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ABSTRACT Precision cancer medicine suggests that better cancer treatments would be possible guiding
therapies by tumor’s genomics alterations. This hypothesis boosted exome sequencing studies, collection of
cancer variants databases and developing of statistical andMachine Learning-driven methods for alterations’
analysis. In order to extract relevant information from huge exome sequencing data, accurate methods to dis-
tinguish driver and neutral or passengers mutations are vital. Nevertheless, traditional variant classification
methods have often low precision in favour of higher recall. Here, we propose several traditional Machine
Learning and new Deep Learning techniques to finely classify driver somatic non-synonymous mutations
based on a 70-features annotation, derived from medical and statistical tools. We collected and annotated a
complete database containing driver and neutral alterations from various public data sources. Our framework,
called Driver-Oriented Genomics Analysis (DrOGA), presents the best performances compared to individual
and other ensemble methods on our data. Explainable Artificial Intelligence is used to provide visual and
clinical explanation of the results, with a particular focus on the most relevant annotations. This analysis and
the proposed tool, along with the collected database and the feature engineering pipeline suggested, can help
the study of genomics alterations in human cancers allowing precision oncology targeted therapies based on
personal data from next-generation sequencing.

INDEX TERMS Genomics, mutation, artificial intelligence, machine learning, deep learning, explainable
AI, driver-status prediction, oncology, precision cancer medicine.

I. INTRODUCTION
Current efforts in precision oncology largely focus on the
benefit of genomics-guided therapy. Multiple types of data
are used to gather patients into groups that will most likely
respond to a given treatment [1], [2]. Precision medicine
fully relies on biomarkers in order to classify the patients
risk status, its prognosis and the response to treatments [3].
Biomarkers are objective indications of the medical state
observed outside the patient that can be measured accurately
and reproducibly [4]. Among all, ‘omics’ data, such as DNA,
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RNAor proteins, allow the identification of putative biomark-
ers which are validated determining the range of conditions
under which they will provide reproducible and accurate
data [5], [6]. A lot of effort has been put into the production of
affordable technology for ’-omics’ data retrieval [7], [8] but
the validation of biomarkers is still stymied by low statistical
power and poor reproducibility of results [9].

Thanks to the current advances in DNA sequencing
techniques [10], [11], the amount of data available for
research purposes exponentially increased in recent years.
Next-generation sequencing (NGS) techniques have rapidly
evolved over the past 15 years and new methods are contin-
ually being commercialized to allow high-throughput DNA

37378
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-4125-6304
https://orcid.org/0000-0002-6102-3121
https://orcid.org/0000-0002-4009-2662
https://orcid.org/0000-0001-6156-5492
https://orcid.org/0000-0002-5356-2221


M. Bastico et al.: DrOGA: An Artificial Intelligence Solution for Driver-Status Prediction

sequencing [12]. However, a standard pipeline for processing
and analyzing this large amount of data has not been defined
yet, arising inconsistencies and debates [13]. The best prac-
tices for the read-to-variant discovery workflows for germline
and somatic short genomic variants are presented in [14].
In recent years, sequenced DNA reads are generally aligned
to the reference genome, i.e., GRCh37 (hg19) or GRCh38
(hg38), though a seed-and-extend approach [15], such as
bwa-mem [16] and bowtie2 [17]. Post-processing is used on
aligned reads to remove PCR duplicates [18] and to perform
Base Quality Score Recalibration (BQSR) [19].

Genomics-guided personalised cancer therapies require
the identification of biomarkers, such as recurrent point
mutations, translocations and potentially new therapeutic tar-
gets [20]. In this scenario, the discovery of somatic and
germline Single Nucleotide Variants (SNV), as well as
insertion-deletion mutations (indels), is vital. To this purpose,
several algorithms, applied to aligned DNA reads, have been
developed using probabilistic, mathematics, and Artificial
Intelligence (AI) techniques [21], [22]. Based on several
probabilistic models for genotyping and filtering, Mutect2
has been proposed to detect SNVs and indels [23]. Fur-
thermore, deep convolutional neural networks can also call
genetic variation in aligned NGS read data, as shown in
DeepVariant [24].

Despite the flexibility and availability of variant calling
techniques, the identification of mutation driver status as
biomarker information remains challenging, especially in
Machine Learning (ML) [25]. Nowadays, the frequency of
a mutation in patients is still one of the most reliable indi-
cators of the mutation driver status [26]. Several metrics
and scores have been defined in recent years to quantify the
pathogenicity of somatic mutations [27]. As shown in Fig-
ure 1a and Figure 1b the individual driver status classification
tools have weak performance in terms of precision (less than
60%), in favor of higher recall, when applied to a generic
dataset of somatic SNV, like ours. From a clinical perspective,
an improvement in the precision of such algorithms would
lead to more accurate driver status classifiers, reducing the
workload of clinicians and doctors analysing manually all the
patient-specific genomics alterations [28].

In this work, we first collect a dataset of driver
status-annotated somatic non-synonymous variants joining
various public sources. We propose a new features engi-
neering pipeline in order to represent each mutation with a
70-features vector, obtained form several functional annota-
tions, which is particularly suited for subsequent classical
ML and Deep Learning (DL) algorithms. A new traditional
ML and DL framework, called Driver-Oriented Genomics
Analysis (DrOGA), is then proposed, aiming to improve
the precision of the driver status prediction while keeping
the recall unaltered. We show that our method gives the
best performance on our data compared to individual and
other ensemble methods. Finally, the results are explained
with the help of eXplainable Artificial Intelligence (XAI)
techniques in order to give a clinical perspective and model

understanding. In clinical applications, the repercussion of
the decision-making process can be critical for a patient [29].
XAI techniques are therefore introduced in this work because
a deeper understanding of the models behaviour, usually seen
as ‘‘black boxes’’, is the key to detecting the causes of failures
and improving their performance [30].

II. RELATED WORKS
One of the most up-to-date tools for functionally annotating
genomic alterations is ANNOVAR [31], an open software
providing more than 100 features from gene, region and
filter-based annotations, among others. These annotations are
mostly retrieved from well-known genomics databases, such
as dbSNFP [32].

Nevertheless, there are studies focused on creating bench-
marks to prioritize variants annotations, matching some of
the ones also provided by ANNOVAR [33], [34], [35]. Their
main objective is usually to identify missense somatic vari-
ants that may be relevant as disease cause. These researches
are usually framed within a defined area of study in which the
tools are tested on specific datasets with a target disease. Neu-
rodegenerative diseases are targeted in [33] using 18 different
annotations, the majority of which are included, in an updated
version, in our work. In [34], 24 tools are instead employed
to identify the most sensitive ones according to the phenotype
of the disease. Recently, a comparison of the performance of
several annotation tools over a manually curated oncogenic
dataset is performed by Suybeng et al. [35]. Here, as in
our work, dbSNFP is one of the main annotations databases
involved, and the final purpose of the study is differentiat-
ing between oncogenic and neutral mutations. It presents a
comparison of single annotations and combinations of them
taken two by two, without dealing with the contribution of the
entire set of features or trying to develop a model to achieve
the desired prediction from them.

Other publications go a step further along this line of
research by creating their own prediction tools. One of
the first annotation tools specialised in exploring functional
effects in cancer somatic mutations is Functional Annota-
tion of Somatic Mutations in Cancer (FASMIC) [36], based
on cell viability and Reverse-Phase Protein Arrays (RPPAs)
assays. In 2019, Variant Call Format-Diagnostic Annotation
and Reporting Tool (VCF-DART) [37] was released as a
method to identify genetic variants that may be of clinical
importance based on a custom gene list and annotation tools
such as dbNSFP, SNPSift [38] and Variant Effect Predictor
(VEP) [39].

With the objective of creating prediction tools to identify
driver cancer mutations, traditional ML algorithms have also
been proposed in other works. Cancer-specific Driver mis-
sense mutation Annotation (CanDrA) [40] was already pro-
posed in 2013 and trained with samples mainly obtained from
The Cancer Genome Atlas (TCGA) [41] and the Catalogue
Of SomaticMutations In Cancer (COSMIC) [42]. Aweighted
Support Vector Machine (SVM) classifier is trained with
95 features per sample from annotation portals such as VEP
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FIGURE 1. Statistics of State-of-The-Art conservation, functional and ensemble methods for driver status prediction on our test set. All of them are
used in a rankscore scaled version as input of our pre-processing pipeline and classification benchmark. (a) Accuracy, Precision, Recall and F1 score of
those algorithms providing prediction labels ordered from left to right according to F1. Most of them reach good performances in recall but precision
and accuracy are low. (b) ROC curves and AUC of the same algorithms based on the deleterious score ranging between 0 and 1, where an high value
corresponds to high probability of oncogenicity.

and ANNOVAR. An SVM architecture is also employed in
Combined Annotation-Dependent Depletion (CADD) [43]
based on a dataset of more than 20 millions of variants anno-
tated with 62 features each. Its architecture has been updated
more recently to a Deep Neural Network (DNN), improv-
ing performance with the so-called Deleterious Annotation
of genetic variants using Neural Networks (DANN) [44].
BayesDel [45] implements a naïve Bayesian model within
an extended gene-prioritisation framework. A large variety
of approaches proposed in the literature are tree-basedmodels
that gather other ensemble and functional predictions. Among
all, DEOGEN2 [46] uses a Random Forest (RF) architec-
ture, ClinPred [47] implements RF and XGBoost (XGB),
and CHASMplus [48] a RF tool specialised in predicting
driver mutations in 32 cancer types. Kernel-based models
are instead proposed in FATHMM-XF [49] and Recurrent
Neural Networks (RNN) in MetaRNN [50]. However, all of
the presented methods have good recall in the driver status
prediction in our data set, but low precision, as shown in
Figure 1.

Lastly, AIDriver [51] is the most similar research to our
proposal. Its aim is to predict the driver status of somatic
missense mutations based on 23 pathogenic phred-scaled fea-
tures, all of them included in dbSNFP. They compare several
classical ML model architectures like XGB, SVM, RF, and
Multi-Layer Perceptron (MLP), obtaining the best perfor-
mance with XGB. According to their results, this method
outperforms the latest versions of previous algorithms, using
test data from different sources like TGCA, Cancer Genome
Interpreter (CGI) [52], and International Cancer Genome
Consortium (ICGC) data portal [53].

Our proposal is intended to improve the driver status pre-
diction performance by taking advantage of all the available
information retrieved by ANNOVAR. Most of the features
used in AI-Driver are also considered in this workwith amore
recent normalization technique performed over the complete
dbSNFP dataset. Additional annotations are also gathered
from dbSNFP and several other databases. Moreover, we pro-
vide a general data cleaning and preparation pipeline for
annotations collected from these databases, and a complete
referenced clinical documentation. Several traditional ML
architectures are also tested on our features representation,
including new DL approaches such as Convolutional Neural
Networks (CNN). Furthermore, merging clinical information
with XAI methods is the key to understanding the underlying
behavior of our models. This issue is often barely covered by
previous tools due to the poor self-explaining power of ML
and DL techniques.

III. MATERIALS AND METHODS
We generated our training and testing dataset gathering driver
and neutral or passengers somatic non-synonymous, e.g. mis-
sense, mutations publicly provided by various data sources.
Namely, we collected 2477 driver mutations from CGI [52],
355 driver and 460 passengers mutations from FASMIC [36],
[56]. In the latter, as specified by the authors, we considered
as driver mutations the variants labeled as activating, inac-
tivating, inhibitory, non-inhibitory, while, as passengers, the
ones labeled as neutral. Subsequently, single nucleotide poly-
morphism (SNP) identifiers of all the somatic missense vari-
ants withMinor Allele Frequency (MAF) higher than 5% [58]
were collected from dbSNP [57]. Firstly, we annotated them
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FIGURE 2. Statistics of the collected dataset. (a) Number of mutations per
data source, divided by category, gathered in our dataset.(b) Overlaps
between the joined data sources: IntOGen [54], [55], CGI [52],
FASMIC [36], [56] and dbSNP [57], from the outer ring to the inner one.
(c) Focus on the conflicting overlaps. Some variants variants are
annotated discordantly by the different data sources. The ground-truth
values kept in our dataset are the most recent annotations (from inner to
outer ring).

with VEP [39] and we split multiallelic mutations in mul-
tiple biallelics [59]. Second, mutations were further anno-
tated with ANNOVAR gene-based annotations and gnomAD
v2.1.1 Alleles Frequencies (AFs) [60]. Only exonic or splic-

ing non-synonymous mutations with gnomAD AF higher
than 5% are kept as neutral mutations in our dataset. The
double filtering is done to further ensure the neutrality of
the collected variants, which are in total 16009. Finally, all
the exonic or splicing non-synonymous mutations in IntO-
Gen [54], [55] are also collected. Here, variants are labelled
as Tier 1, Tier 2, passengers and not protein-affecting. Tier 1
and Tier 2 are mutations with strong clinical significance
and potential clinical significance, respectively [61]. For that
reason, we consider both as positive cases, i.e. drivers, while
we use the passengers variants as negative cases. In total,
we collected from IntOGen 9401, 5138 and 30000 Tier 1, Tier
2 and passenger mutations, respectively. Neutral variants are
randomly sampled among a total of 454722 variants to avoid
extreme unbalancing on the dataset. The number of collected
variants per data source divided by category are summed up
in Figure 2a.

Identical mutations among the different sources were
found in the gathered data, as shown in Figure 2b. Although
most of the overlapping samples match ground truth and
can be dropped without further actions, there are more than
100 mutations presenting a different classification depend-
ing on the source from which they are collected (focus in
Figure 2c). In order to not dispense with them, the label
retrieved from the most recent version database is kept as true
label, giving preference to the samples from dbSNP, as they
have been already filtered twice. Therefore, the priority is led
by dbSNP, followed by FASMIC (2021), CGI (2018), and
IntOGen (2016), i.e., from inside to outside of the Figure 2c
representation.

Finally, the merged dataset is set up as VCF to be
annotated by ANNOVAR. The annotations are retrieved
from the National Center for Biotechnology Information
(NCBI) [62], University of California Santa Cruz (UCSC),
Genome Browser [63], gnomAD, Exome Aggregation Con-
sortium (ExAC) [64], dbSNP, dbSNFP v4.2a [32], [65], Clin-
Var [66], COSMIC, American College of Medical Genetics
and Genomics and the Association for Molecular Pathology
(ACMG/AMP) [67], ICGC, Kaviar [68], Haplotype Refer-
ence Consortium (HRC) [69], the 1000 Genomes Project
Consortium [70] and NHLBI Exome Sequencing Project
(ESP) [71], together with some further information belong-
ing to ANNOVAR. Every feature from those annotation
databases is deeply analysed and classified to later per-
form a proper and meaningful feature selection as input for
our model building. The detailed study of each annotation
can be found in the documentation of the dataset, includ-
ing a general description of each field, its category, pos-
sible values or range, additional information, and original
source.

Overall, the proposed dataset is a 196-features collection,
including 7 mandatory VCF fields and 189 external anno-
tations, gathering 16360 driver samples and 46444 neutral
or passenger mutations. The training and testing split is per-
formed by randomly sampling with an 80%-20% proportion
the original dataset, resulting in 50243 training samples,
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of which 13086 are driver, and 12561 for testing, containing
3274 positive cases.

Based on the collected dataset, we provide and propose the
following contributions for the research community.

• ANNOVAR Features Explanation and Details: We
include a complete documentation of the dataset where
each feature has been analysed and commented rigor-
ously providing a simple explanation, the type of data
and its possible values with some links to resources for
a deeper understanding.

• Dataset and code for Feature Extraction and Modelling:
Along the paper, we provide all the code and materials
to help the research community to preprocess the data
following the proposed pipeline and to replicate the final
results of our driver status prediction benchmark (see
Section VII).

• Comparison of Different Models for Driver Status Pre-
diction: A benchmark with different classical ML and
DL models is proposed to compare the performance
of different methods in the driver status prediction of
somatic non-synonyms mutations.

• Deeper Analysis Based on XAI: In order to understand
the results and try to link them with a real interpretation
from a clinical perspective, we analyse our models with
XAI to understand their underlying behaviors.

IV. GENERAL APPROACH
In this section, we provide details on the proposed techniques
to filter, process and analyse our annotated dataset of somatic
non-synonymous mutations. Firstly, our feature engineering
and data cleansing pipeline to preprocess the data is deeply
explained. After that, various models for driver status clas-
sification are introduced. Finally, the used techniques to get
explainable insights on the proposed traditional ML and DL
models are presented with the aim of obtaining an interpreta-
tion in a clinical perspective.

A. FEATURE ENGINEERING AND DATA CLEANSING
Originally, 189 features per mutation were annotated in our
database as output of ANNOVAR. The annotations are clas-
sified in three groups according to the information they
provide: (1) Allele Frequency (AF) in a specific database,
(2) filter-based pathogenic predictors that can be divided,
according to the nature of their data, as categorical, numeric
or binary statistics, and (3) other kinds of knowledge, such as
external database identifiers or gene-based information.

1) AF ANNOTATIONS
Raw frequencies values for each variant are retrieved from
gnomAD, ExAC, Kaviar, HRC, 1000 Genomes and NHLBI
ESP databases. Generally, the raw frequencies of alleles at
a particular locus are only available for common variants
in a population, such as SNPs. Moreover, AF information
is already included, with further processing, in some filter-
based annotations, e.g., MVP [72], ClinPred [47] and Pri-

mateAI [73]. Therefore, to avoid information redundancy and
missing input data for rare mutations, we remove all the raw
AF from our features vectors. This category presents a total
of 37 dropped annotations.

2) FILTER-BASED PATHOGENIC PREDICTORS
In order to simplify the data preparation and avoid parsing
steps, numerical pathogenic indicators are prioritized over
categorical ones belonging to the same research. In most of
the features provided by dbSNFP, which encompasses more
than half of our original annotations, the rankscore annotation
has been included since 2014 [74]. It is a normalised score
among the whole source dataset, ranging between 0 and 1.
These annotations are also preferred over categorical and
not-normalised ranges items, as they ease the data cleans-
ing process. Within this category, there are 39 rankscore
variables considered as final input features, replacing a
total of 61 non-normalised annotations providing the same
information. Namely, the kept filter-based pathogenic pre-
dictors rankscores can be classified by their nature as
follows:

• Conservation scores: GERP++ RS [75], LRT [76],
PhyloP (100 and 30way) [77], PhastCons (100 and
30 way) [78] and SiPhy [79].

• Functional prediction scores: SIFT, SIFT4G [80],
MutationTaster [81], MutationAssessor [82], [83],
FATHMM [84], PROVEAN [85], [86], VEST4 [87],
LIST-S2 [88], MVP [72], MPC [89], integrated fit-
Cons [90], PrimateAI [73], PloyPhen2 (HDIV and
HVAR) [91] and MutPred [92].

• Ensemble scores, with the objective of predict-
ing deleteriousness, based on collections of features
already available in dbSNFP: MetaSVM, MetaLR [93],
MetaRNN [50], BayesDel (with and without AF) [45],
ClinPred [47], REVEL [94] and M-CAP [95], together
with other ensemble scores of features non-belonging
to this database: DEOGEN2 [46], CADD [43],
DANN [44], FATHMM-MKL [96], FATHMM-XF [49],
Eigen (raw and PC) [97], GenoCanyon [98] and LIN-
SIGHT [99].

Nevertheless, there are categorical and numerical anno-
tations not transformed nor normalised which are not asso-
ciated to a rankscore. The treatment suggested by this
pipeline for the numerical values is applying min-max nor-
malization within the defined range or, if it is not pre-
defined, standardising the data. This is applied for two
features from the dbSNFP database: confidence value of
fitCons [90] and GERP++ NR [75]. On the other hand,
the categorical features are parsed to a single integer value
if multiple-class for a single sample is not allowed. On the
contrary, when there are possible multiple categories for
one sample, one-hot encoding [100] is implemented. This
process has been carried out on the two dbSNFP vari-
able, i.e. ALoFT [101] and another pathogenic feature from
ClinVar.
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FIGURE 3. Convolutional network architecture for genomics variant classification with skip connections. The overall
schema is an encoder-decoder architecture. The input is fed simultaneously into a 1 × 1 convolution and a fully connected
layer used as first skip connection. The second one is inserted after the first convolutional layer. Their output features are
used to transfer additional information in the decoding stage which is composed of fully connected layers. The normal
convolutional architecture is obtained removing the skip connections.

3) OTHER KIND OF KNOWLEDGE
Regarding the external database identifiers and gene-based
information, a simplification of the annotations is kept.
There are several identifiers from external resources like
Genotype-Tissue Expression (GTEx) Program [102], Inter-
Pro database [103], ICGC, COSMIC and ClinVar. Each fea-
ture is transformed into a binary value, being positive in
the cases in which such mutation is registered in the given
database. 5 features are obtained from them, while additional
information from the same databases and gene-based studies
is deleted in order not to bias the driver status prediction
on the gene-based information, i.e., chromosome or location.
This comprises 8 dropped annotations. Binary annotations
without a related rankscore are originally from ACMG/AMP,
and they are kept as retrived, because no further transforma-
tion is needed. 28 features are included here, and one contain-
ing duplicate information is dropped. Finally, the beginning
and ending flags are deleted, together with 2 functional anno-
tations, because non-synonymous exonic or splicing filters
have already been applied in the dataset collection phase.
VCF features are also dropped, together with the last single
feature fromUSCS, as they do not provide pathogenic-related
information and our data may have undesired dependencies
and unbalances on location attributes.

Overall, 77 features are kept from the original annotations.
A final cleansing is performed after splitting the one-hot
encoding variables into single columns. Every column not
providing any information for our training data, i.e. assigning
the exact same value for every sample, is dropped. These are
a total of 17 features to be discarded. Additional columns
which present an high probability of missing annotations, are
also disregarded (LINSIGHT, M-CAP, MutPred and MVP).
Moreover, samples with missing annotations are filtered out.
The guideline we propose is to eliminate samples with at
least one rankscore or one binary ClinVar feature missing,
as they are the main pathogenic attributes. The remaining
null annotations have been filled with 0 or -1 values, for

convenience. In [51], the missing input features are estimated
by averaging the values of near-variants or of the whole
database. The rankscores and the ClinVar predictions have an
important clinical significance which often differs from near
variants. For this reason, we decided to discard examples with
missing annotations instead of estimating them. Ultimately,
there are 32574 training samples, with 9993 positive cases,
and 8102 test samples, containing 2500 driver labels, each
sample consisting of a 70-feature vector based onANNOVAR
annotations. As Supplementary Data, we include the code to
perform the data preprocessing and cleansing proposed here.

B. PROPOSED MODELS FOR DRIVER-STATUS PREDICTION
The main objective of our benchmark is to classify between
variants detected as driver for cancer evolution and non-
driver mutations, based on the collected ANNOVAR features
pre-processed as we proposed in Section IV-A.

Several AI models have been introduced in the literature
with supervised classification purposes [104]. Depending on
the input data format, different techniques can be suitable to
properly solve the task. In this work, we propose the use of
not only classical ML architectures but also DL architectures
to perform an exhaustive analysis on both types of algorithms.
The list of models tested in our benchmark is the following:

• TraditionalMachine Learning (ML): Logistic regression
(LR), SVM, Decision Tree Classifier (DTC), RF and
XGB.

• Deep Learning (DL): Deep MLP and Convolutional
Neural Network (CNN).

The newly proposed CNN architecture is shown in
Figure 3. The rationale behind is to use an inverse
encoder-decoder schema such that the input features vector
is represented in an higher dimensional space which is then
used to obtain the final classification. 1 × 1 convolutional
layers [105], [106] are used to increase the filter space dimen-
sionality, i.e. to transform each input feature independently.
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The features higher dimensional representations are then flat-
tered and fed into fully connected layers in order to retrieve
the driver-status prediction. Modified skip connections [107]
are introduced to pass compressed lower-level semantic infor-
mation to the latter layers of the neural network. Their aim is
to keepmore original information regarding the input features
vector in the decoding phase. The CNN model is trained and
tested with and without skip connections, in order to evaluate
possible performance improvements.

Traditional ML and DL algorithms require the tuning of
several non-learnable parameters, e.g. learning rate, in order
to choose the optimal configuration for the learning process.
Model hyper-parameters optimisation [108], [109], [110] is
performed during training in order to select the best con-
figurations for the proposed solutions. The hyperparame-
ter optimization technique that we used for classical ML
models in our benchmark is called Random Search [111].
Random configurations of the model hyper-parameters are
testedwithin a range of selected values and the optimisation is
done on the resulting F1-value. Regarding DLmodels, hyper-
parameters tuning is done using the Adaptive eXperimenta-
tion (AX) algorithm, based on Bayesian optimisation, and
Asynchronous Successive Halving (ASHA) scheduler [112]
is included to improve the search efficiency. Due to the
unbalancing of the dataset, we decided to include the loss
as hyper-parameter of our DL models. Separately, we tested
the weighted Binary Cross Entropy (BCE) Loss and the
α-balanced variant of the Focal Loss (FL) for binary classifi-
cation [113]:

FL(pt ) = −αt (1 − pt )γ log(pt ) (1)

where

pt =

{
p, if y = 1
1 − p, otherwise

(2)

p is the predicted output and y the ground-truth. By tuning
the parameters γ and αt , it allows to focus on hard examples
and to balance the loss equally for both classes, respectively.
The configuration of the search spaces and the resulting best
models for both traditional ML and DL are reported in the
GitHub repository along with the code. To evaluate the driver
status prediction performances of each model, we provide
several well-known metrics such as Accuracy, Precision,
Recall, F1-score and Confusion Matrix [114].

C. INTERPRETABILITY WITH XAI
In medicine and especially in genomics, model interpretabil-
ity is a key point to match AI with medical interpretation
of the annotations under study used as input features of the
algorithms [115]. In this work, our models are analysed with
XAI techniques to understand their hidden behaviour and the
Feature Importance (FI).

In some linear models, the FI can be directly inferred from
the parameters learned during training. Their values are used
to analyse each feature separately and to quantify its contri-
bution when a new prediction is made. In our benchmark,

the models that provide this information are LR and SVM,
when a linear kernel is used. DTC also provides directly the
FI based on the number of splits created in the training phase.
In this way, it is possible to reproduce the entire tree and
understand the model decision.

In other cases, local surrogate models are interpretable
models that are used to explain the individual predictions
of ‘‘black-box’’ models [116], [117]. Among many of the
techniques available for XAI, SHapley Additive exPlanations
(SHAP) [118] has been selected in this work due to its ver-
satile analysis on feature relevance, such as global or local
importance. In addition, this technique is suitable for feature
interaction inspection and can be used with complex model
architectures such as neural networks. It is an implementa-
tion that connects optimal credit allocation with local explan
ations using the Shapley values from game theory. It applies
to all the models of our benchmark, such as XGB or CNN,
considering the input as a features vector or an image, respec-
tively. Therefore, our interpretation of the models and their
connection to clinical significance is done through SHAP
analysis.

V. RESULTS AND DISCUSSION
This section is divided into two main parts. First, the results
obtained with our feature engineering and benchmark, and
their comparison with other works are presented. Second,
an extensive research over some selected algorithms is
included to analyse the Feature Importance (FI), based on
XAI.

A. MODELS TRAINING AND EVALUATION
As preliminary result of our features engineering pipeline,
and to test in advance the power of our final 70-features repre-
sentation of DNAvariants, we applied a Principal Component
Analysis (PCA) preserving only two dimensions. The distri-
bution in the 2D-space of a random subset of 3815 samples
of our training samples, containing 1000 from each database
and all samples from FASMIC, is shown in Figure 4b. Driver
and neutral mutations tend to be placed on opposite sides of
the space, giving a somehow clear distinction between them.
This insight shows that our variant codification is effective
in being used as input for further analysis, as shown in the
following.

Table 1 collects the results of our benchmark for driver
status prediction of somatic non-synonymous mutations in
terms of F1-score, Recall, Precision andAccuracy. The scores
are compared with State-of-the-Art algorithms both in DL,
classical ML, and clinical fields. In order to provide a fair
comparison, the AI-driver algorithms [51] are re-trained and
tested using our clean raw dataset. The approach proposed by
that solution is applied over the dataset for training their mod-
els, obtaining a 23 feature-vector. Our models outperform in
terms of F1-score, giving the best balance between preci-
sion and recall. The inclusion of more annotations as input
improves the performances, allowing to achieve, in most of
the cases, better accuracy, precision, and recall.
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FIGURE 4. (a) Two components PCA analysis of our 70-feature
representation for DNA variants. The effectiveness of the representation
is clear since driver mutations (triangles) are mostly distributed on the
left side, while neutral variants (circles) are on the right. (b) ROC curves
and corresponding AUC of the proposed benchmark for variant driver
status prediction. Other solutions are also reported as comparison and
the best AUC is obtained with our XGB model. (c) Driver status
predictions of the XGB model on our test set. The percentage of
mutations classified as driver or neutral is shown for each collected data
source, in order to be directly compared with the ground-truth.

The best F1-score is given by XGB which provides similar
results both in precision and recall. The CNN with skip
connections proposed in this work is instead able to increase
the recall up to almost 90%, keeping a good trade-off with
precision and accuracy scores. Classical solutions, such as
FATHMM-XF [49], ClinPred [47] and LIST-S2 [88], can

reach similar recall value at the expense of a big drop in
precision, i.e. more than 20% less with respect to our model.
Improvements in SVM and RF are also obtained using our set
of features. Nevertheless, in SVM, more False Positives are
detected, reducing its precision compared to other methods.
RF, instead, achieves the second-best performance in the
traditional ML category thanks to the ensemble of several
trees where different combinations of features are considered
as input.

Figure 4a shows the ROC curves and AUC of our bench-
mark algorithms compared to other variants driver status
classification methods, both ensemble and functional scores.
In terms of AUC, our XGB algorithm is the best performing
solution, showing that the inclusion of more input features
increases the True Positive Rate (TPR). This helps to bet-
ter discriminate between driver and neutral mutations, giv-
ing more reliable outputs for clinical analysis. Nevertheless,
DL models do not exceed the results obtained with classical
ML models due to the reduced number of input samples
available for training.

Finally, Figure 4c shows the percentage of variants classi-
fied as driver or neutral by the XGB algorithm for each data
source in our test set. The classification accuracy is lower
for IntOGen Tier 2 (70.16%) and FASMIC neutral (38.98%)
mutations. In the first one, the alterations are associated with
a potential clinical significance, without showing a clear
pathogenicity, reflecting inweaker performances in our driver
status prediction models. On the other hand, FASMIC neutral
variants, giving a closer look at the PCA decomposition in
Figure 4a, are distributed in the features space like driver
mutation, affecting directly their prediction accuracy. It is
important to notice that the latter only comprises for the
0.72% of the total data and, therefore, it does not affect the
overall performances of our benchmark.

B. XAI FOR MODEL UNDERSTANDING
After the analysis of the evaluation metrics, a deeper analysis
is needed in order to give a clinical interpretation of our mod-
els. The FI are of particular interest to understand which are
the most relevant annotations when performing driver status
predictions. Given that, it is possible to discover the features
that are affecting positively or negatively the algorithms and
the reasonswhymutations are correctly or wrongly classified.

The SHAP values of the input features for XGB and our
CNN with skip connections are shown in Figure 5. For the
first, the mean absolute SHAP values and the raw SHAP
values per sample, along with the feature magnitudes are
depicted in Figure 5a and Figure 5b, respectively. Regarding
CNN, the average SHAP values for True Positives (TPs),
False Positives (FPs), True Negatives (TNs) and False Neg-
atives (FNs) are shown in Figure 5c, considering the input
vector as a one dimensional image. A complete analysis of the
FI for every model of our benchmark can be retrieved from
our source code. Overall, the greater is the SHAP value for an
input feature, the higher is the impact of the corresponding
annotation in the final classification. On the other hand,
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TABLE 1. Results comparison in terms of F1 score, Recall, Precision and
Accuracy. The algorithms are divided into three subcategories: (1) Deep
Learning and (2) Machine Learning (3) Clinical. For each category, the best
performing algorithm is shown in bold, while the overall best is
underlined.

a positive value indicates that a feature influences the model
towards a driver outcome, while a negative value pushes it
toward a neutral prediction.

In general, there are specific annotations that stand out in
FI over the rest of our 70-features input vector. DEOGEN2,
CADD, MPC, and FitCons are always in the top-6 most
important attributes. A part from FitCons, they were pre-
sented as some of the best unitary pathogenic predictors,
according to the AUC in Figure 1b. Therefore, their qualities
are learned by our models, which tend to give them more
importance with respect to other annotations. On the other
hand, the FI of other attributes, such as FitCons, is given by
the fact that, following a preliminary study on our dataset,
their distribution over the samples differs from the vast major-
ity of input features. In this case, the models recognise them
as peculiar annotations that deserve more importance in the
final prediction. Additionally, both traditional ML and DL
approaches contain within the 10 most important features
several binary-ranged attributes such as PP5, PP3, BA1 and
PP2. They are usually highly reliable, although hardly unbal-
anced annotations. Most of them tend to be disregarded by
our benchmark due to its inconvenient distribution and the
difficulty of the thresholding process in tree-based classi-

fiers. The clearest example is given by the CLNSIG one-
hot-encoded features, they barely participate in the decision-
making process, but few of them may have high significance
in some architectures, e.g. in CNN with skip connections of
Figure 5c just 3 components over 13 have relevant SHAP val-
ues. Nevertheless, one of the main differences found between
classical ML and DL models is the distribution of the FI,
which is much more balanced among annotations in the latter
category. Traditional ML architectures, mainly built up on
tree-based classifiers, strongly route the predictions already
in the first decisions steps, giving more importance only to
the annotations involved in these phases. Instead, DL mod-
els have a wider view of the entire input features vector,
being able to perform deeper combinations of the available
attributes.

Focusing on Figure 5b, the general trend is that the
rankscores of pathogenic predictors have a positive impact
on the model output when their values are higher than 0.5.
In contrast, benign predictors give negative SHAP values
in correspondence of high scores. A deeper analysis of the
classification errors can be carried out considering the SHAP
values of TP, FP, TN and FN samples as separate groups
(Figure 5c). This visualisation backs up the idea that TPs
and TNs are well defined, but, usually, lower SHAP val-
ues are assigned to miss-classified samples. Moreover, FPs
have lower but similar contributions to TPs, while FNs have
some-how mixed contributions that do not clearly belong to
them in a specific class. Nevertheless, there are some features,
e.g. REVEL, FATHMM-XF, Eigen-raw and SiPhy, that seem
to push the network towards a wrong decision for correctly
classified examples, but at the same time they are useful
to achieve better results on FPs and FNs. Such a detailed
analysis can help tuning the annotations in order to improve
performances on wrongly classified variants.

C. CLINICAL MEANING
Regarding the annotations providing an high FI, it is found
that 2 of the top features, DEOGEN2 and CADD, are ensem-
ble methods that collect information from different studies
and databases with the aim of predicting the deleteriousness
of variants [43], [46]. The fact that their sources are different
makes them suitable to contribute together with valuable
pathogenic information, without encompassing duplicated
knowledge. MPC is also a driver predictor for missense
variants which makes the difference with previous attributes
by including frequency information, together with other
deleteriousness predictors [89]. Similarly, fitCons is another
functional annotation that includes fitness consequences of
mutations based on conservational evaluations [90], provid-
ing an alternative perspective for classification.

Moving into the binary pathogenic predictors, BA1, PP2
and PP5 are all retrieved from ACMG/AMP [67]. PP2 and
PP5 are described as supporting evidence of pathogenic
indicators, based on pathogenic reports that include those
variants and the gene rate containing benign or driver muta-
tions, respectively. BA1, in contrast, is a benign classifier

37386 VOLUME 11, 2023



M. Bastico et al.: DrOGA: An Artificial Intelligence Solution for Driver-Status Prediction

FIGURE 5. SHAP values of the input features for XGB and CNN with skip connections of our benchmark. (a) The top 20 important features
ranked by mean absolute SHAP values for the XGB model. (b) SHAP values per sample of the top 20 most important annotations for XGB
model. The colour of each dot represents the original value of the input features. (c) Average SHAP values of TPs, FPs, TNs and FNs for our CNN
with skip connections architecture, considering the feature vector as a one dimensional image.

that takes into account frequency information gathered from
different databases, which is useful for well-known variants.
Finally, the CLNSIG feature summarises different clinical
significance approaches, including ACMG/AMP as well for
pathogenic predictions [66]. That is why CLNSIG4, the
‘pathogenic’ class for the one-hot encoding of the original
variable, provides information considering the same criteria.

VI. CONCLUSION
In this work we proposed a new features engineering pipeline
to represent DNA variants by mean of a 70-feature vec-
tor collecting update-to-date conservation, functional and
ensemble scores. The annotations are collected from sev-
eral well-known databases, which can be easily accessed
through the ANNOVAR annotating tool.With such processed
data, we provide a benchmark, DrOGA, comprising classi-
cal ML and newly proposed DL architecture, to detect the
driver-status of somatic non-synonymous mutations. In order
to train and test our models, we collected a complete dataset

of driver and neutral alterations from many public data
sources.

We shown the effectiveness of our pre-processing pipeline
and benchmark providing outperforming results in terms
of variants driver-status classification, overcoming State-
of-The-Art functional and ensemble methods. Ensemble
methods generally surpass unsupervised methods when
high-quality training data of appropriate type and quantity are
available. This means that, based on our results, the proposed
feature engineering helps to refine the quality of the data
and obtain better predictions. Therefore, it can be used not
only for the purpose of this work, but also to help other
variant classification and prediction tasks, such as survival
analysis or mutations clustering. On the other hand, there is
a strong dependency related to the availability of the annota-
tions used as input. The lack of some of them can compro-
mise the correct functioning of the pipeline and subsequent
algorithms. To overcome this problem, in future works, some
complementary solution to estimate the missing values can
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be developed or included in the features engineering pipeline.
For instance, the use of Variational AutoEncoders (VAEs) and
Deep Latent VariableModels (DLVMs) has been already pre-
sented with the purpose of handling and imputing incomplete
datasets in [119] and [120], respectively. Such approaches
could be easily introduced as further pre-processing step in
the proposed pipeline, to make possible the classification
of every variant even when the set of annotations is not
complete.

A final analysis throughXAI is also provided to understand
the hidden behavior of the models and to relate the outcomes
with the clinical meaning of the annotations.We shownwhich
features are more important for the final decision based on
their SHAP values. This study can help future works to fur-
ther refine the training and testing data removing or weighting
variables which do not influence the models predictions.
Overall, we believe that the proposed work can help the
developing of tools to analyse genomics mutations in human
cancers, allowing for further improvements in precision can-
cer medicine.

VII. SUPLEMENTARY DATA
The DNA mutations used in this work were gathered down-
load from public repositories CGI [52], FASMIC [36], [56],
dbSNP [57] and IntOGen [54], [55]. The merged data anno-
tated with ANNOVAR, following our dataset collection,
is available at https://github.com/matteo-bastico/DrOGA.

The code used to pre-process the collected dataset and
obtain our variants representation is available in the same
GitHub repository. An open source implementation in
PyTorch and Scikit-learn of DrOGA is publicly accessible at
the same repository, which is released under the MIT licence.
It includes the independent training of all the presented archi-
tectures, as well as code for testing our pre-trained models on
new variants.
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