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ABSTRACT The healthcare sector deals with sensitive and significant data that must be protected against
illegitimate users. Software-defined networks (SDNs) are widely used in healthcare systems to ensure
efficient resource utilization, security, optimal network control, and management. Despite such advantages,
SDNs suffer from amajor issue posed by a wide range of cyberattacks, due to the sensitivity of patients’ data.
These attacks diminish the overall network performance, and can cause a network failure that might threaten
human lives. Therefore, the main goal of our work is to propose a machine learning-based cyberattack
detector (MCAD) for healthcare systems, by adapting a layer three (L3) learning switch application to collect
normal and abnormal traffic, and then deploy MCAD on the Ryu controller. Our findings are beneficial for
enhancing the security of healthcare applications by mitigating the impact of cyberattacks. This work covers
the testing of MCAD using a wide spectrum of both ML algorithms and attacks, and provides a performance
comparison for every pair of ML algorithms/attacks to illustrate the strengths and weaknesses of different
algorithms against a specific attack. The MCAD shows impressive performance, achieving an F1-score of
0.9998 and of 0.9882 on normal and attack classes, respectively, which implies a high level of reliability.
MCAD also achieved 5,709,692 samples per second on throughput, which reflects a high-performance real-
time system with respect to complexity. Additionally, it showed a positive impact on the network KPIs by
increasing the throughput by 609%, and decreasing delay and jitter by 77% and 23%, respectively, compared
to attack results.

INDEX TERMS Network resilience, network management, intrusion detection system (IDS), software
defined networking, healthcare, machine learning.

I. INTRODUCTION
In the last few years, SDNs have been extensively used in dif-
ferent fields, principally thanks to their advantages as reliable
network technology that allows controlling and managing
a network by disaggregating both control and data planes.
In contrast to traditional networks, where the network simply
has application awareness, the SDN architecture provides
additional information about the condition of the entire net-
work from the controller to its applications [1].
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Following the recent high-paced progress in information
and communications technologies (ICT), healthcare estab-
lishments have begun to employ numerous infrastructure
factors of the same types of off-the-shelf technologies, appli-
cations, and procedures employed by companies from other
sectors. This situation was expected, due to the ability of
networked or Internet-connected medical tools to increase
the effectiveness of asset management, communications, and
electronic health records, among other requirements, which
reduces cost (e.g., cost related to treatments and monitoring).

A large amount of expenditure is expected from health-
care establishments for network technologies in the coming
years, though expenses for hospital equipment are expected
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to decrease by 15 to 30% [2]. Furthermore, the safety of
systems and devices, together with user data confidentiality
are the two factors that are primarily taken into account in
the majority of information systems, since confidentiality and
safety are crucial in a healthcare context due to the exacting
requirements of the industry. Therefore, it is important that
the current McAfee record highlighted that networked medi-
cal tools may reveal security gaps in the attempt by the med-
ical industry to incorporate all the technical elements related
to networked infrastructure and operational controls [3].

Besides the susceptibility of information in healthcare net-
works, the intricacy, quantity, and variety of tools, particu-
larly networked medical devices (e.g., wireless pacemakers)
creating this infrastructure, networks will be exposed to a
wider variety of privacy risks and security [4], [5]. During
the COVID-19 pandemic, the number of attacks has increased
five times. Consequently, 90% of healthcare providers have
been subjected to data violations [6]. As proven in recent
ransomware incidents [7], the healthcare industry is particu-
larly vulnerable to cyberattacks, which may be attributable to
confidentiality breaches (e.g., leaked or comprised sensitive
medical records), incidental errors, or deliberate and exten-
sive interference (e.g., caused by flawed construction, use,
or function). Researchers have recently begun to explore the
prospect of using SDN in healthcare establishments due to
the ability of SDN to abstract network policy from network
devices [8].

In relation to cyber security in healthcare establishments,
SDNs could be employed as protection for medical net-
works against various harms (e.g., denial-of-service (DoS)
and probe attacks). However, in common with current or
conventional security resolutions such as intrusion identi-
fication and precaution systems or centralized protection
methods, SDN solutions do not offer protection to the data
and system from insider threats [9]. To illustrate, 92% of
healthcare establishments revealed issues faced by their com-
panies due to insider threats and needed appropriate resolu-
tions for protection [10]. This condition makes it important
to design functional solutions to reduce insider threats.

The main contributions of our work are:

1) To adapt an L3 learning switch application to collect
normal and abnormal traffic.

2) To generate a dataset that contains both normal and
abnormal traffic.

3) To adapt an efficient detection model based onmachine
learning.

4) To deploy MCAD on a Ryu controller.
5) To prove the ability of the MCAD model to deal with

attacks and save network resources by measuring key
performance indicators (KPIs), such as throughput,
jitter, and delay of the network, using a Distributed
Internet traffic generator tool (D-ITG).

Therefore, in this article, we propose the MCAD, an efficient
low-complexity approach to detect cyberattacks for health-
care systems. This approach uses machine learning in SDNs

as an efficient technique for detecting threats against health-
care system networks. The approach is analyzed based on
network KPIs. The effectiveness of the proposed system is
demonstrated and tested.

The sections of this paper are arranged as follows.
In Section II, we introduce a description of the background
and previous work. In section III, we describe the main
aspects of our proposed approach, including the machine
learning algorithms and tools used for implementing it,
datasets used for training and testing, as well as the network
topologies used, emulation environment, and performance
metrics. Section IV presents the emulation results and a com-
prehensive evaluation after showing the experimental evalu-
ation methodology. Finally, Section V offers conclusions and
suggests future work.

II. BACKGROUND AND RELATED WORKS
A lot of effort has been put into the field of traffic classifica-
tion and IDS using different techniques, including machine
learning and artificial intelligence. In this section, we present
an introduction to the SDN architecture, followed by a dis-
cussion of the significance of SDN in the healthcare sector.
After that, we illustrate the SDN security challenges. Finally,
we discuss recent research works on IDSs for SDNs.

A. BACKGROUND
1) SOFTWARE-DEFINED-NETWORKING
A common SDN consists of numerous control entities and
programmable switches to move networking functionalities
into a user-defined interface. In general, the SDN architecture
offers numerous benefits, including management, dynamics,
and cost-effectiveness. In contrast to traditional networks,
SDN is able to employ more elements to its architecture,
such as the addition of any software that could function
within a server or a central processing unit (CPU). This action
enables the transfer of network performance to a system-
atic software interface that can be deployed on the control
plane [11]. Based on Figure 1, which presents the SDN three-
layer architecture, the first layer denotes the application layer,
whose role is to enforce strategies via the northbound applica-
tion programming interfaces (APIs) sustained by the control
layer (i.e., second layer). In contrast, southbound APIs are
employed to support exchanges between the third layer (i.e.,
infrastructure layer) and the control layer. SDN controllers
are able to function as a strategic control point in the network
in order to control processes for implementations, policy
engines, and switches.

The centralized architecture of network management does
not require the user’s acknowledgement of the underlying
physical network and network topology, which could lead
to a significant reduction of workload to manage an entire
network that includes a wide range of operations. The use
of SDN controller allows users or companies to gain inde-
pendent control of the entire network from logical and sin-
gle points. To illustrate, centralized control in SDNs allows
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FIGURE 1. SDN architecture.

users to immediately supervise and control network pro-
cesses at the application layer and swiftly implement new
services or applications. Several recent controllers are avail-
able, includingRyu, POX,OpenKilda, Trema, OpenDaylight,
and Floodlight. We developed MCAD on the Ryu con-
troller because it has a number of advantages, including
TLS support, open-source code, virtualization, GUI, rest-
ful API, modularity, productivity, documentation, platform
support, age, OpenFlow support, and OpenStack Neutron
compatibility [12].

Overall, users are able to employ general network ser-
vices (e.g., multicast and routing) to acquire either organi-
zational or individual objectives. Users are able to employ
related APIs between applications and controller, followed
by abstracting the network through leveraging network ser-
vices without having knowledge of the application’s particu-
lars [13], [14]. The presence of new flow at a switch in the
SDN allows the switch to determine the forwarding path by
transmitting a routing request to the centralized controller.
Notably, the controller is responsible for generating a routing
path and exchanging the forwarding rule through a secure
channel with relevant switches. Following the rule acquisi-
tion, all correlated SDN switches can present an improvement
to flow tables. Overall, an SDN can offer efficient manage-
ment of the entire network and provide diverse advantages,
such as secure cloud services and on-demand resources, due
to its centralized control and global view.Meanwhile, devices
are only required to follow guidelines from related SDN
controllers, and the understanding of thousands of protocol
requirements is not required. Moreover, the SDN is able to
enhance resilience compared to conventional networks. For
example, a convenient modification or reconfiguration can
be conducted on the SDN controller to improve exchanges
among various elements in comparison with hardware-based
devices.

2) SDN IN HEALTHCARE SECTOR
A crucial factor in healthcare systems is the ability to con-
solidate the systems while retaining seamless communication
between them. In general, the consolidation of traditional
networks is challenging, considering that every network
device may include hundreds of arrangements that need to be

modified [14]. Therefore, an SDN is a practicable solution
allowing the abstraction of network policy from network
devices, eliminating device-level arrangements, and provid-
ing an open networking model to be consolidated. To illus-
trate, an SDN may be employed to present patients with
data security and speed in the transfer of information from
endpoint to endpoint [14], [15]. As defined in [16], ‘‘the SDN
controller identifies the connectivity of the patient monitoring
endpoint to the network. Forwarding entries are incorporated
into the network switches, allowing connection of the end-
point solely to patient monitoring controller’’. Connection of
the monitoring endpoint could be established at any point
in the SDN switch network, as the SDN controller would
perform automatic identification of the endpoint and connec-
tion of the ingress interface to the correlated virtual network,
and offers mobility, safety, and dependability. Figure 2 shows
a communication topology that uses SDN in the healthcare
sector.

This architecture consists of an SDN controller, a series
of OpenFlow switches, and a quantity of medical and client
devices (e.g., personal computers and mobile devices). The
OpenFlow specification offers a regulated method of apply-
ing SDN architecture, with its protocol being able to manage
network switches where packets are distributed. Overall,
these processes allow the independent programming of the
entire network on individual switches and data centers. Sub-
sequently, the SDN controller is capable of gathering flow sta-
tus from every switch and conveniently managing its flows.
For example, the controller is able to arrange call data packets
distributed by OpenFlow switches.

3) SECURITY CHALLENGES IN SDN
Despite an attempt in the SDN architecture to carry secu-
rity prone in the network management, segregation of the
control plane from the data plane creates another type of
security risk to the SDN architecture that may be present
in particular in three layers: infrastructure, implementation,
and control layers. Furthermore, this security prone could
result in changes in data, blocking access to the network,
DoS, and data breach [17]. A large number of attacks take
place after the introduction of centralized control by the SDN
architecture. In [18], the chance of an attack occurring on the
SDN controller was illustrated. Upon the commissioning of
the controller, the attacker is able to change device rules and
to reject any access by legitimate users to existing resources
(DoS attack). Rather than DoS attacks being the sole attacks
for SDN, there are other common attacks, including vulnera-
bility scan, port proves, side-channel, and man-in-the-middle
(MITM) [18], [19].

The incorporation of an IDS into SDN architecture is
among the ideal methods to develop a secure SDN envi-
ronment [20], [21]. In this case, IDS is a system made for
the detection and notification of unpermitted attempts at
access, adjustments, and/or restrictions of computer system
resources. The system commonly identifies harmful traffic
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FIGURE 2. Communication topology utilizing SDN in the Healthcare sector.

and threats against the network or a single host computer.
Generally, two categories of IDS are the most commonly
used [22], [23]: host IDS (HIDS) and network IDS (NIDS).
To be specific, installation and use of an HIDS is conducted
on every system or network as an individual device that
monitors coming and outgoing packets in the network or
system. It also alerts the user or administrator to any a
proven attack or suspicious activities identified in the sys-
tem. Furthermore, HIDS commonly takes place through a
snapshot taken of available files, which is then compared
with the previous snapshot of system files to detect unper-
mitted activities. It is also a system that detects irregular
behavior and attacks in the network through examination
of network traffic and supervision of various hosts over the
network environment. Commonly, an NIDS obtains access to
network traffic by connecting to a configured switch, hub,
and network tap for port mirroring. Given this, our study
aims toward the implementation of an NIDS in the SDN
environment.

B. PREVIOUS WORKS
SDN is widely used in basic core industry platforms, such as
cloud and medical environments; therefore, intrusion attacks
for SDN can easily interfere with a large number of services
that are parasitic on the platform, resulting in major network
security incidents. To prevent this problem, a large number of
IDSs have been proposed by the academic community. IDSs
can be categorized as either HIDS or NIDs based on the data
source. They can also be categorized based on the detection
mechanism as misuse, anomaly, or hybrid IDS. According to

the detection method, they can be divided into statistical- or
machine learning-based detection schemes [24].

A statistical-based detection scheme is a scheme to dis-
tinguish intrusion attacks by extracting statistical features.
A threshold is usually set, and traffic exceeding this threshold
is judged as an attack. In [25], the authors proposed an
entropy-based detection method, by deploying a data col-
lector on the switch side and calculating the entropy value
of the stream according to the destination IP address. This
scheme relies on the flow defined by the quintuple (source
IP, destination IP, source port, destination port, protocol). This
detection scheme is fast and efficient, but needs to separately
deploy an additional collector, as OpenFlow comes with a
flow table that may not specify a specific element, such as the
destination IP, in which case the detection scheme is invalid.

A similar algorithm was chosen in [26], but the entropy
value was calculated every 50 packets. This method is not
reliable in a real-case scenario because, when the traf-
fic of normal data packets is also large, it often leads to
misjudgment.

In [27], the authors scored each data packet, and the scoring
principle was based on whether the source IP was in the
flow table, whether there was a successful TCP connection,
the protocol type, and the rate of data communication. The
dynamic adaptive threshold algorithm is used to determine
whether the attack occurs.

The authors of [28] used packet-in information as the
signal of the attack. When the switch encounters a packet
that cannot be matched, it triggers the table-miss option,
which sends a packet-in message to the controller. When an
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attack occurs, this table-miss situation proliferates because of
the random source IP technique, resulting in a large number
of packet-in messages. However, in a real environment, the
controller can very easily be attacked by instantaneous large
traffic before it has enough time to respond, as this packet-in
information is sent to the controller through the southbound
interface. In addition, for HTTP and SSL flooding attacks
using a real source IP, it is difficult for the detector to trigger
an alarm as a large amount of packet-in information is not
activated.

As for the detection scheme based on machine learning,
it works by extracting characteristics of the traffic flowing
through the switch, and using machine learning methods
to identify malicious traffic. In [29], the authors adopted
SVM as their classification algorithm, but the attack traffic
they generated was only 25 packets per second. This can
be correctly detected in a simple experimental setting, but
in practical situations, the credibility of the results is still
worth checking. Both statistics-based and machine learning-
based detection schemes cannot avoid the extraction of traffic
characteristics in the OpenFlow environment. Mainstream
feature extraction methods are divided into packet-in feature
extraction based on southbound channels and feature extrac-
tion based on flow table statistics.

The scheme based on packet-in feature extraction operates
as explained here. After the switch triggers the table-miss
option, it will send packet-in information to the controller.
Common SYN, UDP, and ACK floods often use source
IP forgery technology to protect the controlled end, which
triggers a large number of packet-in callbacks, based on
which corresponding abnormal features can be extracted.
Thismechanism is adopted in [24], [28], and [30]. In addition,
packet-in and flow table overflow attacks against SDNs also
have destructive effects, as they essentially need to randomly
generate matching fields to trigger packet-in. In these attack
scenarios, if the solution based on flow table statistics is
adopted, the response time is reduced due to congestion of
the southbound bandwidth and overflow of the switch flow
table.

Schemes based on packet-in feature extraction and on flow
table statistics are not suitable for a wide range of attack sce-
narios. Most researchers focus on improving detection accu-
racy and ignore the need for quick response, especially when
faced with different attack scenarios, so the response time of
the system often varies greatly. Some solutions are actually
transferred from traditional intrusion detection methods and
do not make good use of the global features of the SDN itself.
Configuring traditional detection schemes usually requires
additional deployment of data collectors, which makes the
scheme extremely complex and adds extra overhead.

Works presented in [31] and [32] made use of a Mininet
simulation environment. The authors found that, when the
number of flow rules in the flow table is too high, the time
consumed by acquisition of flow table statistical informa-
tion greatly increases. Therefore, in the face of new attack

methods such as packet-in flooding and flow table overflow,
the detection efficiency is greatly reduced.

In [33], the authors discussed a combined approach to
the protection of industrial healthcare systems against cyber
threats. They proposed an SDN module as the core of their
design, combined with a reinforcement learning (RL) algo-
rithm. The SDN module was used to detect and mitigate
attacks, while the RL algorithm optimized the system’s secu-
rity level. Through simulations, their approach was able to
successfully detect and mitigate cyber threats in industrial
healthcare systems.

The authors of [34] studied an approach to the prevention
of a type of attack known as a ‘hello flood attack’ in the
Internet of Things (IoT). This attack is executed by sending a
large number of requests to IoT devices in order to overload
them. The article proposes a combination of deep learning
and improved rider optimization algorithms to prevent such
an attack from occurring.

In [2], the authors discussed a Bayesian-based trust
management system to prevent insider attacks in health-
care software-defined networks. The system makes use of
Bayesian inference to evaluate the trustworthiness of nodes
in the network, using data collected from the nodes, as well
as their behaviors. The system then uses this information to
identify and respond to potential attacks. The authors also dis-
cussed the potential of using machine learning algorithms to
further improve the system’s accuracy. Finally, they provided
an example implementation of the system and discussed both
the benefits and drawbacks of using such a system.

The authors of [35] explored the use of machine learn-
ing techniques to detect and mitigate distributed denial of
service (DDoS) attacks in SDNs. They studied various ML
algorithms, such as decision trees, support vector machines
(SVM), and artificial neural networks (ANNs). They also
discussed the various parameters that should be optimized
with a view to improving the performance of their proposed
solution. The paper concludes by presenting a case study to
demonstrate the effectiveness of the proposed solution.

In [36], a detection scheme for DDoS attacks on IoT
devices was proposed, using hybrid ensemble learning and a
genetic algorithm (GA). It proposes a combination of super-
vised and unsupervised learning techniques to detect DDoS
attacks in real-time. The authors also examine the feasibility
of using GA to improve the accuracy and efficiency of the
detection scheme. Their research is intended to help provide
comprehensive security for IoT devices.

In [37], the authors developed an efficient cyberattack
detection system on the Internet of medical things (IoMT)
smart environment, based on deep recurrent neural network
(RNN) and machine learning algorithms. The proposed sys-
tem is designed to detect malicious activity and protect the
IoMT from cyberattacks. The authors also discussed the
various challenges associated with the development of such
a system, and the importance of using ML algorithms for
accurate and efficient detection.
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In [38], the authors used an SDN for detecting and miti-
gating cyberattacks in integrated clinical environments. They
proposed a novel SDN-based architecture to detect and mit-
igate various cyberattacks, such as DDoS attacks, malicious
code injection, or unauthorized access.

The authors of [39] discussed the development of a new
dataset for intrusion detection in SDNs. This dataset consists
of network traffic from an SDN environment, which has been
modified to include realistic simulated attack scenarios. The
dataset can be used to train and evaluate intrusion detection
systems. It also includes labels to help researchers measure
the performance of their detection models.

Lyapunov-Krasovskii functions (LKFs) and the second-
order weight method (SOWM) are used to estimate the error
generated by T-S fuzzy networked control systems under DoS
attack [40]. Reciprocally convex matrix inequality (RCMI),
proper integral inequalities, and the linear convex combi-
nation method (LCCM) are used to analyze the T-S fuzzy
networked control systems under stochastic cyber-attacks
(SCAs) [41].

The authors of [42] worked on the development of an
IDS for SDNs. The IDS, ML-IDSDN, is based on machine
learning and aims to detect malicious activity on SDNs. The
authors explained the theory behind the system, described
its design and architecture, and evaluated its performance.
Table 1 introduces a summary of these related papers with
their available published results.

III. ML BASED CYBERATTACK DETECTOR (MCAD)
In this part, we introduce the main aspects of our work, first
by showing the proposed system and method, including the
ML algorithm and the datasets. We will also discuss the net-
work topology and metrics used to measure the performance,
as well as details of the tools and methodology used for the
experiments.

A. PROPOSED SYSTEM AND DESIGN METHODOLOGY
The proposed model consists of five main phases as depicted
in Figure 3, namely: (i) proposing a logical network topol-
ogy, (ii) data gathering, (iii) data preprocessing, (iv) training
and testing the ML model, and (v) deployment on the Ryu
controller.

Inmore detail, the proposedmodel begins with building the
topology and then data gathering, which includes different
types of attacks and exploitation (i.e., probe attack, exploit
virtual network computing (VNC) port 5900 remote view
vulnerability, and exploit Samba server vulnerability) and
normal samples.

As shown in Figure 4, four network adaptors were con-
figured on an Ubuntu virtual machine, i.e., (I) enp0s9,
(ii) enp0s8, (iii) enp0s10, and (iv) enp0s3. Three Open
vSwitch (OVS) bridges were created to connect Mininet,
Kali Linux, andMetasploitable machine together using Linux
routing and internet protocol (IP) forwarding. The controller
on the Ubuntu machine can monitor three different networks.

In addition, the feature extractor tool is implemented using
the L3 learning switch application along with the Ofctl_rest
application, used as a tool to monitor OVS, using inheritance.
Ofctl_rest application deploys a server on port 80 to perform
get and post requests to collect network statistical features.
The output resulting from the feature extractor tool is 27
statistical features.

In phase 3, i.e., the preprocessing phase, four main steps
are performed: (i) data cleansing, (ii) feature transformation,
(iii) data scaling, and (iv) data shuffling. This is because ML
algorithms perform better when numerical input variables
generated from the dataset are scaled to a specific standard
range. As a dataset usually contains various different features
and each one might have a different range of values or units
of measure, the Robust Scaler (RS) is used to normalize the
features.

Before splitting the dataset, data shuffling is used to mix
up all samples and avoid biases to ensure fairness between
subsets. Then, the dataset is split into training, validation, and
testing sets in a stratified fashion. First, the dataset is split into
training and testing sets with ratios 0.9 and 0.1 respectively.
The training dataset is further split into training and validation
sets with 0.9 and 0.1 proportions respectively. We used the
resources shown in Table 2 to conduct our experiments.

The proposed model uses KNN, decision tree (DT), ran-
dom forest (RF), naïve Bayes (NB), logistic regression (LR),
adaptive boosting (adaboost), and xgboost (XGB) for train-
ing on the datasets mentioned earlier. These classification
algorithms can construct a mapping function between inputs
and output by detecting different patterns and minimizing the
error as much as possible, based on the algorithm and the
relational complexity between inputs and outputs. The per-
formance is measured through the model’s accuracy, as well
as measuring the throughput as the model targets real-time
systems to ensure the overall quality of the system.

Finally, in the fifth phase, We deployed the best model on
the Ryu controller to classify incoming traffic into normal and
attack. The deployed model has the ability to block attacks,
thus improving different network KPIs.

B. DATASET
Normal and attack traffic can flow through the SDN architec-
ture. In this section, we discuss the generated dataset, starting
by discussing different types of attacks that can impact the
SDN, then tools used to generate this traffic, followed by
developing the application which is responsible for collecting
aggregated features from the flows. Finally, different data
preprocessing techniques were applied to the dataset before
splitting it into training, validation, and test sets.

1) TRAFFIC TYPES
The SDN is subjected to different types of attacks targeting
different entities on the network, such as DDoS, Probe, Web,
User to Root (U2R), and Remote to Local (R2L). DDoS
attacks are a type of DoS attack in which several linked
devices, often known as botnets, are used to overload a
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TABLE 1. Summary of recent related works for IDSs on SDNs.

TABLE 2. Simulation environment.

specific target [43]. These numerous requests consume target
resources in the form of empty packets, eventually causing
the system to collapse. Aside from its harmful effect on the
target, it can have an impact on the entire network’s resources
by reducing the flow of regular network traffic. TCP, UDP,
ICMP, DNS, and VoIP flood are examples of DDoS attacks.
The focus of this work regarding DDoS attacks is on TCP
and UDP flood attacks, generating them by the Scapy tool.
Scapy is a reliable interactive packet manipulation program
that supports Python. It can generate or decode packets from
a variety of protocols, including TCP and UDP, transmit them
over the wire, and collect them.

A probe attack is a network sniffing operation that impacts
one or a limited number of victims on the network. The

attacker can scan a range of working IP addresses, open ports,
services, and OS versions of the victims [44]. Sniffed data can
be used later to perform more destructive attacks. Nmap was
used to perform this kind of attack.

SQL injection is a Web security vulnerability that allows
an attacker to manipulate the queries generated by an appli-
cation to its database based on the client interaction. In gen-
eral, it enables an attacker to examine data that is not
accessible in the happy scenario. This might contain data
belonging to other users or any other data that the program
can access but regular users cannot. Consequently, an attacker
can change the application’s content or behavior by modify-
ing, truncating, or dropping tables [45]. The Damn vulner-
able Web application (DVWA) is an extremely vulnerable
PHP/MySQL Web application. Its primary goal is to assist
security professionals in testing their skills and tools in a
legal environment for a better understanding of the processes
of securing Web applications. It contains the most common
online vulnerabilities at varying levels of difficulty using an
intuitive web interface. DVWAhas been used to perform SQL
injection attacks. However, we noticed that this process takes
time when performed manually. In order to accelerate this
process, an automation script was developed using Python
and Selenium to perform this kind of attack.

R2L refers to unauthorized access from a remote source
to a local host, such as brute force password guessing and
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FIGURE 3. Procedural steps of proposed model.

FIGURE 4. Logical network topology.

command injection attacks. A brute force attack uses trial and
error to estimate login credentials and encryption keys [46].
Intruders try every available combination with the goal of
making an accurate guess. Cracking a password might take
a few seconds to several years, depending on its size and
complexity. A cyberattack involving the execution of unau-
thorized commands on a server operating system is known as

command injection (CMD). Typically, the threat actor injects
commands by taking advantage of an application vulnera-
bility, such as improper input validation [47]. Brute force
and CMD attacks were also automated using selenium and
performed on DVWA.

Another type of unauthorized access is U2R, which
involves exploiting the VNC port 5900 and the Samba

VOLUME 11, 2023 37059



L. M. Halman, M. J. F. Alenazi: MCAD in SDN for Healthcare Systems

server [48]. Using the Samba server vulnerability, attackers
potentially execute arbitrary commands with no authenti-
cation requested. An attacker with network access to vul-
nerable devices and an open port might exploit the VNC
port 5900 vulnerability. No privileges or user involvement
are required for successful exploitation, which allows the exe-
cution of programs with privileged access on the system by
sending specially crafted network requests to port 5900/TCP.
An attacker might use this exploit to compromise the VNC
server’s confidentiality, integrity, and availability. TheMetas-
ploit framework has been used to implement these attacks
on metasploitable2 VM. Table 3 shows the generated attack
classes’ impact on different locations on SDN, with the tools
used for each attack, intruder, and victim.

Iperf, W3m, and D-ITG have been used to generate normal
samples, with Iperf’s parameter being randomized period-
ically to pick up a protocol between UDP and TCP, with
random port, duration, and bandwidth ranging from 100Kbps
to 10 Mbps. W3m is a text-based web browser that can
be accessed from the terminal. We developed a script that
performs internet browsing on 1000 different websites, such
as Facebook and YouTube, using Python and W3m. D-ITG
is a tool that generates TCP or UDP traffic at the packet
level, in addition to measuring different network KPIs, such
as delay, jitter, and throughput.

2) DATASET COLLECTED
We developed a Layer 3 learning switch application that
maintains the switching functionalities of the network. This
application was integrated with the ofctl_rest application
using inheritance on the developed code. The ofctl_rest
application was used to collect the features of normal and
attack traffic in addition to blocking the intruder based on
the machine learning (ML) classifier decision. We collected
27 different features for each flow with one-second intervals.
Table 4 shows the extracted features and their description.
in_port and dl_dst were used as decision features to block
a certain flow, while other features were used to train the ML
classifiers.

3) DATA PREPROCESSING
Data preprocessing is an essential and mandatory phase of
machine learning, due to its positive impact on improving
overall performance with respect to throughput and accuracy.

We removed identity features; that is to say, src, dst,
table_id, in_port, and dl_dst. This step was taken to
ensure that the model only focuses on the traffic pat-
tern and is independent of the network identity param-
eters. After that, features that have zero variance and
do not change over samples were removed, that is
to say port_rx_dropped, port_tx_dropped, port_rx_errors,
port_tx_errors, port_rx_frame_err, port_rx_over_err, port_
rx_crc_err and port_collisions. Zero variance features do not
have any impact on the model as they do not change at all.
This introduces redundancy when used in the training phase.

FIGURE 5. Dataset classes.

Division transformation was one of the remaining pro-
cesses to extract new complex features from existing raw
ones. Table 5 shows 13 different transformed features. Raw
features that were used to calculate complex features were
then dropped to avoid redundancy in the features.

The dataset contains a total of 450,626 samples represent-
ing brute force, CMD injection, TCP DDoS, UDP DDoS,
probe, Samba, SQL injection, VNC exploitation, and normal
traffic. Figure 5 shows the distribution of the classes in the
generated dataset. The dataset was then split into training and
test sets, with 0.9 and 0.1 ratios respectively, using a stratified
approach to preserve the distribution of classes over different
sets. The training dataset was further split into training and
validation sets, again with 0.9 and 0.1 proportions, respec-
tively. Table 6 shows the distribution of the generated classes
over the training, validation, and testing sets

Scaling the input features is mandatory in the machine
learning pipeline in order to enhance the performance of
the ML algorithms. As a dataset usually contains various
different features and each one can have a different range of
values or units of measure, RSwas used to scale up the dataset
inputs [49]. RS transforms the feature vector: each value is
subtracted from the feature median and is then divided by the
interquartile range (IQR), which is the difference between the
75th percentile and 25th percentile using the formula:

new_value =
current_value− median

IQR
(1)

Finally, principal component analysis (PCA) was used to
reduce the dimensionality of the dataset with respect to the
number of features from thirteen to five features, with an
explained variance of 0.99. This is achieved by orthogonal
linear transformation using Eigen values and vectors of the
covariancematrix. Consequently, the data can bemapped into
a new coordinate system in which the majority variance can
be expressed with fewer dimensions than originally [50].

C. DATASET AVAILABILITY
The MCAD-SDN dataset is publicly available at kaggle.
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TABLE 3. Generated attack classes and their associated impacts on SDN elements.

TABLE 4. Extracted features from ofctl_rest application with their description.

D. CLASSIFICATION ALGORITHMS
For a comprehensive look and to achieve the best possible
performance, seven different classification algorithms were
used while training and testing the proposed model.

1) K NEAREST NEIGHBOR
In classification and regression tasks, KNN can be used.
This method is capable of classifying the incoming sample

by matching it to k , the number of samples in the train-
ing set, where k is the number of neighbours in the
training set which are the closest samples to the input
sample. This method considers that an incoming sample
belongs to a specific class if the majority of its neighbours
also do [51]. Different similarity metrics can be used, but
Minkowski distance with p = 2, commonly known as the
Euclidean distance, is the most commonly used, using the
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TABLE 5. Division transformed features.

TABLE 6. Distribution of classes over training, validation, and testing sets.

formula:

Distance =

√
(x1 − y1)2 + (x2 − y2)2 (2)

where x and y are two vectors.

2) DECISION TREE
The DT algorithm is a non-parametric supervised learning
algorithm used for both classification and regression tasks.
It has a hierarchical, tree-like structure consisting of a root
node, branches, internal nodes, and leaf nodes. It uses entropy
as the basis to make the decision (entropy values can range
from 0 to 1). If all samples in dataset S belong to one class,

then entropy is zero. The information gain represents the dif-
ference in entropy before and after a split on a given attribute.
The attribute with the highest information gain produces the
best split, because it best classifies the training data according
to its target classification. The information gain is usually
represented with the following formula:

Information Gain (S, a)=Entropy(S)−
∑
v

|Sv|
|S|

Entropy(Sv)

(3)

where (a) represents a specific attribute or class designation,
Entropy(S) is the entropy of dataset S, |Sv|/|S| represents the
number of values in Sv in relation to the number of values in
dataset S, Entropy Sv is the entropy of the dataset Sv [52].

3) RANDOM FOREST
The RF consists of a large number of these decision trees,
which work together as a so-called ensemble. Each individual
decision tree gives a prediction, such as a classification result,
and the forest uses the result which is supported by most
decision trees.

The secret behind the random forest is what is called the
principle of the wisdom of many. The basic statement behind
this is that many decisions are always better than those of a
single individual or even a single decision tree. This concept
was first recognized when estimating a continuous set [53].

4) NAIVE BAYES
NB gives a probability for each class that the observation
(x1, . . . , xn) belongs to this classKi, assuming the features are
independent. Expressed mathematically: P(Ki|x1, . . . , xn),
Bayes’ theorem is the backbone of the Naive Bayes algo-
rithm. Bayes’ theorem deals with conditional probabilities,
i.e., the probability of an event A given that an event B has
occurred. One then writes the probability as P(A|B).

Bayes’ theorem says:

P(A|B) =
P(B|A) ∗ P(A)

P(B)
(4)

Although it is called ‘naive’, the algorithm is not simple;
it just uses the ‘‘naive’’ assumption of conditional indepen-
dence. This means that, if we have the equation P(Ki|x) =

P(x|Ki)∗P(Ki))/P(x), the numerator on the right corresponds
to the joint distribution, i.e., P(Ki, x1, . . . , xn). This is where
conditional independence comes in. We assume that xj and
xk are independent given Ki. This means that the two events
do not affect each other. Mathematically, it is expressed in
such a way that the probability that event xj occurs does not
change when event xk occurs, under the condition that Kiis
given. This is why it is called conditional independence [54].

5) LOGISTIC REGRESSION
LR is a statistical model that uses the sigmoid function, as an
equation between x and y.

f (x) =
1

1 + e−x
(5)
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As expected, this function only returns values between
0 and 1 for the dependent variable, regardless the values
of the independent variable. This is how logistic regression
estimates the value of the dependent variable.

In many cases, multiple explanatory variables affect the
value of the dependent variable. Tomodel such input datasets,
logistic regression formulas assume a linear relationship
between various independent variables. You can modify the
sigmoid function and calculate the final output variable as
follows:

y = f (β0 + β1x1 + β2x2 + . . . βnxn) (6)

The symbol β stands for the regression coefficient. The
logistic model can assume these coefficient values when
given a large enough experimental dataset with known values
of both dependent and independent variables [55].

6) AdaBoost
AdaBoost is said to be adaptive because it uses multiple
iterations to create a consistently strong learner, by iteratively
adding weak learners in a sequencedmanner. At each training
run, a newweak learner is added to the ensemble and a weight
vector is set that focuses on examples that were misclassified
in the previous run. The result is a classifier that has a better
accuracy than weak learners’ classifiers [56].

7) EXTREME GRADIENT BOOSTING
XGBoost is a supervised machine learning method used for
classification and regression. This method is based on deci-
sion trees, and is an improvement over other methods, such as
random forest and gradient enhancement. It works well with
large, complicated datasets as it uses different optimization
methods.

To fit a training dataset with XGBoost, an initial prediction
is made. Residuals are calculated based on the predicted and
observed values. A residual similarity value is used to build a
decision tree containing these residuals. The similarity of the
data in one sheet is calculated, as well as the amplification
of the similarity in the subsequent part. Gains are compared
to determine a feature and threshold for a node. The output
value for each leaf is also calculated using the residuals.
Classification typically calculates values using the logarithm
of odds and probabilities. The output of the tree becomes the
new residual of the dataset, used to build another tree. This
process is repeated until the residuals stop decreasing, or a
specified number of iterations is reached. Each succeeding
tree learns from the previous trees, in contrast to the way
random forests are not assigned equal weight. To use this
model for predictions, the output of each tree is multiplied
by a learning rate and added to the initial prediction to get a
final score or classification [57].

E. EVALUATION METRICS
As we propose using ML as the main approach for attack
detection, the main metrics to evaluate performance would
be accuracy, precision (P), recall (R), and the F1-score.

TABLE 7. Mathematical equations of evaluation metrics.

All these metrics depend on measurements of the true pos-
itives (TP), which represent the number of positive samples
that are correctly predicted; false negatives (FN) which repre-
sent the number of positive samples that are misclassified as
negative by the model; true negatives (TN), which represent
the number of negative samples that are correctly predicted;
and false positives (FP), which represent the number of neg-
ative samples that are misclassified as positive by the model.
Table 7 summarizes the equations of the different metrics
used in this work.

IV. RESULTS AND DISCUSSION
This section shows the results of the trained machine learning
models on different performance metrics, followed by the
deployment of the best model to show its ability to mitigate
the impact of attacks on different network KPIs.

A. SIMULATION RESULTS
In this subsection, we discuss the simulation results for
different algorithms against different attacks. Looking at
Tables 8 and 9, it is clear that the different approaches have a
huge variance in performance, from zero to 1 in precision,
recall, and F1 score. As mentioned, we are showing here
the performance against eight different attacks, starting from
Brute Force and endingwithVNC. It is clear that overall score
metrics are significantly high for all attacks, especially for
TCP DDoS/UDP DDoS classes and normal classes for the
KNN, DT, RF classifiers. The performance is relatively lower
in the case of the XGB classifier, while the performance is
very poor for other classifiers (NB, LR, and AdaBoost).

Furthermore, the general performance in accuracy metrics
is the best in the case of random forest, and the worst when
using logistic regression. It is clear that the performance of
XGBoost is significantly better that the adaptive boosting
classifier. Looking at the throughput, it is the highest for
decision trees classifiers, a little lower in the case of logistic
regression, drops to third place for Naive Bayes, and drops
significantly for other classifiers.
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TABLE 8. Simulation accuracy results of machine learning algorithms.

TABLE 9. Simulation complexity results of machine learning algorithms.

The decision tree was chosen as the best model to fit a real-
time system, because it outperformed other proposed models
in throughput, as shown in Figure 6. Although the random
forest model outperformed all other models in accuracy met-
rics, including F1-score, as shown in Figure 7, the difference
from the decision tree was not great, with a delta of 0.0001 on
the normal class and 0.0053 on attack classes.

MCAD was compared with the latest research on devel-
oping IDSs. MCAD outperformed IDSs proposed on [33]
and [37] on attacks (A) and normal (N) traffic, as shown
in Table 10. Although IDSs proposed in [39] and [42] have
slightly higher accuracy performance thanMCAD (Figure 8),
they are lacking a small number of features and/or diversity of
attack types. In [39], the authors used 48 features, compared

FIGURE 6. Throughput of machine learning algorithms.

to MCAD, which uses five features only: this reflects a more
complex model than MCAD. In [42], the authors proposed
a model that works only against DDoS and probe attacks,
compared to MCAD, which works against a wide spectrum
of attacks.

B. DEPLOYMENT OF THE MCAD MODEL
In this section, we show the impact of the MCAD model on
improving the different network KPIs. We conducted three
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TABLE 10. Comparison between IDSs and MCAD.

FIGURE 7. F1-score of machine learning algorithms.

FIGURE 8. Accuracy comparison between IDSs and MCAD.

FIGURE 9. Network performance comparison: throughput of the network
for normal traffic scenario vs. normal traffic with attacks vs. MCAD.

different practical scenarios while collecting network KPIs
through D-ITG. The first scenario is only normal traffic,
while the second is normal traffic while the network is under

FIGURE 10. Network performance comparison: delay of the network for
normal traffic scenario vs. normal traffic with attacks vs. MCAD.

FIGURE 11. Network performance comparison: jitter of the network for
normal traffic scenario vs. normal traffic with attacks vs. MCAD.

attack. Finally, in the third scenario, we deployed the MCAD
model to classify and block attack flows while the network
is under attack. The attack traffic had an adverse impact on
throughput, jitter, and delay. The average throughput dropped
from 98.19 to 13.13 Kbps, average delay increased from
0.031 to 0.64 ms, and average jitter also increased from
0.011 to 0.214 ms. After the deployment of MCAD, the aver-
age networkKPIs improved, achieving 93.13Kbps, 0.149ms,
and 0.164 ms for throughput, delay, and jitter, respectively.
Figure 9 represents the throughput of the three scenarios,
which increased by 609% after deploying MCAD. Figure 10
and Figure 11 shows the delay and jitter of the three scenarios,
which were reduced by 77% and 23%, respectively, after
deploying MCAD.
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V. CONCLUSION AND FUTURE WORKS
In this paper, we introduced a full investigation of the critical
problem related to having a generalized method of detection
of attacks and threats in the SDN environment in healthcare
systems. We proposed a new detection model, MCAD, which
uses machine learning to achieve better and more efficient
performance, with a wider spectrum that can cover many
different attacks.

To make sure that our model can perform required
tasks, we contemplated different attack scenarios which
match real-world scenarios, and then analyzed the impact
of developed attacks that can be identified by the model
on different ML algorithms. It can be seen clearly that the
model provides really good performance for most of the
attacks with some of the ML algorithms used. Using RF
for detection gives outstanding performance with all types
of attacks, even that that have patterns that are hard to dis-
tinguish from normal traffic. Other techniques, like KNN
and DT, provide really close performance, while some other
tested ML algorithms struggled to detect some types of
attacks.

In the near future, we aim to extend this work in three
different directions; first by using other ML techniques, then
by considering more attacks/combinations of attacks in the
datasets; and finally by testing the models on a more com-
plex network model that may lead us to change the model’s
architecture.
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