PSO) [3], Ant Colony
optimisation (ACO) [4], Imperialist Competitive Algorithm
(ICA) [5], Gray Wolf Optimiser (GWO) [6], Whale opti-
misation Algorithm (WOA) [7], and Human Mental Search
(HMS) [8].

The Gravitational Search Algorithm (GSA) [9], Charged
System Search (CSS) [10], Stochastic Paint Optimiser
(SPO) [11], SimulatedAnnealing (SA) [12], Harmony Search
(HS) [13], and Colliding Bodies optimisation (CBO) [14]
were all motivated by art, physical, and natural phenomena.
When faced with optimisation problems, meta-heuristic algo-
rithms approximate the optimal solution by either randomly
identifying the expected optimal solution region or by creat-
ing better solutions to these problems with fewer constraints
and fewer computational resources than descending gradient
methods [15]. Due to its inherent and challenging difficulty,
truss optimisation has become a difficult issue in structural
engineering in recent decades. Many researchers have exper-
imented with meta-heuristic techniques to optimise the size
and arrangement of structures. Some of these techniques
are: Genetic Algorithm (GA) [16], Particle Swarm optimi-
sation (PSO) [17], School-Based optimisation (SBO) [18],
Symbiotic Bodies optimisation (SBO) [19], Dynamic
Water Strider Algorithm (DWSA) [20], Cuckoo Search

Algorithm (CS) [21], and Dynamic Arithmetic optimisation
Algorithm (DAOA) [22].

Natural frequency is a critical criterion in the issue of
truss optimisation because it has a significant impact on the
performance of a structure. This criterion is based on the
understanding of structural dynamics, a field of study that
provides critical information about the dynamic behaviour
of structures. Over the last decade, researchers have paid
close attention to the problem of truss optimisation based
on frequency constraints. A significant practical challenge
for the truss problem is to improve its dynamic behaviour
by taking into account its natural frequencies. Better control
of this criterion improves the structure’s performance and
prevents the phenomenon of resonance.

The design and construction of lightweight structures is
a difficult and critical issue in engineering. The conflict
betweenweightminimization and frequency constraints com-
plicates the truss optimisation problem even more. As a result
of the perceived need for effective optimisation techniques to
design these structures and deal with their inherent limita-
tions, an active research field has emerged in recent years.
Researchers are expanding their knowledge and understand-
ing of the subject as research expands. Some of these cases
are discussed further below. Bellagamba and Yang [23] were
pioneers in the field of truss optimisation with frequency
constraints. Lin et al. [24] developed a bi-factor algorithm for
these structures. Wei et al. [25] proposed a parallel genetic
algorithm. Charged system search and enhanced CSS [26],
democratic particle swarm optimisation (DPSO) [27], and tug
of war optimisation (TWO) [28] were proposed by Kaveh
and Zolghadr. Pholdee and Bureerat [29] experimented
with various metaheuristic algorithms for this problem.
Tejani et al. [19] proposed the search for symbiotic organisms
(ISOS) in truss structures with a low frequency of occurrence.
A learning algorithm based on multi-class training was used
for truss structures with frequency constraints. In a recent
study, the efficiency of the generalized normal distribution
optimisation (GNDO) algorithm [30] was evaluated and com-
pared with seven metaheuristic algorithms. The experimental
results demonstrated that GNDO performed better than other
latest algorithms regarding convergence speed and optimal
solutions. However, the authors did not test the GNDO’s per-
formance for structures larger than 200 bar. In order to over-
come the shortcomings of the original seagull optimisation
algorithm (SOA), a strategy combined with mutualism and
commensalismwas proposed [31]. Awide range of numerical
benchmarks and engineering problems were used to evaluate
the improved SOA algorithm’s performance, outperforming
other methods.

Research in this field has confirmed the effectiveness of
meta-heuristic optimisation algorithms in dealing with and
managing many problems when solving a structural design
problem. Given the No Free Launch (NFL) Theorem [32],
no single optimisation technique can solve all optimisation
problems. As a result, developing a new modified algorithm
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and improving its performance can improve the algorithm’s
ability to handle a set of problems compared to existing
algorithms. Simultaneously, the method for dealing with opti-
misation problems in these methods will not change. This
is the motivation for our efforts to improve the efficiency of
the MPA optimisation algorithm, which has recently demon-
strated excellent performance in optimisation problems, and
to adapt it to structural design problems better.

Faramarzi et al. [33] recently proposed a marine predator
optimisation algorithm based on the natural behaviour of
marine predators for constrained and unconstrained optimi-
sation problems. Despite the thriving performance of MPO,
there are some technical areas for improvement in optimising
real engineering problems. For example, the prey particles
yield their route and converge on the predator particles in
some multi-modal cases [34]. Shaheen et al. [34] proposed an
improved MPO method to provide a better chance to prevent
falling into local optimum by determining a random oppor-
tunity to combine three search stages. In another study [35],
applying a differential operator is recommended to enhance
the exploration phase of the standard MPA. To improve the
performance of MPA in solving a nonlinear problem, the
tracking the global MPP of shaded PV ystems [36], a com-
bination of the Opposition Based Learning (OBL) method
with Grey Wolf Optimiser (GWO) was proposed to control
the searchability ofMPA and acquire more rapid convergence
rate.

Although multi-solution meta-heuristics have some intrin-
sic limitations, the literature suggests that these algorithms
are now the primary method for solving optimisation issues.
This research area is among the most popular in computa-
tional intelligence and has lately presented several methods.
Having such a potential possibility to approach a solution
indicated by a computationally effective optimisation algo-
rithm capable of finding the best solution somewhat and
efficiently has encouraged the development of an upgraded
hybrid version of the MPA method.

It must be mentioned that related works in the meta-
heuristics literature were thoroughly evaluated and described
in the first part of this section. However, several research
works, such as HHO, SSA, MVO, WOA, and other well-
known meta-heuristics, are not natively developed and aim
at large-scale and complex problems. For the first time in the
literature, we customized and adjusted theMPA technique for
large-scale challenges, particularly truss problems.

When the form and bar size parameters are combined,
a multi-modal solution space with dynamic restrictions is
created, resulting in a time-consuming optimisation process.
As a result, the majority of actual truss problems are large and
highly constrained, and scaling issues occur as the problem
size increases. As a result, this paper employs the proposed
optimisation methods (HNMPA, HNCMPA), an extended
population-based meta-heuristic, to tackle structural design
challenges. The aim of this research is to apply the pro-
posed methods to build the optimal weight of truss structures

described in the literature. To boost MPA’s performance, two
new features were successfully added to the basic version
in the first phase (Nonlinear and chaotic parameters), and
the hill-climbing method was integrated with the suggested
algorithm in the second step to tackle truss optimisation prob-
lems more effectively. The optimisation of trusses consid-
ered a complex and practical engineering problem, presents
a significant challenge for meta-heuristic algorithms due to
extensive local optima caused by the problems’ inherent com-
plexity. As a result, merely having efficient exploration and
exploitation approaches is inadequate to avoid getting trapped
in these local optima. This study proposes hybrid methods
that integrate hill-climbing, a renowned local search method,
to address this issue and enable the algorithms to move
beyond the local optima and approach the global optimum
point. HNMPA and HNCMPA continue to apply to various
groups of optimisation issues because no additional fine-
tuning of MPA parameters is necessary to connect with these
new versions.

To make a long story short, the primary contributions of
this study are as follows:

• Proposing a new adaptive MPA algorithm employs an
efficient nonlinear control parameter to achieve a good
balance between exploration and exploitation strategies,
as well as chaotic values to improve the exploration
phase by providing the proposed algorithm’s population
with a sufficient degree of diversity, resulting in excel-
lent accuracy and rapid convergence.

• Enhancing the performance of the proposed technique
by employing a Hill Climbing (HC) local search algo-
rithm to accelerate convergence and avoid trapping at
local optimal points, hence resolving truss optimisation
concerns.

• The optimisation results of several architectures with
nonlinear and dynamic constraints are thoroughly ana-
lyzed and reviewed to assess the performance of the
proposed approach. To address these issues, the weight
of the structure with specific constraints on the problem
is employed as a target function, together with distinct
and continuous areas of design variables.

The paper’s structure is as follows. Section II represents
the formulation of two large-scale truss problems. Section IV
explains the basic MPA initially, and then it describes the
proposed IMPA in more detail. The experimental results are
shown in Section V. Finally, Section VI draws a conclusion
from the research findings and results.

II. FORMULATION OF TRUSS PROBLEMS
The goal of shape and sizing optimisation of truss structures
is to find the minimal structural weight by simultaneously
optimising nodal coordinates and cross-sectional areas. Addi-
tionally, the optimisation problem is supposed to satisfy nat-
ural frequencies, stress, and nodal displacement constraints
while minimizing the structural weight. In this problem, the
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structural topology is assumed to be fixed and unalterable.
Thus, the optimisation problem can be formulated as follows:

Find: X = {A1,A2, . . . ,Am,C1,C2, . . . ,Cn}

Min: F(X ) =

mn∑
i=1

AiρiLi +
N∑
j=1

bj

Where: Amini ≤ Ai ≤ Amaxi

Cmin
i ≤ Ci ≤ Cmax

i (1)

where X is the structural design variable vector, including Ai
and Ci as structural sizing and shape design variables, which
are confined to the lower and upper bound [Amini ,Amaxi ] and
[Cmin

i ,Cmax
i ], respectively. n and m represent the number of

structural cross-sectional areas and nodal coordinates. Also,
in the second formula, ρi, Li, bj, andF(X ) are the ith element’s
mass density, the ith element’s length, the jth node’s mass,
and the objective function, respectively. Moreover, structural
constraints can be formulated as follows;

|σi| − σmaxi ≤ 0

|δj| − δmaxj ≤ 0 (2)

where σi, σmaxi , δj, and δmaxi are the ith element’s stress,
ith element’s maximal stress value, the jth nodal displace-
ment value, and the jthe maximal nodal displacement value,
respectively.

Furthermore, in these problems, a penalty function is nec-
essary to convert the constrained problem into an uncon-
strained problem. The penalty function we used in this paper
is as follows:

FPenalty(X ) = F(X ) +

K∑
i=1

(σVioi + δVioi )Pf (3)

where Pf and FPenalty(X ) are the penalty factor and penalty
function, respectively. Also, σVioi and δVioi are the stress and
nodal displacement violation values for the design variable
vector.

III. CASE STUDIES
In this section, we explain two case studies proposed by
Bright Optimiser called ISCSO 2018 and ISCSO 2019 [37].
The optimisation problems include concurrent structural
shape and sizing optimisation, while structural topology is
immutable and predetermined. The goal is to minimize the
structural weight while satisfying stress and nodal displace-
ment constraints. In both case studies, for all truss elements,
density, elastic modulus, and yield stress are equivalent to
7.85 ton/m3, 200 GPa, and 248.2 MPa, respectively.

1) 314-BAR TRUSS
The first case study shown in Figure 1 (Part a) is a three-
dimensional steel truss structure including 314 bars and
84 nodes. The structural design is subject to three indepen-
dent load cases. The loads applied to all unsupported nodes
include horizontal loads of 12 kN, horizontal loads of 6 kN,
and vertical loads of 48 kN applied to positive x-direction,

positive y-direction, and negative z-direction, respectively.
Additionally, all nodes’ displacements in the x, y, and z
directions are confined to a maximum value of ±50 mm.
In this optimisation problem, cross-sectional areas and nodal
coordinates variables can take only integer values within
range [1, 37] and [9000, 20000], respectively.

FIGURE 1. 314 bars and 84 nodes construct a steel truss structure. The
optimisation variables incorporate elements of 14 shapes (C) and
314 sizings (A).

2) 260-BAR TRUSS
The second case study shown in Figure 2 (Part b) is a
three-dimensional steel truss structure including 260 bars and
ten nodes. In the structural design, three independent load
cases are considered to apply the loads to all unsupported
nodes. They include horizontal loads of 5 kN, horizontal
loads of 1 kN, and vertical loads of 5 kN applied to positive
x-direction, positive y-direction, and negative z-direction,
respectively. Additionally, all nodes’ displacements in x, y,
and z directions are confined to amaximum value of±25mm.
In this optimisation problem, cross-sectional areas and nodal
coordinates variables can take only integer values within
range [1, 37] and [-25000, 3500], respectively.

FIGURE 2. 260 bars and 76 nodes construct a steel truss structure. The
optimisation variables incorporate elements of 10 shapes (C) and
260 sizings (A).

3) 345-BAR TRUSS
The third case study is a 3D steel truss structure with
345 elements and 105 nodes with fixed topology, and just
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sizing optimisation is considered. The applied independent
loads in this structure are i) in the positive X-coordination,
a horizontal load is imposed at 20 kN. ii) the second load is
similar to the first load size but in the positive Y-coordination.
iii) 24 kN vertical load applied in the Z-coordination
inversely. The total feasible displacements for all nodes are
restricted to ±5 mm. The yield stress of the truss mate-
rial, elastic modulus, and material density are 248.2 MPa,
200 GPa, and 7.85 ton/m3, respectively. Figure 3 shows a
feasible design of a 345-bar truss structure with the same
element size at 32.

FIGURE 3. 345 bars and 105 nodes (including 15 supported nodes)
construct a steel truss structure. The optimisation variables incorporate
elements of 345 bars.

IV. METHODOLOGY
A. MARINE PREDATORS ALGORITHM (MPA)
Faramarzi et al. [38] developed a new algorithm inspired by
the marine predator food search strategy to solve optimi-
sation problems. This algorithm’s structure is based on the
predators’ Lévy and Brownian movements and the optimal
collision process in the biological interaction between preda-
tor and prey. This algorithm has the advantage of simulating
the recall mechanism and memorising the successful hunting
locations of marine predators. MPA, in other words, remem-
bers the optimisation results as well as potential solution
points. In MPA, finding the best solution requires fewer
iterations. Therefore, using this algorithm to solve the truss
optimisation problem is advantageous.

The two stages of marine predator search and the extent to
which predators and prey interact in a marine ecosystem form
the core structure of an MPA. Predators and prey are trying
to hunt each other down and find natural food. They are pur-
suing a phenomenon known as the strongest survival, which
increases hunters’ chances of finding prey. MPA simulates
its optimisation phase using Lévy and Brownian strategies.
In this algorithm, these two strategies accurately depict the
behaviour of marine predators.

Random walks in nature are an effective strategy in many
animals’ food search patterns. This optimal strategy allows
hunters to improve their chances of survival by increasing the
frequency of prey encounters in the wild. During predators’
lives, this strategy evolved as an inherent process in these

animals and nature, leading to the survival of the predator’s
generation. In MPA, the animal’s next position is mathe-
matically predicted based on its current position and the
probability of moving to the next position.

The ratio of prey to predator speed is critical in MPA for
simulating and transferring the optimisation process from one
step to the next. The high speed of the prey in comparison
to the predators is vital in the first phase of the algorithm,
whereas in the later stages of the algorithm, the unit ratio and
low speed are significant considerations in the optimisation
process. The MPA has a low number of adjustable variables,
a simple design, a low computational load, and no reliance on
the gradient.

The following is a synopsis of the optimal search, food
search, interaction, and memory processes used by wild
marine predators to find prey:

• Marine predators employ the Levy strategy in areas with
low hunting densities and the Brownian strategy in areas
with multiple preys.

• Marine predators use the same percentage of levy and
brownie movements when crossing different habitats.

• Marine predators remember food search locations as
well as hunting areas.

1) MPA’s OPTIMISATION PHASES
This process is divided into three significant stages in MPA,
inspired by the natural life of predators and prey. These
procedures are as follows:

Phase I:The prey is faster than the predator.When the prey
is moving faster than the predator, the predator’s best strategy
is to remain still. The algorithm is currently in the exploration
phase. In MPA, this step is represented as follows:

While: Iter <
1
3
MaxIter

−→
S l = R⃗B ⊗

(
−−→
Elitel − R⃗B ⊗

−−−→
Prayl

)
−−→
Prayl =

−−→
Prayl + P.R⃗⊗

−→
S l (4)

The RB vector has random numbers and is based on the
normal distribution of Brownian motion. This vector in Prey
is multiplied to model prey movement. P is a constant equal
to 0.5, and R is a vector of uniform random numbers in the
range [0, 1]. This step occurs in 1

3 of iterations when the
movement speed is high to allow for high levels of exploration
(Iter mentions the current iteration, Maxiter is the maximum
one).

Phase II: Both the prey and the predator move at the same
rate. This MPA step occurs when the algorithm is moved
from the exploration phase to the exploitation phase. Explo-
ration and exploitation occur concurrently at this stage. Prey
engages in exploitation, whereas predators explore.

while
1
3
MaxIter < Iter <

2
3
MaxIter . (5)

−→
S l = R⃗L ⊗

(
−−→
Elitel − R⃗L ⊗

−−−→
Prayl

)
(6)

−−→
Prayl =

−−→
Prayl + P.R⃗⊗

−→
S l . (7)
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Prey motion is simulated for the first half of the popula-
tion using the RL random number vector based on the Levy
distribution. The prey movement in nature is simulated by
adding a step size to the prey position. The steps in the
Levy distribution are typically small. The MPA defines the
following for the second half of the population:

−→
S l = R⃗B ⊗

(
R⃗B ⊗

−−→
Elitel −

−−→
Preyl

)
(8)

−−→
Prayl =

−−→
Elitel + P.CF ⊗

−→
S l (9)

CF =

(
1 −

Iter
MaxIter

)(2 Iter
MaxIter

)
(10)

The step size of the predators’ movement is controlled by
an adaptive parameter, CF , in MPA. The predator’s move-
ment is simulated using the Brownian method and multiplied
by RB. Elite simulates prey movement in MPA. Because the
prey position is updated in relation to the predators’ move-
ment in Brownian motion.

Phase III: The predator is faster than the prey. This MPA
step contributes to excessive exploitation.

At this step, the Predator’s best strategy is to follow the
Levy strategy. In the Levy strategy, predator motion is simu-
lated bymultiplyingRL . The position of the prey is updated in
response to predator movement. In addition, the Elite position
is simulated by increasing the step size. MPA defines this step
as follows:

while Iter >
2
3
Maxiter −→ (11)

−→
S l = R⃗L ⊗

(
R⃗L ⊗

−−→
Elitel −

−−−→
Prayl

)
(12)

−−→
Prayl =

−−→
Elitel + P.CF ⊗

−→
S l (13)

MPA divides the process of finding an optimal solution into
three steps and a limited number of iterations. These steps are
inspired by natural predator behaviour and prey and simulate
the predator’s step size and movement during the hunting
process to catch prey. A predator’s percentage of Levy and
Brownian motion is fixed in MPA. The predator is stationary
andmotionless in the early stages of the algorithm. The preda-
tor, however, uses Brownian motion to change its position
in the second stage and Levy motion in the final stage. This
scenario occurs due to the possibility of prey being predators
in nature. The prey uses a Brownian movement in the first
stage and a levy movement in the second stage to change its
position.

The behaviour of marine predators may change throughout
their lives as a result of environmental issues in their habi-
tat. Fish Aggregating Devices (FADs), or eddy formation in
nature, are one of the most well-known examples of these
effects. Sharks, as one of the largest marine predators, spend
more than 80% of their time near these FADs and the rest of
their time searching in different directions and dimensions for
environments with different prey. These FADs are considered
local optima in MPA, and they prevent the algorithm from
becoming trapped in the local optimal points during the opti-
misation process. In the algorithm, this model is represented

as follows:

−−→
Prayl =


if r < FADs
−−→
Prayl + CF

[
Z⃗min + R⊗ (Z⃗max − Z⃗min

)
] ⊗ U⃗

if r > FADs
−−→
Prayl + [FADs (1 − r) + r]

(
−−→
Prayr1 −

−−→
Prayr2

)
(14)

r is a random number between 0 and 1. Whereas Zmax and
Zmin are vectors representing the boundaries of the lower and
upper dimensions. FADs = 0.2 to apply the effect of FADs
on the optimisation process in MPA. A binary vector U is
made up of two arrays, zero and one, which are defined by
generating a vector of random values between [0, 1].
Although the performance of the standard MPA is

considerable in solving most of the fundamental engineer-
ing problems, there are some reports of low performance
of this meta-heuristic in some case studies. The first and
foremost shortage of MPA is the low efficiency in local
search [36]. As the step control parameter (CF) signifi-
cantly impacts obtaining a proper balance of exploration
and exploitation, some studies [39] proposed modified CF
techniques to improve the general performance of MPA.

B. HYBRID NONLINEAR MARINE PREDATORS
ALGORITHM (HNMPA)
The MPA has inspired predator and prey movement in accor-
dance with the rules and points of multiple research and
observable behaviours in nature. Despite having satisfac-
tory exploration and exploitation rates, the MPA remains
stuck in optimal local solutions rather than reaching the
global optimum solution. The main goal of HNMPA is to
improveMPA exploration and exploitation by trying to adjust
the predator phase’s size towards the prey and trying to
balance the algorithm’s exploration and exploitation phases
using the presented control parameter. The MPA algorithm’s
second phase consists of two main stages: exploration and
exploitation.

Modifications in this phase will improve the MPA’s effi-
ciency and effectiveness. This phase has beenmodified as fol-
lows: The nonlinear parameter is used as a control parameter
by HNMPA to adjust the exploration and exploitation phases.
This variable is as follows:

ω = 2 × exp

(
−0.99 ×

√
Iter

MaxIter

)
(15)

In the range [2, 0], ω decreases non-linearly. As a result,
Eqs. 6 and 8 have been updated as follows:

while
1
3
MaxIter < Iter <

2
3
MaxIter . (16)

−→
S l = R⃗L ⊗

(
−−→
Elitel − R⃗L ⊗

−−−→
Prayl

)
× (l = 1, . . . , n/2) (17)

−−→
Prayl = ω ×

−−→
Prayl + P.R⃗⊗

−→
S l (18)
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Algorithm 1 B. Hybrid Nonlinear Marine Predators
Algorithm
1: Initialise the control parameters FADs,P,Npop, and ω

2: Initialise the first swarm (Prey), Zi i ∈ {1, 2, . . . ,Npop}
3: Evaluate population Prey
4: while iter ≤ Maxiter do
5: Compute Elite matrix
6: Calculate CF based on Eq.(10)
7: for each Prey ∈ Zi do
8: if Iter < 1

3MaxIter then
9: Update Prey based on Eq.(4)
10: else if 1

3Max_Iter < Iter < 2
3Max_Iter then

11: ω = 2 × exp(−0.99 ×
√
Iter/MaxIter )

12: if i ≤ n/2 then
13: Update Prey based on Eq.(17)
14: else
15: Update Prey based on Eq.(19)
16: end if
17: else
18: Update Prey based on Eq.(11)
19: end if
20: end for
21: Evaluate population Prey
22: Update Prey using FADs based on Eq.(14)
23: Apply marine memory saving and update the best

solution
24: Compute improvement rate based on ImIter =∑10

i=1(fIter−fIter−i)
10

25: if ImIter < µ then
26: Run Hill Climbing (HC) Algorithm 2
27: if HCBestsol < NCMPABestsol then
28: Update the population based on the best-

found solution
29: end if
30: end if
31: end while

−→
S l = R⃗B ⊗

(
R⃗B ⊗

−−→
Elitel −

−−→
Preyl

)
× (l = n/2, . . . n) (19)

−−→
Prayl = ω ×

−−→
Elitel + P.CF ⊗

−→
S l (20)

Algorithm 1 shows the technical details of the implementa-
tion of the proposed boosted MPA. The hill climb algorithm
is used (Algorithm 2) in MPA’s second change to prevent
it from becoming trapped in local optimal points. If the
proposed algorithm fails to improve the value of the cost
function during the optimisation process and several consec-
utive iterations (for example, in a quarter of the algorithm’s
iterations), the HC algorithm is used, and it begins to try to
improve the best answer and position obtained so far by the
algorithm. It should be noted that this will continue until the
cost function’s value improves.

Algorithm 2 Hill Climbing Local Search
1: procedure Hill Climbing Local Search(HC)
2: Initialization
3: Initialize σmaxi , δmaxj ▷ Initialize maximum allowable

stress and nodal displacement in the ith element
4: Steps = (Mins + Maxs)/10, Stepc = (Maxc −

Minc)/10 ▷ Compute the step size for GS
5: Trussiter={S, C} ▷ Read both sections (S) and

coordinate (C) values
6: (Weightb, σi, δj)=Eval(Trussiter ) ▷ Evaluate the

design
7: for iter ≤ Maxiter do
8: while t ≤ N +M do
9: Temp = Trussiter
10: if t ≤ N then
11: Tempt = Tempt ± Steps ▷ Neighborhood

search
12: else
13: Tempt = Tempt ± Stepc
14: end if
15: (Weightt , σi, δj)=Eval(Tempt )
16: if

∑N ,M
i=j=1(σi + δj) ̸= 0 then ▷ design is not

feasible
17: Apply the penalty function
18: end if
19: t = t + 1
20: end while
21: Trussiter=Min(Weightt ) ▷ Select the best feasible

solution and update the truss
22: Steps = Steps − ( iter

Maxiter
Steps) + 1 ▷ Stepc and

Steps linearly decreased
23: end for
24: return Trussiter
25: end procedure

C. HYBRID NONLINEAR-CHAOTIC MARINE PREDATORS
ALGORITHM (HNCMPA)
1) CHAOTIC SEARCH BEHAVIORS
In optimisation algorithms, chaos theory is frequently used
to improve the diversity of initialised solutions. Population
diversity describes potential solutions, parts of solutions,
or structures that can be effectively changed into solutions.
According to the literature review, this optimisation algo-
rithm is a population-based algorithm, which means it solves
the problem by starting with a random solution and then
evaluating it based on specified criteria. To solve the prob-
lems in the meta-heuristic, we need to use a search agent
(in this work, the search agents are predator and prey). The
original MPA’s search agents start at a random point and
generate random solutions, referred to as population distri-
butions, contributing to a population diversity issue. In this
paper, we use the Sine Chaotic Map function to set the
position of these search agents and to improve the algorithm’s
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exploration phase. As demonstrated by the definition of
chaotic maps and their movement behaviour, there are more
possible scenarios for the areas affected and the number of
times they keep moving. Therefore, a specific map improves
an optimisation technique’s exploration of behaviour pat-
terns. It is also worth noting that these maps were taken into
account because they display a variety of behaviours when
trying to generate chaotic values and have been shown to be
efficient in experiments conducted [40], [41]. Using chaotic
maps to enhance initialised solutions improves the efficiency
of the algorithm. Furthermore, chaos theory can explore the
solution space more extensively than random search [42].
However, it is critical to leverage solution space to try and
make the initial population as efficient as possible. To help
enhance diversity in the population, this work employs Chaos
theory’s Sine Map (SM) to initialise the HCCMPA. This
is due to the fact that chaotic maps aid the optimisation
technique’s exploration of the search space. In other words,
apart from a probability-based search, the exploration can
be structured rather than random [41]. Furthermore, chaotic
maps can help optimisation algorithms prevent optimal solu-
tions while also boosting convergence [43], [44], [45]. The
CM mathematical formulation is computed as in Eq 21.

ChaosSineMap = Xn+1 =
α

4
sin(πXn), α = 4 (21)

2) HYBRIDISATION
The MPA has inspired predator and prey movement in accor-
dance with the rules and points of considerable research and
observable behaviours in nature. Despite having satisfactory
exploration and exploitation rates, the MPA remains stuck in
optimal local solutions rather than reaching the global opti-
mum solution. The primary goal of HCCMPA is to improve
MPA exploration and exploitation by attempting to balance
the algorithm’s exploration and exploitation phases using the
presented control parameter and chaos values rather than ran-
dom ones. Therefore, the first phase of the MPA is modified
as follows.

While: Iter <
1
3
MaxIter

−→
S l = R⃗B ⊗

(
−−→
Elitel − R⃗B ⊗

−−−→
Prayl

)
−−→
Prayl =

−−→
Prayl + P. ⃗CM ⊗

−→
S l (22)

The MPA algorithm’s second phase consists of two main
stages: exploration and exploitation. Modifications in this
phase will improve the MPA’s efficiency and effectiveness.
This phase has been modified as follows. The nonlinear
parameter is used as a control parameter by HCCMPA to
adjust the exploration and exploitation phases. This variable
is as follows:

ω = 2 × exp
(

−(4 × (
Iter

MaxIter
)3)
)

(23)

In the range [2, 0], w decreases non-linearly. As a result,
Eqs. (12) and (13) have been updated as follows:

while
1
3
MaxIter < Iter <

2
3
MaxIter . (24)

−→
S l = R⃗L ⊗

(
−−→
Elitel − R⃗L ⊗

−−−→
Prayl

)
× (l = 1, . . . , n/2) (25)

−−→
Prayl = ω ×

−−→
Prayl + P. ⃗CM ⊗

−→
S l (26)

−→
S l = R⃗B ⊗

(
R⃗B ⊗

−−→
Elitel −

−−→
Preyl

)
× (l = n/2, . . . n) (27)

−−→
Prayl = ω ×

−−→
Elitel + P.CF ⊗

−→
S l (28)

The two proposed algorithms stated so far will eventually be
combined by the Hill climb algorithm. Notably, the two pro-
posed components can be utilized independently as distinct
methodologies or in a combined approach that dynamically
selects the algorithmic component most suited for resolving
the challenges and alternating between them. Nonetheless,
for the purposes of this investigation, they were applied as
distinct modalities. Algorithm 2 shows the technical details of
the implementation of the proposedHNCMPA. The hill climb
algorithm is used (Algorithm 2) in MPA’s second change to
prevent it from becoming trapped in local optimal points.
If the proposed algorithm fails to improve the value of the cost
function during the optimisation process and several consec-
utive iterations (for example, in a quarter of the algorithm’s
iterations), the HC algorithm is used, and it begins to try to
improve the best answer and position obtained so far by the
algorithm. It should be noted that this will continue until the
cost function’s value improves.

The proposed hybrid method is able to keep a considerable
balance between searchability and convergence rate in multi-
modal search space. Furthermore, integrating hill climbing
as a robust local search improves the MPA and speeds up the
convergence rate in the unimodal search space.

V. EXPERIMENTAL RESULTS
A. LANDSCAPE ANALYSIS
Recently, the applications of landscape analysis have been
broadly expanded [46] for a better insight into complicated
optimisation problems and clarifying behaviours of algo-
rithms, predicting the performance of the optimisation meth-
ods, and automated configurations and selections. In this
section, we performed some experiments for visualising a
violation landscape as further insight into fitness landscapes
for the truss optimisation problem with a constrained search
space.

A violation landscape is restricted, utilising the identical
features as a fitness landscape. Still, the fitness function is
substituted using a violation function [47] that quantifies how
a solution violates the constraints represented on the prob-
lem. Therefore, a violation landscape is characterised beyond
the decision variable space and supplies a further landscape
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perspective to the fitness landscape. The features of violation
landscapes can be studied concerning fitness landscapes to
understand constrained optimisation benchmarks better.

In order to provide a technical landscape analysis, we used
a grid search method. As the number of decision variables is
enormous for both case studies, we assume the same value
for all shape and sizing variables. Figure 4 demonstrates the
fitness plus violation landscape analysis of the 260-bar truss
problem. The whole decision variables include 10 shapes
(−25 × 103 ≤ C ≤ 3500) and 260 sizings (1 ≤ A ≤ 37)
elements. The colour bar highlights the sum of the structure’s
weight and the penalty factor. It is noted that the landscape is
multi-modal, and sizing variables less than 15 make a sharp
violation consisting of stress and displacement. Moreover,
we can see that the best range of shape variables is between
0 and −15000.

FIGURE 4. 3D landscape analysis of truss structure with 260 bars and
78 nodes. The whole decision variables include 10 shapes
(−25 × 103 ≤ C ≤ 3500) and 260 sizings (1 ≤ A ≤ 37) elements. The sum
of the structure’s weight and the penalty factor is highlighted by the
colour bar. Dark blue shows the best-found designs based on the grid
search analysis.

To have a more systematic insight into the violation land-
scape of the 260-bar truss, we re-performed the landscape
analysis focused on the stress violation levels. Figure 5 shows
the stress violations of different designs of 260-bar truss,
and we can see the feasible areas highlighted by dark blue.
Obviously, the fitness search space is multi-modal with non-
linear constraints; however, the fitness landscape is simplified
by the assumption of the same shape and sizing values.
Furthermore, the impact of shape values on the stress vio-
lation is meaningful.

B. NUMERICAL BENCHMARKS
This study evaluated the proposed method’s performance
using various test functions. Two classes of well-known
benchmarks are used for mathematical optimisation prob-
lems. The benchmark contains unimodal, multimodal, and
composition functions to assess the HNCMPA and HNMPA’s

FIGURE 5. 3D stress violation landscape analysis of truss structure with
260 bars and 78 nodes. The stress violation of the structure is highlighted
by the colour bar. Dark blue in the zoomed figure shows the best-found
designs (feasible solution,

∑
|δj | − δmax

i = 0) based on the grid search
analysis.

TABLE 1. The algorithm’s parameter settings for numerical benchmarks.

capability to explore, exploit, and escape from local minima.
Unimodal test functions (F1-F6) are intended to test an
algorithm’s exploitation ability, whereas multimodal test
functions (F7-F13) are used to experiment with the algo-
rithm’s exploration phase effectiveness. These two classes of
functions are examined in 300 dimensions. The composition
functions (F14-F20) are intended to assess the general perfor-
mance of the proposed algorithm. However, their complexity
is similar to real and challenging optimisation problems
because they have too many local minima. Wu et al. [48] con-
tains more information on these test functions. Tables 1 and 2
outline the parameters for meta-heuristic algorithms
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TABLE 2. The statistical performance criteria for the proposed hybrid methods and other eight optimisation algorithms for unimodal functions.

TABLE 3. The statistical performance criteria for the proposed hybrid methods and eight other optimisation algorithms for multimodal functions.

TABLE 4. The statistical performance criteria for the proposed hybrid methods and eight other optimisation algorithms for Composition functions.

for numerical benchmark and truss optimisation issues,
respectively. Notably, the Matlab R2020a platform was uti-
lized to execute the proposed approach and other bench-
marked algorithms on a computer equipped with Windows
8.1 64-bit and 6 GB of RAM. The determination of

parameters was derived from the ones originally employed
by the authors of each algorithm or, alternatively, from
those frequently utilized by numerous scholars in the current
field of study. Furthermore, all iterations and populations
for the optimisation algorithms were set at 2000 and 50,
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FIGURE 6. The search history, convergence performance of (a) MPA, (b) HNMPA, and (c) HNCMPA on unimodal F1 function.

FIGURE 7. The search history, convergence performance of (a) MPA,
(b) HNMPA, and (c) HNCMPA on unimodal F2 function.

respectively. Table 1 enumerates the primary parameter con-
figuration for each algorithm implemented in the present
study. It is worth noting that the hill-climbing technique
for classical and CEC benchmark functions, for which
the suggested methods are capable of attaining the global
optima in the majority of these functions, was not employed.
Source codes of Proposed methods are publicly avail-
able at https://github.com/AminDehkordi/Adaptive-Chaotic-
Marine-Predators-Hill-Climbing-Algorithm-for-Large-scale-
Design-Optimisations.git.

Using HNCMPA and other methods, the test functions are
solved using a maximum of 100,000 function evaluations and
2000 iterations (Npop= 50). To achieve significant statistical
results, this study ran all optimisation methods 30 times and
presented the results, which included the average and stan-
dard deviation values of the best-so-far solutions observed
in each run. To illustrate the superior performance of the
proposed method over other methods, the test is conducted
for PSO [3], MFO [49], WOA [7], SSA [50], GWO [6],
MVO [51], and MPA [38]. Table 1 summarises the parameter
settings for other techniques. These parameters are either
highly suggested by their developers or fall within the ref-
erence values in order to achieve the ideal performance for
each algorithm [52].

1) EXPLOITATION PHASE ANALYSIS
Due to the unimodal functions’ definition, they contain
only one global optimum. Therefore, they can evaluate the
exploitation ability of an algorithm. Table 2 provides the aver-
age and standard deviation values for HNCMPA and other
techniques on unimodal test functions (F1-F7). The results
show that HNCMPA outperformed most methods in almost
all test functions. These results demonstrate HNCMPA’s
exploitation capabilities, which can help HNCMPA converge
toward the global optimum and exploit it efficiently. The
characterised nonlinear control parameter and small steps of
Lévy movements contribute to this ability.
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FIGURE 8. The search history, convergence performance of (a) MPA,
(b) HNMPA, and (c) HNCMPA on unimodal F10 function.

FIGURE 9. The search history, convergence performance of (a) MPA,
(b) HNMPA, and (c) HNCMPA on unimodal F12 function.

2) EXPLORATION PHASE ANALYSIS
Multi-modal test functions have many local optima due
to their inherent structure, which increases tremendously
with the number of function design variables. Having more
than one optimum is beneficial when evaluating an algo-
rithm’s exploration capability. High and fixed (low) dimen-
sional multimodal functions are found in F8 through F13.
Tables 3 demonstrate the results of implementing HNCMPA
and various algorithms to these functions. Table 3 indicates
that HNCMPA has superior exploration ability when com-
pared to other techniques, particularly in comparison to other
HNCMPA surpasses all algorithms onmost high-dimensional
multimodal functions, particularly MPA and HNMPA, and
the results are competitive with high-performance optimis-
ers for the remaining functions. HNCMPA has achieved
the global optimum in most problems for fixed-dimensional
functions with a high degree of precision (Std) comparable to
that of high-performance optimisers. HNCMPA’s exploration
is due to its various optimisation steps, chaotic value effect,
and predator Brownian motion. Furthermore, the proposed
method employs a nonlinear control parameter, which results
in a proper balance between the exploration and exploitation
phases.

3) ANALYSIS OF HNCMPA LOCAL MINIMA EVASION
The composition test functions are obtained by shifting, rotat-
ing, and hybridising some primitive unimodal and multi-
modal functions (F14-F20). These functions are intended to
test algorithms’ ability to evade local optima while capable
of exploration and exploitation. The efficiency of HNCMPA
and other techniques on these kinds of functions is shown in
Table 4. HNCMPA’s results are very competitive in all func-
tions of this type. These findings indicate that HNCMPA has
finely tuned capabilities between exploration and exploita-
tion and superb performance in escaping from local optima.
The latter is due to the nonlinear control parameter that has
been defined, as well as the more extensive displacement
associated with the chaotic value. HNCMPA’s exploitation,
exploration, and local minima evasion abilities were tested
in this section. HNCMPA demonstrated its capacity to com-
prehensively explore the search space and exploit the best
solution while seeking to prevent local minimal stagnation.
Therefore, the hypothesis that chaotic values and a nonlinear
control parameter are used is proven, which improves the
MPA performance.

4) HNMPA AND HNCMPA’s CONVERGENCE ANALYSIS
This section discusses HNCMPA’s numerical and com-
putational convergence assessments. The convergence of
HNCMPA is reviewed using qualitative metrics such as vari-
ability and trajectories in the experimental procedure. The
analytical section demonstrates that HNCMPA eventually
converges to a stationary point, implying that HNCMPA has
a reasonable convergence rate. Figures 6–10 depict qualita-
tive indicators for HNCMPA convergence and performance
evaluation in themathematical function testing platform com-
pared to MPA and HNMPA. The figure’s first column illus-
trates the structure of the functions in a two-dimensional
perspective to provide an overview of the search space topol-
ogy. The search history is represented in the figure’s second
column as the first criterion to be explained here. This figure
depicts the collective exploration of agents and how the inter-
action and collective behaviour patterns of the predators and
prey result in the structure of this process in MPA.

In unimodal functions, Figure 6 illustrates more accumula-
tion of agents around the optimum points and more dispersed
attitudes in multimodal and composition functions [38]. The
first feature of the template is characterized as assisting in
exploiting the results, which is favourable in unimodal func-
tions, and the latter is described as exploring the domain,
which assists MPA in multimodal and composition functions
in searching the entire space [38]. The second criterion is
the convergence curve, which represents the best solution
discovered thus far. Each function type has its own conver-
gence curve model, as shown in Figure 6 and Figure 7. This
pattern is fairly smooth in unimodal functions and demon-
strates improved performance in results with the number
of iterations, but in multimodal and composition functions,
this pattern changes into a step-by-step behaviour, which is
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FIGURE 10. The search history, convergence performance of (a) MPA, (b) and (c) HNCMPA’s on multimodal F13 function.

TABLE 5. The statistical performance criteria for the proposed hybrid methods and other eight optimisation algorithms for CEC-BC-2017 (Unimodal (F1
and F2) and multimodal functions (F4-F10)).

anticipated in these functions [38]. Another observation in the
search history is that the final hybrid shows high exploration
that also causes particles being overshoot the search space
(black hots that form a rectangle).

From each type, it is essential to recognise that in unimodal
functions, HNCMPA can identify and enclose the optimal
solution at initial iterations and seek to improve the solu-
tions as iterations continue (see Figure 6 and 7), whereas in
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FIGURE 11. Convergence curves of HNCMPA compared with other optimisation methods on various classical test functions.
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FIGURE 12. Convergence curves of HNCMPA compared with other optimisation methods on various mathematical CEC2017 test
functions.
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TABLE 6. The statistical performance criteria for the proposed hybrid methods and other eight optimisation algorithms for CEC-2017 Hybrid
functions (F11-F20).

TABLE 7. The statistical performance criteria for the proposed hybrid methods and other eight optimisation algorithms for CEC-2017 Composition
functions (F21-F30).

multimodal and composition functions (see Figure 8 and 9)),
the agents attempt to globally browse the solution space even
in the final iterations in an endeavour to find an optimal
solution still. Therefore, despite the enactment of iterations
in some multimodal functions, no advancement in results
is caused, eventually leading to the stride template in these
curves. The proposed method’s exploratory and descrip-
tive attitude is attributed to long moves deduced from the
agents’ Levymovements, eddy and FAD impacts, and chaotic
values that enhanced the HNCMPA’s exploration ability.

Suppose we take into account the agents (predators and prey)
to be collaborators. In that case, the convergence curve
depicts the behaviour patterns of the best player in attaining
global optimum. Still, it provides no information about the
overall team’s performance [38]. Therefore, we used another
criterion, ‘‘average fitness history,’’ to assess HNCMPA’s per-
formance during optimisation. This criterion’s whole method
is similar to the convergence curve, but it reinforces how
this interactive attitude improves the outcomes over the initial
random population. Some stride characteristics are visible in
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TABLE 8. The statistical performance criteria for the proposed hybrid methods and other eight optimisation algorithms for CEC-2022 benchmarks.

TABLE 9. Results of T-test (p-value) overall runs on CEC-2017.

TABLE 10. Results of T-test (p-value) overall runs on CEC-2022.

these functions in the average fitness history. This happened
due to improved performance in all agents’ fitness due to
a phase transition in the algorithm, which led to overall
good agent efficiency. There are slight hillsides in unimodal
functions but steep patterns in multimodal and composition
functions.

The trajectory of the agents depicted in column 3 of the
Figures (6–10) is another criterion. This criterion illustrates
an agent’s spatial variance from the start to the end of the
optimisation procedure. Due to the agents’ shifting in many
directions in search space, we chose only the first dimen-
sion of an agent to reveal its trajectory in order to ensure
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TABLE 11. The configuration details of optimisation methods applied to the truss shape and sizing problem. Npop is the initial population size.

TABLE 12. The statistical performance criteria for the proposed hybrid MPA methods compared with other 14 optimisation algorithms for 260-bar truss
case study.

its exact trajectory. These metrics of figures display sudden
high amplitude and duration changes in the initial iterations
(exploration phase), which will disappear in the final iter-
ations (exploitation phase). This pattern proves the algo-
rithm’s exploratory phase in initial iterations while shifting
to exploitation in the last ones, ensuring that an algorithm
can eventually converge to an optimum global point [53].
Due to the essence of multimodal functions, the intensity and
frequency of these shifts are more significant than for uni-
modal functions, and they usually last longer. Figures 6–10
directly compare HNCMPA to MPA and on two unimodal
and three multimodal functions. The search histories (second
column) in all functions display that HNCMPA exploration
is more extensive than other methods, as several areas of
the search space are coated. Nevertheless, as shown in the

second-to-last column, this leads to the proposed algorithm
for boosting the performance of the population during the
optimisation procedure. The convergence of this algorithm is
also visible in the last column, which shows the fewest values
when compared to MPA.

Figure 11 depicts the convergence curves on some of the
test functions for MFO, PSO, GWO, SSA, MVO, WOA,
MPA, and HNCMPA. The results of this figure indicate
that HNCMPA has a couple of unique, readily identifiable
behavioural trends when optimising the test functions. These
tendencies are primarily the result of various optimisation
steps. The first attitude illustrates a rapid convergence toward
the near-global optimum point in the first phase and suc-
cessive, slight advancements in the second and third phases,
proving that a problem can be solved with just one phase.
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FIGURE 13. Convergence rate of 14 optimisation algorithms used to minimize the weight of 314-bar truss. The Maximum number of
evaluations is 105.

FIGURE 14. Convergence rate of 14 optimisation algorithms used to minimize the weight of 260-bar truss case study. The Maximum number
of evaluations is 105.

The first pattern was demonstrated by F1, F2, and F3. To help
readers comprehend these behavioural patterns, we will use
F1 as an example for other functions; F2-F4.

According to the functions’ structure demonstrated in
Figure 11, the optimisation process minimises the function’s
delivered value with a range of parameters (The solution with
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TABLE 13. The statistical performance criteria for the proposed hybrid MPA methods compared with other 14 optimisation algorithms for 314-bar truss
case study.

the lowest value is the best). When we applied this function
to the group of optimisation techniques, all of them found
the best solution close to zero, except for our HNCMPA
algorithm, which could go even lower. The use of a nonlin-
ear control parameter, which results in nonlinear behaviour,
combined with the chaotic values used by the HNCMPA,
may provide the algorithmwith more opportunities to diverge
from the optimal local solution and converge to the optimal
global solution. This has enabled HNCMPA to investigate
other areas of the function’s environment that may lead to
more encouraging minimum solutions as iterations progress.
HNCMPA could compete with the MPA and algorithms,
precisely F12–13 and CF1–CF7 (Figure 12). Since the struc-
ture of these functions is rather complicated and includes
many locally optimal solutions, the majority of the proposed
algorithms work even harder to reach the global optima.
Nonetheless, with all of these functions but apart from F12,
our algorithm sustained a satisfactory convergence rate at an
initial stage. In contrast, MPA and WOA algorithms could
only find relatively improved optimal solutions at the final
moment of iterations. However, compared to our proposed
HNCMPA algorithm, these methods demonstrate no viable
convergence. The slow convergence ratemay be quite compu-
tationally costly for some applications that desire an accurate
solution.

To summarise this section, we can address the rationale for
some of the key performance indicators obtained by NMPA
in contrast to other cutting-edge algorithms. The essence of
the MPA algorithm and the fact that natural marine predators
can memorise their prey’s regions with broader and deeper
food sources are the primary reasons we can emphasise here.
Furthermore, the inclusion of Levy and Brownian motions
aids the algorithm’s performance in various optimisation
problems. MPA can hold and use this memory to recall some
of the sense of satisfaction in the possible potential area
for a globally optimal solution to be investigated or further
exploited, depending on such a significant characteristic that
other algorithms neglect. This phenomenon has aided our
proposed algorithm, which has a suitable mechanism for
discovering, on average, superior best solutions to different
algorithms.

FIGURE 15. Convergence rate of 14 optimisation algorithms used to
minimize the weight of 345-bar truss case study. The maximum number
of evaluations is 105.

The newly presented modifications to theMPA by the non-
linear controller and some of the chaotic behaviour patterns
prompted by the chaotic map set of equations led to improved
algorithm performance. These new changes are in Section IV
have made evident the efficiency of our proposed HNCMPA
algorithm in contrast to other benchmark methods.

5) HNMPA AND HNCMPA’s PERFORMANCE ANALYSIS ON
THE CEC-BC-2017 AND CEC-BC-2022 TEST
BENCHMARK FUNCTIONS
To further indicate the proposed method’s effectiveness,
we chose among themost subsequent and complicated bench-
mark test functions from the CEC-BC-2017 [48], and CEC-
BC-2022 [54] Numerical optimisation competition, which
includes 30 functions, at least half of which are complex
hybrid and composition functions in CEC-BC-2017 and
12 hybrid and composition functions in the second dataset.
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FIGURE 16. a) A box and whisker plot indicates the optimisation summary of 15 meta-heuristics for a 260-bar truss, and the
minimum, first quartile, median, third quartile, and maximum findings can be seen. Each box shows the first quartile to the third
quartile, and in the following, the vertical line reaches via the box at the median. b) a zoom version of plot a for the last six
optimisation methods.

FIGURE 17. A box and whisker plot indicate the optimisation summary of
15 meta-heuristics for 314-bar truss, and the minimum, first quartile,
median, third quartile, and maximum findings can be seen. Each box
shows the first quartile to the third quartile, and in the following, the
vertical line reaches via the box at the median.

Appendix A contains the characteristics of the functions.
This function’s complicated numerical formulation is acces-
sible [48]. We ran the HNCMPA against all these functions
with 100 dimensions, and the results were compared to the
most state-of-the-art techniques in the literature. For all func-
tions in this dataset, the dimension is fixed to 10. Tables 5
and 6, as in the preceding part, illustrates the average and
standard deviation. Each technique is performed 30 times
with a 2000 iteration number and total function assessments
of 100,000. As results are reported in Tables 5, 6, and 7, the
proposed method still has its proper performance on these
test suits. The results in Tables 5, 6, and 7 show that the

FIGURE 18. A box and whisker plot indicate the optimisation summary of
14 meta-heuristics for 345-bar truss, and the minimum, first quartile,
median, third quartile, and maximum findings can be seen.

proposed method still performs properly on these test suits.
The HNCMPA could outperform other methods and compete
with MPA and HNMPA in the majority of test functions. As a
result, the hypothesis of using a nonlinear control parameter
and chaotic values to improve the performance of the pro-
posed method is proven, as demonstrated by the results.

The findings presented in Table 8 regarding the CEC-2022
functions indicate that HNMPA and HNCMPA exhibit signif-
icantly better performance than other optimisation methods
across all cases evaluated. These two algorithms demon-
strate strong competitiveness and often outperform others in
most functions. This highlights the ability of our proposed
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TABLE 14. The statistical performance criteria for the proposed hybrid MPA methods compared with other 14 optimisation algorithms for 345-bar truss
case study.

FIGURE 19. a comparison of the proposed hybrid methods average rank with other meta-heuristic
algorithms computed by the nonparametric tests signrank and ranksum.

techniques to identify optimal solutions by leveraging the
benefits of nonlinear behaviour with multiple chaotic agents,
which can prevent entrapment in local optima.

There is an abundance of statistical techniques available
in the academic literature for assessing optimisation algo-
rithms, such as the Wilcoxon rank-sum test, the t-test, and a
newly developed test called paradox-free analysis [55], [56].
Nevertheless, this study employed the t-test to evaluate

the proposed methods. Based on the p-values presented
in Tables 9 and 10, it is evident that both proposed tech-
niques, particularly HNCMPA, exhibit significantly better
performance than alternative optimisation methods across
all evaluated scenarios. The outcomes attained by our pro-
posed algorithms surpass those of other approaches sig-
nificantly. Notably, neither MPA nor any other strategy
could deliver results comparable to those achieved by the
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proposed methods. The findings indicate that incorporating
chaotic motion values and a nonlinear control parameter
can enhance the effectiveness of the proposed methods. Sta-
tistical analysis using T-tests, presented in Tables 9 and 10,
suggests that both HNCMPA and HNMPA exhibit superior
performance compared to alternative approaches. Notably,
HNCMPA, followed by HNMPA, consistently achieved
lower global optima than other strategies across different
fitness functions while also exhibiting higher output relative
to MPA.

C. LARGE-SCALE TRUSS STRUCTURES
In this section, we run ten times all optimisation meth-
ods independently to solve each large-scale structural case
study. Two new boosted MPAs and 15 state-of-the-art meta-
heuristics are performed and compared with the same cri-
teria to develop a fair comparative framework. Except for
statistical outcomes, Friedman’s ranking test based on the
ten independent runs is evaluated to ensure that the proposed
optimisation algorithm’s performance best solves these large-
scale real structural problems. The parameters setup for the
aforementioned algorithms has been reported in Table 11.

The average convergence rate of 14 meta-heuristic algo-
rithms for the case study of 314-bar can be seen in Figure 13.
It can be observed that the HNMPA and HNCMPA con-
verged faster than other algorithms in the initial iterations
and handled the dynamic constraints appropriately. More-
over, from Figure 13, most optimisation algorithms faced
premature convergence and struggled with local optimums
such as AOA, MFO, HGSO, SSA, etc. On the flip side, some
algorithms could not converge to a proper solution during
this computational runtime (105 evaluation number) such as
GWO, EO and CO. For the comparative average optimisation
developments in Tables 12, 13 and 14, the best-performed
algorithms based on both mean and STD value are HNMPA
and HNCMPA for three case studies. HNCMPA provided
better solutions than HNMPA in three structures, 260-, 314-,
and 345-bar at 6.48%, 5.41%, and 44.16%, respectively.

Tables 12– 14,MPA is ranked third in effectiveness in solv-
ing truss optimisation problems. In fact, MPA outperforms
other advanced algorithms by a significant margin when it
comes to solving such issues. As a result of these impressive
results on complex multi-dimensional engineering problems,
this study’s hypothesis regarding the selection and enhance-
ment of MPA’s performance has been confirmed.

The convergence rate of optimisation algorithms imple-
mented for the 260-bar truss problem can be shown in
Figure 14. Similar to the 314-bar problem, the highest con-
vergence rate is related to HNMPA; HNCMPA and MPA
performed considerably as well. The issue of falling into local
optimum can be seen in some of the methods in this case
study, such as GWO, DA, HGSO, MFO, and EO. Further-
more, The CO and NNA methods need more runtime to find
better designs.

Figure 15 indicates a comparison of 15 optimisation algo-
rithms performed for solving the best design of the 345-bar

FIGURE 20. Best-found feasible design of 345-bar truss problem
proposed by HNMPA. Total weight plus penalty is 4750.87 kg.

truss problem. For the initial percentage of runtime, GNDO
rapidly converged and surpassed other methods; however, the
best-found solutions were proposed by the HCMPA finally.
The convergence speed of WCA and SSA is considerable in
this large case study, but both encountered falling into local
optimum.

In order to compare the performance of the proposed novel
optimisation algorithm with other modern meta-heuristics,
each method runs ten times, and the best-found solutions
show in Figure 16. This figure demonstrates the distribu-
tion of optimisation methods performance for the 260-bar
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case study. The box with smaller distribution represents a
more robust optimisation method. From Figure 16, the best-
performed method is HNCMPA, with the lowest total weight
solutions proposed on average. After HNCMPA, we can see
that HNMPA, MPA, and NNA performed well. In both large
structures, 314 and 345-bar trusses, the best solutions were
proposed byHNMPA,which can be seen in Figure 17 and 18.
The second rank is related to HNCMPA and MPA in
314-bar and 345-bar trusses, respectively. Furthermore, the
DA method could handle the dynamic constraints well and
avoid falling into a local optimum. For the comparative aver-
age optimisation developments in Tables 12, 13 and 14, the
best-performed algorithm based on both mean and STD value
is HNMPA for three case studies. HNMPA provided better
solutions than HNCMPA in three structures, 260-, 314-, and
345-bar, at 6.48%, 5.41%, and 44.16%, respectively.

Figure 19 shows the average ranking evaluation of 15 opti-
misation algorithms by a nonparametric test (Friedman rank-
sum) for three truss problems. It is clear to observe that
HNMPA obtained the first rank in all case studies and
HNCMPA,MPA, DA, andGNDO received the second to fifth
rank, respectively. Figure 20 shows a 3D and 2D landscape of
the best-found design of a 345-bar truss with the minimum
weight (4750.87 Kg) found by HNMPA. All displacement
and stress constraints are satisfied, and the sum violation is
zero.

VI. CONCLUSION
Two novel versions of the Marine Predator Algorithm (MPA)
are proposed in this study, which employs a series of non-
linear control parameters and chaotic values to assist an ade-
quate equilibrium between the exploration and exploitation
phases as well as to boost the exploration phase throughout
the optimisation procedure. Our proposed approaches have
significantly increased efficiency while looking for the best
solutions to large-scale optimisation issues. This enhance-
ment resulted from our proposed approaches’ ability to tran-
sition from exploration to exploitation phases by utilising
our introduced nonlinearity characteristic. Furthermore, the
algorithm’s chaotic behaviour has enabled it to explore a
wider variety of feasible solutions to a specific issue. The
algorithm may also profit from its nonlinearity characteristic
and devote more emphasis to exploiting promising regions
when necessary. Therefore, our algorithms were able to man-
age an efficient searching approach for locating an optimal
solution to a large-scale specified optimisation issue. The
proposed algorithms were developed, and their performance
was compared to that of the originalMPA as well as other cur-
rent cutting-edge meta-heuristics techniques. Despite minor
differences in obtaining results, both proposed strategies
in this study outperformed other cutting-edge optimisation
algorithms on mathematical benchmark functions, validating
them for tackling large-scale challenges.

This study also used thirteen advanced meta-heuristic
methods to solve the truss form and sizing optimisation issue.
We defined a penalty function, a typical mechanism for

dealing with constraint violations. Various penalty variables
were assessed in order to determine the optimum value in
the context of best-found solutions. This paper employs three
distinct truss issues. They all have a vast structure made
up of 260, 314, and 345 bars, respectively. It is considered
that the truss structure is constant and unchangeable. This
problem’s main challenge was finding the best truss form and
size parameters by lowering load-bearing capacity (structural
weight) in proportion to nodal displacement limits, compo-
nent stress limits, and vibration frequency. This is a compli-
cated optimisation challenge due to its defining mathematical
aspects, which are characterised as large-scale, nonlinear, and
multi-modal with dynamic constraints. Since meta-heuristics
are renowned as efficient global optimisation techniques,
we will emphasise their applicability to truss optimisation
issues in this paper, particularly novel swarm optimisation
approaches. Consequently, we assessed and developed a com-
parison template for large-scale truss issues using thirteen
distinct swarm optimisation strategies. All control variables
for each optimisation technique were adjusted based on lit-
erature guidelines to ensure a meaningful assessment, con-
sidering that no ideal technique exists to achieve the optimal
parameter settings. Due to rapid and efficient exploration
and exploitation search techniques enhanced by combining
chaotic map values with a nonlinear parameter, the suggested
approaches outperform existing optimisation methods, par-
ticularly the original MPA employed in this study. In terms
of the truss optimisation problem, and from an engineering
standpoint, we can conclude that integrating the proposed
methods with the Hill Climbed approach would increase the
performance of the proposed methods in dealing with the
truss optimisation problem. Based on the results provided by
the proposed techniques, the truss structure indicated by the
proposed techniques had the lowest weight, with a substan-
tial difference when compared to the best solutions of other
approaches in all three truss case studies. The crucial factor
to remember is that in order to achieve the most outstanding
efficiency from the proposed methods, the control parameters
should be tweaked using these truss issues. The solution space
and constraint-handling approach should also be examined.
In the future, we intend to improve and create collaborative
techniques to handle the multi-objective case of large-scale
truss challenges.

The results reported suggest that both HNCMPA and
HNMPA exhibited growth rates of 73.31% and 71.94%,
respectively, when compared to MPA’s final solution in
regards to the optimisation of a 260-bar truss. The 314-bar
truss optimisation problem results showed a growth rate of
66.87% for HNCMPA and 64.78% for HNMPA in terms
of the final solutions. Regarding the third problem of truss
optimisation, it was observed that HNCMPA and HNMPA
exhibited growth rates of 26.21% and 26.76%, respectively,
compared to the optimal outcome obtained through MPA.
It can be inferred that integrating the proposed methods
with the hill-climbing approach would enhance the perfor-
mance of the proposed methods when dealing with the truss
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optimisation problem. The outcomes obtained from the pro-
posed techniques indicate that the truss structure suggested
by thesemethods yielded the lowest weight, with a substantial
difference compared to other approaches in all three truss case
studies. It is important to note that in order to achieve opti-
mal efficiency from these proposed methods, it is necessary
to adjust control parameters using these truss issues. Addi-
tionally, the solution space and constraint-handling approach
should be analyzed. In future work, we aim to develop collab-
orative techniques to address multi-objective cases of large-
scale truss challenges and improve existing methodologies.
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