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ABSTRACT This article introduces a framework for predicting the survival of brain tumor patients by
analyzing magnetic resonance images. The prediction of brain tumor survival is challenging due to the
limited size of available datasets. To overcome the issue of overfitting, we propose a self-supervised learning
method that involves identifying image patches from the same or different images. By recognizing intra- and
inter-image differences, the network can learn the relationships between local spatial windows in the same
image and across different images. In addition to analyzing local information, we also incorporate a global
structure awareness network to capture global information from the entire image. Our proposed method
shows a strong correlation between local spatial relationships and survivor class prediction in FLAIR MRI
brain images. We evaluate our method using the BraTS 2020 validation dataset and observe that our method
outperforms others in accuracy and SpearmanR correlation metrics.

INDEX TERMS Brain tumor, survival prediction, local context, global structure, deep learning.

I. INTRODUCTION
Glioblastoma is considered to be one of the most dangerous
brain tumors, because it has a poor prognosis. Oncologists
divide patients with brain tumors into three classes: short,
mid-term, and long survivor [1]. Early classification can help
extend the lifetime of brain tumor patients by facilitating
appropriate treatment. According to MR images, there are
three kinds of brain tumor regions: edema tumors, necrotic
tumors, and enhancing tumors. Each patient has a different
survival time depending on a variety of factors related to their
kind of brain tumors themselves. Therefore, theMRI analysis
of brain tumors is essential to the planning of treatment.
Local spatial information may be valuable [2], [3], [4], [5],
[6], [7], [8] such as peritumoral area, surrounding mass, and
the contact between the tumor and the ventricle. We believe
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that local spatial relationships in MRI brain images can
assist in the understanding of brain structure and lead to
improved prediction of survival times. Additionally, many
papers [9], [10], [11], [12], [13] about the global structure
of the brain has proven its correlation with survival pre-
diction in glioblastoma patients. Firstly, the disruptions in
the normal-appearing brain beyond the lesion could mediate
the topological alteration of the connectome associated with
worse patient survival [9]. Secondly, disruptions in brain net-
works caused by a stroke can lead to post-stroke depression,
which is a common complication. These disruptions are also
related to the prediction of survival outcomes in patients with
glioblastoma [10], [11]. The impact of glioblastoma on global
brain function, including functional communication between
brain regions far from the tumor, has been carefully inves-
tigated in previous research [12]. Finally, neuroplasticity of
structural, topological, biochemical metabolism, and related
mechanisms of the brain come throughmultimodalMRI [13],
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which may contribute to the improvement of prognosis and
function in glioma patients. Based on the valuable global
structure informationwith prognosis in glioblastoma patients,
as we mentioned, we therefore integrated knowledge about
the global structure as an embedding feature vector in our
survival prediction network.

The main contributions of this paper can be summarized as
follows:

• We propose a framework for the prediction of survivor
class based on local spatial relationships in FLAIR MRI
data from patients with brain tumors to capture the med-
ical characteristic related to survival prediction relying
on deep feature information. The local areas are help-
ful for survival prediction in GBM because they could
be contained critical information, such as the growing
tumor, surrounding mass effect, and the status of tumor
contact with the ventricle and stromal cells that promote
GBM growth and invasion.

• Global structures of the brain have proven their corre-
lation with survival prediction in glioblastoma patients,
so we employed a global structure awareness network
to capture global information from an entire image and
then use it for the survival prediction task.

• We show that exploiting a combination of local and
global information in FLAIR images can improve the
prediction of survival in brain tumor patients.

• In experiments, we achieved an accuracy of 62.1% and a
Spearman R correlation of 0.576. Our proposed method
outperformed other state-of-the-art methods.

• We believe that the proposed method can efficiently
support doctors and oncologists in determining the prog-
noses of brain tumor patients.

II. RELATED WORKS
Computer-aided prediction of survival times for patients
with brain tumors is important to oncologists, and has been
the subject of considerable research. There are two main
approaches. The first approach is the use of radiomic feature
extraction, while the second uses other features, such as
context features, instead of radiomics features.

In the first approach, radiomics features are used for the
prediction of survival. Several researchers [14], [15], [16],
[17], [18], [19], [20] have used the BraTS dataset for train-
ing and evaluation. Deep features combined with radiomic
(intensity, texture, wavelet, shape) and clinical information,
are initially used, and then those features are input into a ran-
dom forest regressor [14] to predict overall survival in days.
One approach [15] employed a combination of radiomics
features to train a linear regressor for survival prediction.
These researchers used volume and surface features from
three kinds of tumors, together with age information. Another
study used 4524 radiomics features and clinical data to train
a random forest regressor [16]. Location features were inves-
tigated in [17] using a fusion of radiomics, location, and
clinical features. Amultilayer perceptron (MLP) networkwas

then used for survival prediction using 13 shape features and
clinical information [18]. Instead of using Cox proportional
hazards, [19] employed support vector machines in a survival
prediction network, using 81 shape radiomics features. The
ratio of tumor size to brain size, area of tumor surface, and
clinical features were used to train an MLP survival predic-
tion network in [20].

However, when we used radiomics features, the model
tended to overfit. The use of radiomics features requires
a large-scale dataset; the number of patients should be
at least ten times that of the radiomics features extracted
[21], [22], [23].

In order to solve those problems, many researchers have
used dimensional reduction methods to decrease the num-
ber of radiomics features. The remaining features are more
closely correlated to the survival information. Additionally,
radiomics features are very sensitive to the intensities in the
images [22].

A method for forecasting patient survival, which com-
bines MobileNet with a linear survival prediction model
(SPM), is outlined in [24]. Different versions of MobileNet
are assessed to identify the most effective one, including
adapting MobileNet V1 with either frozen or unfrozen lay-
ers and modifying MobileNet V2 with either frozen or
unfrozen layers connected to SPM. The research employed
the BraTS 2020 dataset. Based on the findings of the exper-
iment, a modification of MobileNet V2 architecture that
included frozen layers was chosen. The authors of [25] uti-
lized the DeepSCAN framework, which achieved impressive
results in the 2019 BraTS challenge and was trained with
an uncertainty-aware loss, to sort cases into two groups:
those with a precisely segmented core and those with an
ambiguously segmented or absent core. Assuming that every
tumor has a core, they decreased the classification threshold
for core tissue in cases where the model’s core classification
was unclear or missing. They subsequently employed a com-
bination of linear regression and random forest classification
to predict the survival of high-grade glioma patients, taking
into account variables such as age, number of distinct tumor
components, and number of unique tumor cores. In [26],
a combination of radiomic and image-based features were uti-
lized to forecast the overall survival time of patients. Initially,
automatic segmentation of gliomas from brain MRI volumes
is crucial to detect tumors. Previous research has proposed
various 2D Convolutional Neural Network (2D-CNN) and
3D-CNN based architectures, which are employed to capture
contextual information. The 3D models capture depth infor-
mation, making them suitable for glioma segmentation from
3D MRI images. However, 2D models can be trained more
quickly, making parameter tuning simpler. To leverage the
benefits of both models, the authors proposed an ensemble of
2D and 3D models. After segmentation, the OS time predic-
tion was performed on segmented tumor sub-regions. For this
purpose, multiple radiomic and image-based features were
extracted from MRI volumes and segmented sub-regions.
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In [27], four networks - three 2D networks for each patient
plane (axial, sagittal, and coronal) and one 3D network -
were combined to segment tumors from MRI images, with
Dice scores of 0.75 for the enhancing tumor (ET), 0.81 for
the whole tumor (WT), and 0.78 for the tumor core (TC).
Using features extracted from the automatic segmentation,
a survival prediction model was developed on Matlab, with
gross tumor size and location being the major factors influ-
encing survival prediction. The feature extraction was carried
out on Matlab using the Image processing toolbox, resulting
in numerous features extracted from the segmentation matrix
and the four MRI sequences. To predict survival, the Matlab
Machine Learning toolbox was employed. The use of a fully
convolutional neural network for glioma segmentation on the
BraTS 2019 dataset is demonstrated in [28]. A three-layers
deep encoder-decoder architecture with dense connection at
the encoder part is utilized to propagate information from
coarse layers to deep layers. This architecture is employed
to train three tumor sub-components individually, with the
sub-component training weights initialized with whole tumor
weights to determine the tumor’s location within the brain.
Three segmentation results are merged to obtain the entire
tumor segmentation. The survival prediction is based on
radiomic features from the segmentation results, along with
age and statistical features, using random forest regressors
to predict the overall survival of patients. In study [29],
a modified U-Net architecture was used with appropriate nor-
malization and patch selection methods for brain tumor seg-
mentation in the BraTS 2020 challenge. A two-phase network
training was implemented with patch selection methods. The
segmentation outcome with various radiomic features was
used for predicting Overall Survival (OS). Although the algo-
rithm achieved successful OS prediction, there is still room
for improvement in tumor inter-class segmentation and OS
prediction using different network implementation strategies.
Since the OS prediction results are based on segmentation,
improving segmentation will lead to better OS prediction
outcomes. The proposed approach in paper [30] is to use a
neural network that consists of various building blocks to
recognize the different histologic sub-regions of gliomas in
multi-parametric MRIs. The model also extracts radiomic
features to estimate the prognosis of a patient. This study
[31] presents an automated approach for segmenting gliomas
in pre-operative brain MRI scans using a 3D deep learning
method. They propose a multi-resolution architecture based
on an encoder-decodermodel with separate branches to incor-
porate both local high-resolution image features and wider
low-resolution contextual information. The training process
utilizes a unified multi-task loss function. In addition to the
segmentation task, they also introduce a regression algorithm
based on random forests to predict survival days for patients.
The proposed network is fully automated and designed to
work with patches of any arbitrary size as input. The authors
of paper [32] have developed a deep learning model named
PieceNet which is an ensemble of patch-based 3D UNets.
They have used uncorrected modalities to train a standard 3D

UNet for all label classes and one 3DUNet for each individual
label class. The results show that this 4-network ensemble
technique is potentially better than traditional patch-based
3D UNet on uncorrected images, but further work is needed
to improve enhancing tumor segmentation. Additionally, the
authors have created a linear probability model that utilizes
radiomic and non-imaging features to predict survival after
surgery. From the illustration of Table 1Our proposedmethod
not only utilizes complete information from global, local,
and radiomics features but can also be employed for the
segmentation step.

We believe that self-supervised learning in brain survival
classification could help to develop models which better
understand the dataset and deal with the problem of small
datasets. In this paper we propose a novel approach to brain
tumor survival prediction partially based on self-supervised
learning.

III. PROPOSED METHOD
Recently, most methods for the prediction of survival for
patients with brain tumors consist of two stages: segmenta-
tion and survival prediction. In the first stage, a segmenta-
tion framework segments tumors into necrotic, edema tumor,
or enhancing tumor. Next, some feature extraction methods
use segmented maps to produce feature information. A sur-
vival prediction network then uses those features for training.
Our approach also consists of two stages. Figure 1 illus-
trates the architecture of the proposed method. Our approach
includes three steps: tumor segmentation, learning the local
spatial relationships, and finally, we utilize the pre-trained
backbone from the second step to train the survivor class pre-
diction network. The proposed method is an expansion of our
previous method [33] which employs only the information
from local spatial relationships in FLAIR MRI brain images
to classify the survivor class. We recognized that the global
information and radiomics features also have important roles
in survival prediction. Therefore, we try to utilize the combi-
nation together of all kinds of information.

Although our approach involves two steps, our main focus
is on the second step, which is survival prediction. Therefore,
in the segmentation stage, we choose the models that are
relatively suitable for objects of small and medium size. It is
from this goal that we choose DKNet and DMFNet to handle
the segmentation task. DMFNet is a lightweight network
to significantly reduce the computational cost. Furthermore,
this framework employed 3D dilated convolutions to build
multi-scale feature representation. Additionally, DKNet is
prove to have a good deal with the brain tumor segmentation
of any sizes which may have a significant impact on finding
early-stage cancers. Based on above reasons, we selected
DKNet and DMFNet for our segmentation step.

A. SEGMENTATION
In most of the research into survival analysis or survival
prediction, segmentation is crucial for the determination of
the location and size of the tumor. Brain tumor segmentation
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TABLE 1. Comparison between our proposed method with others.

FIGURE 1. The architecture of the proposed method. Our approach includes three steps: The first step is tumor segmentation, The second is learning
the local spatial relationships, and finally, we utilize the pre-trained backbone from the second step to train the survivor class prediction network.

of MR images is challenging because of the heterogeneity of
tumors, and variations in the size and brightness of the tumor
in the image. There are several papers also tackled the prob-
lem related to segmentation some important areas in the brain
like [34] and [35]. In particularly, the paper [34] presents an
iterative implementation of the level set methodology that
aims to accurately segment normal and abnormal tissues in

MRI brain images. The segmentation includes normal tissues
such as white matter, grey matter, and cerebrospinal fluid,
as well as other regions of the human head such as the skull,
marrow, and muscle skin. Abnormal tissues like hemorrhage,
edema, and tumor can also be segmented if present. The
segmentation process uses an iterative three-region level set
method that is based on the condition of a sharp peak greater

37440 VOLUME 11, 2023



M.-T. Tran et al.: Prediction of Survival of Glioblastoma Patients

than three. The segmented components are iteratively gener-
ated to create a hierarchical structure for accurate segmenta-
tion. The effectiveness of the segmentation method is evalu-
ated using various metrics, such as accuracy, similarity index,
and relative error, on a defined set ofMRI brain images. Addi-
tionally, this research [35] introduces a new approach using
level set methodology to segment brain tissues in MRI brain
images. The segmentation method includes normal tissues
like WM, GM, and CSF, as well as other parts of the head
like the skull, marrow, and muscular skin. The method uses
repeated level set iterations based on a sharp peak condition
greater than three. Each segmented component creates a hier-
archical structure to ensure accurate tissue segmentation. The
segmentation method’s performance is evaluated using accu-
racy, sensitivity, and error correction metrics, and a defined
set of MRI brain is used for analysis. Both visual and mathe-
matical assessments indicate that the proposed method yields
superior results for brain MR images. Besides, this article
[36] examines the current paradigm in healthcare, as well
as the potential for new scientific discoveries and the tech-
nological advancements that support them. It also explores
the possibilities for supervised machine learning (SML) in a
range of healthcare sectors, as well as the ethical concerns
surrounding these developments. The article assesses the
potential for disease diagnosis, personalized medicine, clini-
cal trials, non-invasive image analysis, drug discovery, patient
care services, remote patient monitoring, hospital data, and
nanotechnology to benefit from learning-based automation
in healthcare. Additionally, the need for explainable artificial
intelligence (AI) in healthcare is emphasized. However, our
primary purpose is to investigate the survival classification
method. Therefore, instead of developing a new segmentation
framework, we used a segmentation method based on an
ensemble approach that uses two available effective deep
learning models, DMFNet [37] and DKNet [38], to seg-
ment three kinds of tumors: edema, enhancing, and necrotic
tumors, from brain MR images. DMFNet is a highly efficient
3D CNN using lightweight 3D convolutional networks to
accurately capture multi-scale feature representations. The
DKNet is a multi-tasking learning approach with feature
reconstruction as an auxiliary task essential for retaining
the essential features of small tumors. Figure 2 presents an
overview of tumor segmentation. The proposed method uses
only the FLAIR modality to extract the local and global
features. Several segmentation results are shown in Figure 9.
(A) column is the input images, (B) column is our segmented
results, (C) column is the segmented results from DKNet,
(D) column is the segmented results from DMFNet. The
proposed framework for segmentation achieves better Dice
scores compared to others.

B. SURVIVAL PREDICTION
1) LOCAL SPATIAL RELATIONSHIP AWARENESS
FRAMEWORK
Local spatial relationships in this paper are mentioned about
the ability to distinguish a couple of two patches are from

FIGURE 2. An overview of tumor segmentation procedure.

the same image or not, which indicates intra-local spatial
relationships and inter-local spatial relationship awareness.
When the model can understand the local spatial relation-
ships, the medical characteristic related to survival prediction
will be explored much more under the kind of deep feature
information. An image can have multiple local spatial areas,
including helpful medical characteristics information. Espe-
cially in some previous research, the surrounding region of
the tumor is proven that have meaning for survival prediction
in GBM because it contains the peritumoral area containing
critical information, such as the growing tumor, surrounding
mass effect, the status of tumor contact with the ventricle [2],
[3], [4], [5], [6], [7] and stromal cells that promote GBM
growth and invasion [8]. With this inspiration, the proposed
framework is partially based on a self-supervised learning
approach, with the pretext task being local context contrastive
learning. Using that way, the local spatial of the image is
exploited well under robust image-based feature represen-
tation. Suppose that the model can distinguish a couple of
two image patches from the same image or not. It means
that the model could be deeply understood in the brain image
structure. Inside the brain structure, several meaningful areas
prove it correlates with survival prediction factors likes we
already mentioned above.

An unlabeled dataset U can be defined as U = {an}Nn=1.
A backbone B is used to train dataset U . We then get the
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vector of learnable weights ω. A non-linear function gω has
been parameterized by vector ω. To generate meaningful
latent features include the local relationship information,
through the gω, image an will become the mn (latent feature,
gω(an) = mn). From dataset U , we will have a set M =

{mn}Nn=1. During trainingwe also apply an augmentation tech-

nique. Particularly, U i
=

{
a(i)n

}N
n=1

with i-th set of random

augmentations in total samples. Subsequently, m(i)
n can be

shows in M i
=

{
m(i)
n

}N
n=1

. Suppose that K represents the

total number of augmentations U1, . . . ,UA and their latent
features can be represented as M1, . . . ,MA. We employ a
relation network [39] as a local spatial relationship awareness
network (LSRAN) sraφ for a binary classification network
to classify whether or not a pair of latent features is from
the same image. In these cases, the network has knowledge
about intra local spatial relationships and inter local spatial
relationships. The output put of the LSRAN network is a
relation score, h. The complete learning objective function
(CLOF) can be shown as follows:

CLOF = argmin
θ,φ

N∑
n=1

A∑
i=1

A∑
j=1

(Losssame image

+ Lossdifferent image)

= argmin
θ,φ

N∑
n=1

A∑
i=1

A∑
j=1

(Loss(sraφ(concat(zin, z
j
n)), t = 1)

+ Loss(sraφ(concat(zin, z
j
/n)), t = 0). (1)

Because we use the Focal loss function for binary clas-
sification, therefore loss function can be defined in form as
below:

Lfocal = −

P=2∑
n=1

(1 − hn)λtnlog(hn). (2)

2) SURVIVAL CLASSIFICATION BASED ON 2D IMAGE
Weproposed a classificationmodel which consists of a spatial
learned backbone with two fully connected (FC) layers. The
first FC layers incorporate the Batch Normalization [40] layer
with ReLU activation. This model predicts the class of sur-
vivors in each slice image. Our results achieved a competitive
performance in accuracymetric with an accuracy of 0.517 and
very high performance in SpearmanR correlation of 0.459
on the BraTS 2020 [41], [42], [43] dataset validation sets.
Figure 2 illustrates our overall architecture with the segmen-
tation and the survival classification frameworks. We used a
cross entropy loss Lce function for the survivor classification
task. The objective loss function can be presented as follows:

Lce = −

P∑
n

tnlog(hn). (3)

a: FROM 2D RESULTS TO 3D RESULTS VIA MAJOR VOTING
From the results of classification using 2D axial images,
we applied a majority voting technique to decide the survivor
class for patient survival classification. Each patient was clas-
sified into one of three classes: short survivor, mid-survivor,
or long survivor. To facilitate result submission to the BraTS
organizers website, if the patient belonged to the short sur-
vivor class, we assigned the patient’s overall survival days as
150. Similarly, the mid-survivor was 375, and 525 days for
the long survivor.

b: GLOBAL STRUCTURE AWARENESS FROM FLAIR MRI
Global structure awareness is the ability of the proposed
model can reconstruct a whole image based on an input
image. After training the model with the same input and
output, we use this pretrained weight to extract the fea-
ture and concatenate them with local spatial relationships
features and radiomics features to get the final prediction
in survival days. From the introduction, disruptions in the
normal-appearing brain beyond the lesion could affect patient
survival. These disruptions are related to post-stroke depres-
sion and the outcome of survival prediction in glioblastoma
patients [10], [11]. The status of glioblastoma has been found
to impact global brain function, including communication
between brain regions far from the tumor [12]. Previous
research has investigated the spatial distribution of the con-
nectomic profile and found that patients with newly diag-
nosed gliomas have globally altered functional connectomic
profiles that mainly affect hub connectivity and are related
to clinical phenotypes. This means that the brain’s global
structure correlates with survival prediction in glioblastoma
patients. Finally, neuroplasticity of structural, topological,
biochemicalmetabolism, and relatedmechanisms of the brain
come through multimodal MRI [13], which may contribute
to the improvement of prognosis and function in glioma
patients. Based on the valuable global structure information
with prognosis in glioblastoma patients, as we mentioned,
we employed a global structure awareness network to capture
global information from an entire image and then use it for the
survival prediction task.

To better capture the global features from FLAIR MRI,
we used a Swin Transformer UNet [44] which consists
of three modules: Shallow feature extraction, UNet feature
extraction, and reconstruction. Because the input and out-
put images are the same, the model can capture better the
global structure of the image. Swin Transformer Unet was
selected for global structure awareness because it has four
advantages compared to others. The first one is high accuracy.
The model has achieved state-of-the-art results on several
benchmark datasets for semantic segmentation, indicating its
high accuracy in predicting pixel-level labels. Next is the
scalability characteristic. The Swin Transformer architecture
is designed to be scalable, which means that the model can
be easily adapted to different input image sizes without sac-
rificing performance. The third one is flexibility. The UNet
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architecture used in Swin Transformer UNet allows for the
incorporation of skip connections, which can improve the
segmentation accuracy by allowing the model to leverage
low-level features from earlier layers. The final advantage is
that the Interpretable representations. The Swin Transformer
architecture is based on self-attention, which can capture
global dependencies between different parts of an image.
This means that the model can generate more interpretable
representations of the input images and improve its abil-
ity to reason about spatial relationships between objects.
Overall, Swin Transformer UNet combines the strengths of
both Swin Transformer and UNet architectures, resulting in
a powerful and efficient model for semantic segmentation
tasks. Therefore, Swin Transformer Unet is also suitable
for our global structure awareness framework. Basically,
this is the image reconstruction framework. We utilized the
output of the encoder to acquire features from the entire
MRI image.

c: LOW LEVEL FEATURE EXTRACTION
For a FLAIR 2D-axial input image, IFA ∈ RH×W×3 where H
and W are the resolution of the image. A single 3 × 3 con-
volution layer NetLLE was employed to extract the color or
texture information of the input image. The low level feature
FeLL ∈ RH×W×C can be defined as:

FeLL = NetLLE (IFA) (4)

where C is the number of channels for low level features.

d: DEEP FEATURE EXTRACTION
The extracted low level features FeLL are fed into the variant
of UNet NetHLE (.) to extract the deep feature and multi-scale
features FeHL ∈ RH×W×C :

FeHL = NetHLE (FeLL) (5)

where NetHLE (.) is a variant of UNet architecture inte-
grated Swin Transformer Block (STB). Each block includes
eight Swin Transformer Layers inside. The details of the
STB and Swin Transformer Layer (STL) are presented in
Figure 3.

e: RECONSTRUCTION MODULE
A 3 × 3 convolution NetRe(.) was employed to generate the
reconstructed image ÎFA ∈ RH×W×3 from deep features FeHL
which is formulated as:

ÎFA = NetRe(FeHL) (6)

IFA is obtained by taking the FLAIR 2D-axial image as the
input and this is also the ground truth image.

An overall equation of global structure awareness frame-
work can be represented as:

ÎFA = NetRe(NetHLE (NetLLE (IFA)) (7)

FIGURE 3. The detail of swin transformer block and swin transformer
layer.

f: SWIN TRANSFORMER BLOCK
In the deep feature extraction network, we used STB to
replace the traditional convolutional layer. Although the orig-
inal transformer layer has been valuable in the NLP field [45],
there are several problems arising from it in computer vision
tasks. For example, it is not good at solving dense prediction
tasks like reconstruction [46]. Therefore, a new version of
transformer, called a swin transformer, was developed to
address some disadvantages of the raw transformer layer. The
swin transformer is constructed usingmultiple STLs. An STL
is usually made from multiples of two components, in which
the first component is a window multi-head self-attention
(WMSA) and the rest is a shifted window multi-head self-
attention. The feature processing procedure in STL can be
represented as:

F̂e
Lay

= WMSA(LN (FeLay−1)) + FeLay−1, (8)

FeLay = MLP(LN (F̂e
Lay

)) + F̂e
Lay

, (9)

F̂e
Lay+1

= SWMSA(LN (FeLay)) + FeLay, (10)

FeLay+1
= MLP(LN (F̂e

Lay+1
)) + F̂e

Lay+1
, (11)

where LN(.) denotes Layer Normalization and MLP is multi-
layer perceptron.

IV. EXPERIMENTAL RESULTS
A. EVALUATION METRICS
We evaluated the results by submitting to the challenge
website https://ipp.cbica.upenn.edu. Following the rules of
the BraTS challenge [1], overall survival days were divided
into short-survivor, mid-survivor, and long-survivor classes.
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Patients who have survived less than 300 days were assigned
to the short-survivor class. Patients who survived longer than
450 days were assigned to the long-survivor class. Patients
who survived between 300 days and 450 days were assigned
to the mid-survivor class. Additionally, these thresholds were
come from statistical consideration of the survival distribu-
tions across the complete dataset. Moreover, they chose these
thresholds based on equal quantiles from the median OS
(approximately 12.5 months) to avoid potential bias towards
one of the survival groups (short- vs long- survivors) and
while considering that discrimination of groups should be
clinically meaningful [1]. The SpearmanR, Accuracy and
MSE metrics were employed to evaluate the performance of
the survival prediction task.

The equation of Accuracy metric is defined as follows:

Accuracy =
correct predictions
total predictions

(12)

SpearmanR was the correlation metric used in survival
prediction tasks and the equation is presented by:

SpearmanR = 1 − 6

∑
(R− R∗)2

N (N 2 − 1)
(13)

where N is denoted the number of samples, the rank of
predicted value R and the rank of ground truth R∗.
The mean squared error metric MSE was used to compute

the difference between our overall survival days predicted
with the ground truth of each patient. The MSE equation is
defined as follows:

MSE =

∑s
i=1(di − d̂i)2

s
(14)

where s is the number of samples and di and d̂i are the
predicted overall survival days and the actual survival days
of a patient i, respectively.

B. DATASET AND IMPLEMENTATION DETAILS
We used the BraTS 2020 datasets [41], [42], [43] to evaluate
our method. The training set data consists of 369 3D MR
images with an annotation map for the segmentation phase,
while the validation set includes 125 samples without seg-
mented labels. Each subject has a size of 155 × 240 × 240.
The annotations for the segmentation task have four values
corresponding to four classes: 1 for necrotic tumor, 2 for
edema tumor, 4 for enhancing tumor, and 0 for the rest. The
number of samples for evaluating the survival prediction task
is smaller than those for the segmentation task because the
online evaluation web page only focuses on patients whose
resection status is gross total resection. We used the PyTorch
framework to implement our deep learning-based method
during the training and inference phases. Both segmentation
and survival classification models were trained on a GPU
RTX 3090 with 24GB memory. We first trained the unsuper-
vised models LSRAN to obtain the local spatial relationships
learned backbone, then utilized this backbone to train the
supervised survivor classification model. We set the learning

FIGURE 4. Effect of each local, global and radiomics features on survival
prediction.

rate to 0.001, the epochs to 250, and the batch size to 64 to
optimize the model. Table 2 shows the comparisons of the
SpearmanR and Accuracy performances with other published
methods on the BraTS 2020 validation dataset, while Table 2
presents a comparison of the SpearmanR performances with
other published methods on the BraTS 2019 and BraTS
2018 validation datasets. From the experimental results, the
FLAIR modality showed the highest correlation with the
survival prediction output with a correlation SpearmanR of
0.459. The Figure 5 A and Figure 5 B present compar-
isons of SpearmanR and Accuracy performances between
using our FLAIRmodality and other modalities, combination
approaches on the BraTS 2020 validation dataset. In the
segmentation phase, our segmented results achieved a dice
score of 0.89845 in the whole tumor, 0.77734 in the tumor
core, and 0.78957 in the enhancing tumor.

C. ABLATION STUDIES
We performed ablation studies to investigate the role of each
component of our approach. We first used only local spa-
tial information for survival prediction. Then, we used only
radiomics features for survival prediction. We also used only
global structure information for survival prediction. Next,
we used local, global, and radiomics feature for survival
prediction. Because we wanted to understand the radiomics
features, we applied feature selection using a C-index.
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FIGURE 5. Effect of modality on survival prediction.

TABLE 2. Comparison of SpearmanR and Accuracy performances
between our local spatial relationships approach to other published
methods on the BraTS 2020 validation dataset.

TABLE 3. Comparison of SpearmanR and Accuracy performances to other
published methods on the BraTS 2020 validation dataset.

To evaluate the performance of each kind of medical image,
we used several types of images, to observe the correlation
between image category and survival. Finally, we performed
the experiment using multiple machine learning approaches
to find the best for our framework.

1) EFFECT OF THE LOCAL, GLOBAL, AND RADIOMICS
FEATURES ON OUR SURVIVAL PREDICTION FRAMEWORK
When we used a combination of global, local, and radiomics
features, we achieved the best results. When we used only

global context, the results were worst because the global
features are mainly extracted from typical areas of the brain,
which do not significantly affect survival results. The ratio
of normal areas to tumor areas is high. Although using only
radiomics features achieved high performance according to
the correlation metric, the accuracy was low. Figure 4 shows
that our proposed method which combines local, global and
radiomics features achieved the best results compared to
others.

2) EFFECT OF THE MEDICAL IMAGE MODALITY ON OUR
SURVIVAL PREDICTION FRAMEWORK
The proposed method uses local and global features from
FLAIRMR images. However, we also considered other kinds
of modalities in MR images, such as T1, T1ce, T2, and the
combination of fourmodalities. In Figure 5, the FLAIR image
is shown to have the best correlation with survival prediction
results. We achieved a Spearman R of 0.459 and Accuracy
of 0.517. Those results are from the local spatial relationship
framework.

3) THE EFFECTS OF RADIOMIC FEATURES ON OUR
SURVIVAL PREDICTION FRAMEWORK
We further explored the relationship between the number
of radiomics and model performance in Figure 6. From
four modalities of medical images, T1. T1ce, and FLAIR,
we extracted a total of 1284 radiomics features. Using all
radiomics features, we achieved an accuracy of 0.483 and
a Spearman R of 0.459. Given that these results were not
particularly good, we used the C-index metric to identify
only high correlation features. From Figure 6, we can see
that when we chose a threshold of the C-index of 0.585,
there were only six highly correlated features, producing
an accuracy of 0.621, Spearman R of 0.576 and MSE of
97216.345.
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FIGURE 6. Effect of number of radiomics features on survival prediction.

4) EFFECT OF MACHINE LEARNING METHODS ON OUR
SURVIVAL PREDICTION FRAMEWORK
We experimented with many kinds of machine learning algo-
rithms to find the one best suited to our extracted features.
Figure 7 shows that the Light GBM method produced the
best result overall, with the highest accuracy and Spearman R.
Although Random Forest produced a low MSE, the Accu-
racy and Spearman R metrics were not good. We selected
the Light GBM method, to produce the best Accuracy and
Spearman R.

FIGURE 7. Effect of machine learning approach on survival prediction.

D. DISCUSSION
In this section, we discuss the results of experiments on the
use of different features in MR images to predict survival
outcomes in patients with glioblastoma. The best results were
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achieved by combining global, local, and radiomics features.
Using only global context was the worst, as it mainly relies
on typical brain areas which do not have a significant impact
on survival. The use of only radiomics features showed high
correlation but low accuracy. The experiments also explored
different modalities in MR images and found that the combi-
nation of local and global features from FLAIR MR images
performed the best in terms of accuracy and correlation met-
rics. The study further investigated the relationship between
the number of radiomics features and model performance and
found that using a feature selection approach to choose the
most highly correlated radiomics features instead of using all
of them improved accuracy.When a threshold of 0.585 for the
C-index correlation was used, only six features were selected,
resulting in an accuracy of 0.621, a Spearman R of 0.576, and
an MSE of 97216.345. Additionally, there are several good
research on survival that achieve high accuracies that we can
discussmore in detail and can help us have a deep understand-
ing in the context of a broader range of methods than just the
BRATS analysis. Di Noia’s paper [47] provides an overview
of the current state-of-the-art AI techniques applied to MRI
for predicting survival in brain tumor patients. Some studies
have claimed up to 98% accuracy, but these results should
be taken with caution as they may not apply to all patients
or situations. The accuracy of AI models can be impacted by
factors such as data quality and quantity, evaluation methods,
and patient population. The paper by Di Noia employed ten-
fold cross-validation and achieved 98% accuracy in classify-
ing high- and low-risk patients. Sanghani’s paper [48] used
cross-validation but did not use private validation data. Our
paper is different as we used a three-class classification, and
the results come from the official BraTS challenge website.
We aim to demonstrate that our method is effective for both
training and private validation datasets. In Palsson’s paper
[49], the authors used MRI data to automatically segment the
whole brain and tumor and train a machine learningmodel for
predicting survival in glioblastoma patients. The study results
from offer insight into the potential of using MRI data and
machine learning for survival prediction, but the 0.631 value
reported is not the accuracy of a three-class classification but
rather the C-index calculated for the training set evaluation.
We also showed our training results on C-index and Spear-
manR metrics in Fig 8. This figure illustrates training results
in C-index and SpearmanR metrics between different kinds
of regressors. Finally we can see the LighGBM generated the
best results.

Suter’s paper [50] investigates the use of radiomics and
MRI data for predicting survival in glioblastoma patients.
The authors extract radiomic features fromMRI data and use
these to trainmachine learningmodels for survival prediction.
The results offer insight into the potential of radiomics and
MRI data for survival prediction, but it is unclear which
public dataset was used. McKinley’s paper [25] reports an
accuracy of 0.61 from the evaluation of the test set, which is
not currently available. Ref. 38 is the paper ofMcKinley, who

FIGURE 8. The illustration of training results in C-index and SpearmanR
metrics between different kinds of regressors.

FIGURE 9. Example images with qualitative results of tumor
segmentation. in different segmentation methods. (A) column is the input
images, (B) column is our segmented results, (C) column is the segmented
results from DKNet, (D) column is the segmented results from DMFNet.

is the winner of BraTS 2020 survival prediction challenge.
Our results have been compared to the first prize winner of the
BraTS 2020 survival prediction challenge and we outperform
them, with an accuracy of 0.621 and a SpearmanR of 0.576 in
the validation set, while they had 0.414 in accuracymetric and
a SpearmanR of 0.253.
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V. CONCLUSION
Our paper proposes a framework that utilizes deep feature
information to predict survivor class in brain tumor patients
using FLAIR MRI data. We focus on capturing local spa-
tial relationships to capture critical medical characteristics
related to survival prediction, such as the growing tumor,
surrounding mass effect, and tumor contact with the ventricle
and stromal cells that promote GBM growth and invasion.
We also recognize the importance of global brain structures
in survival prediction and use a global structure awareness
network to capture global information from the entire image.
Our study shows that combining local and global information
in FLAIR images can improve the prediction of survival in
brain tumor patients, specifically those with glioblastoma.
Our proposed framework achieves a superior accuracy metric
of 0.621. We not only got good results in the accuracy metric
but also had the best correlation score of 0.576, represented
by the SpearmanR metric. In experimental results, we con-
duct a comparison with other recent research, and it shows
the effectiveness of our approach. This research can assist
doctors and oncologists in planning treatment for brain tumor
patients. For further research, we suggest investigating the
use of other imaging modalities, such as diffusion-weighted
imaging and perfusion-weighted imaging, and combining
them with FLAIR MRI data to improve the accuracy of
survival prediction. Additionally, exploring the use of other
deep learning models, such as transformer-based models, and
incorporating clinical and genetic information into the model
could be a promising direction for future research. Finally,
conducting a large-scale multi-center study to validate the
effectiveness of our proposed framework would be beneficial
in the clinical setting.
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