
Received 18 March 2023, accepted 11 April 2023, date of publication 13 April 2023, date of current version 12 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266822

Workload Allocation Toward Energy
Consumption-Delay Trade-Off in Cloud-Fog
Computing Using Multi-Objective
NPSO Algorithm
FATEN A. SAIF , ROHAYA LATIP , (Member, IEEE), ZURINA MOHD HANAPI , (Member, IEEE),
MOHAMED A. ALRSHAH , (Senior Member, IEEE), AND SHAFINAH KAMARUDIN
Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), Serdang
43400, Malaysia

Corresponding authors: Faten A. Saif (f-saif500@hotmail.com), Rohaya Latip (rohayalt@upm.edu.my), and Kamarudin Shafinah
(shafinah@upm.edu.my)

This work was supported by University Putra Malaysia, and in part by the Ministry of Education (MOE) Malaysia.

ABSTRACT The Internet of Things (IoT) generates massive data from smart devices that demand responses
from cloud servers. However, sending tasks to the cloud reduces the power consumed by the users’ devices,
but increases the transmission delay of the tasks. In contrast, sending tasks to the fog server reduces the
transmission delay due to the shorter distance between the user and the server. However, this occurs at the
user end’s expense of higher energy consumption. Thus, this study proposes a mathematical framework for
workload allocation to model the power consumption and delay functions for both fog and clouds. After that,
a Modified Least Laxity First (MLLF) algorithm was proposed to reduce the maximum delay threshold.
Furthermore, a new multi-objective approach, namely the Non-dominated Particle Swarm Optimization
(NPSO), is proposed to reduce energy consumption and delay compared to the state-of-the-art algorithms.
The simulation results show that NPSO outperforms the state-of-the-art algorithm in reducing energy
consumption, while NGSA-II proves its effectiveness in reducing transmission delay compared to the other
algorithms in the experimental simulation. In addition, the MLLF algorithm reduces the maximum delay
threshold by approximately 11% compared with other related algorithms. Moreover, the results prove that
metaheuristics are more appropriate for distributed computing.

INDEX TERMS Energy consumption, delay, multi-objectives optimization, NPSO, optimization, pareto
solutions, particle swarm optimization, workload allocation.

I. INTRODUCTION
Internet of Things (IoT) applications have contributed to
modern society in various ways. Examples include smart
manufacturing, smart homes, smart vehicles, intelligent
transportation, and agriculture. The increasing growth of bil-
lions of IoT devices with sensors and actuators can be felt
in the environment. Smart devices and humans can commu-
nicate instantly to create a more innovative world compris-
ing of smart cities, transportation systems, health services,

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

industries, homes, farming, and security. The proliferation
of these connected IoT devices and sensors lead to the gen-
eration of a massive amount of data at every moment [1].
This generated data creates big data, which requires ade-
quate storage, processing, and analysis to obtain valuable
outputs that satisfy user requirements. It also requires a
vast processing capability beyond the capacity of terminal
devices, owing to their limited battery life, power computa-
tion, and storage capacity. The obtained information is then
transferred to the data centres in the cloud for processing;
this requires enormous computational resources and should
be sufficiently distributed geographically to enable users

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 45393

https://orcid.org/0000-0002-7357-7957
https://orcid.org/0000-0002-6462-1944
https://orcid.org/0000-0002-8079-1791
https://orcid.org/0000-0003-2385-3287
https://orcid.org/0000-0002-5705-9172
https://orcid.org/0000-0001-5067-858X

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

to send their requests everywhere and simple tasks should
be executed on terminal devices [2]. Despite the enormous
capabilities of cloud computing, owing to its high resource
computation and scalability to process the enormous amount
of data generated from IoT devices, delivering such a large
amount of data via the Internet to the remote cloud data center
consumes a large amount of bandwidth and leads to net-
work delay [3]. Consequently, the Quality of Service (QoS)
is degraded, particularly for time-sensitive tasks, owing to
the significant distance between the cloud and IoT devices,
which is a challenge. From this viewpoint, fog computing
addresses the shortcomings of cloud computing by acting
as a bridge between IoT devices and the cloud [4]. Fog
computing is middleware containing multiple heterogeneous
devices that are ubiquitously connected, such as base stations,
routers, switches, surveillance cameras, and others that can be
deployed in places such as power poles, vehicles, and com-
mercial centres. These devices are decentralized to provide
instant processing of raw data from the sensors. Furthermore,
fog nodes can communicate within the same layer regarding
processing problems [5]. One of the main advantages of fog
computing is its proximity to end users. Thus, facilitating
instant data processing and storage reduces the transmission
delay for time-critical tasks, such as those in emergency
health-monitoring applications [6]. Furthermore, it supports
the mobility of terminal devices. In addition to the benefits of
fog computing in processing time-sensitive tasks, it still needs
to be improved [7]. Limitations in computation capacity and
battery life are challenges experienced during task execution
in fog nodes. The node cannot process complex or large tasks
and characterize by high energy consumption. All these fac-
tors prevent fog computing from satisfying user requirements.
Despite the limitations of cloud and fog nodes, exploiting
their benefits by incorporating them into a paradigm called
cloud-fog computing will be meritorious [3].

Cloud-fog computing is a promising platform that can
serve billions of IoT devices by processing delay-sensitive
data in applications that require real-time response [8]. It con-
tains multiple local fog nodes and remote cloud centres to
reduce delays and network traffic while increasing energy
efficiency. Furthermore, it enables the processing of tasks
from IoT applications via a suitable layer between fog and
the cloud. Despite the significant advantages of cloud-fog
computing, it still faces a critical challenge during allocation
owing to the variety of task characteristics such as task input
length, task computing unit, and degree of delay sensitivity.
These factors are barriers to allocating workload in cloud-fog
computing and need to be improved to guarantee QoS.

It is an essential technique that significantly reduces the
financial cost incurred in data processing, especially when
end users choose the appropriate resource to send their work-
load [7]. In addition, they play a leading role in determining
the most suitable layer for processing tasks to meet user
requirements according to their characteristics. Nevertheless,
the variety of IoT-generated tasks makes workload alloca-
tion challenging because transmitting complex tasks to the

cloud centres for processing increases network delay, which
makes it even less energy-consuming. In contrast, executing
time-sensitive tasks in the fog node reduces the delay but
increases the energy consumption [9]. On the one hand,
the dynamic nature of massive IoT-generated data leads to
network overload, which makes it fail to meet the require-
ments of workload allocation. Thus, workload allocation in
cloud-fog computing is critical and must be well-planned to
overcome these problems, mainly because they are associated
with IoT applications with various generated data requiring
an instant response [10].

Workload allocation involves assigning tasks to the appro-
priate layer between fog nodes and the cloud server to guaran-
tee efficient task execution and promote smart manufacturing
in various respects. For instance, in intensive care, patients are
connected to wearable devices, such as thermometers, blood
pressure monitors, and electrocardiography, to detect vital
signs. Hence, the CCTV was placed in a room to record the
patient’s motions. CCTV creates a film, is considered a com-
plex task, and should be transferred to the cloud for analysis,
processing, and storage. In a critical case, the sensor detects
the sensed information and sends a direct notification to the
doctor for an instant response or action. Such notifications
require rapid processing and analysis from a shorter distance
to save a patient’s life. In this case, these critical signs are sent
to the fog node by leveraging its proximity. The significant
role of workload allocation when deciding where tasks must
be sent for execution is shown in Figure 1.

Therefore, classifying the problem of workload allocation
is the first step for improving and finding an appropriate
approach to obtain the solution. Thus, workload allocation is
an optimization problem. Typically, there are two standard
techniques for solving optimization problems: optimal and
heuristic approaches. Optimal approaches, such as simplex
techniques and branch-and-bound guarantees, obtain opti-
mal solutions compared to heuristic approaches. Neverthe-
less, they require a longer execution time, making them
suitable only for small problems. Similarly, they must con-
verge when used to solve complex problems. On the other
hand, heuristic approaches provide near-optimal solutions
with less complexity, which implies less execution time.
Hence, they are ideal for solving complex problems [11].
Many heuristic approaches have been used extensively to
solve complex tasks involving non-linear, high-dimensional,
multi-model, and real-time systems [12]. Hence, there are
various common approaches, such as the Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony Opti-
mization (ACO), SimulatedAnnealing (SA), and Tabu Search
(TS) [5]. This study adopts the PSO algorithm instead other
metaheuristics approaches because it is much simpler than
other metaheuristic approaches. In addition, it has a more
rapid convergence owing to the use of fewer operators than
the other approaches [13]. Having fewer operators means
simple complexity which leads to a shorter execution time
and a reduction in energy consumption. Moreover, the PSO
is widely used in optimization functions such as workload

45394 VOLUME 11, 2023

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

FIGURE 1. Allocating the workload from the patient to the cloud-fog
layers.

and resource allocation, task scheduling, and fuzzy system
control, and that aligns with the aim of this study. These
advantages make the PSO the best option in the work-
load allocation with a variety of generating tasks from IoT
applications.

However, the PSO algorithm has some shortcomings.
It gets stuck in the local optimum solution owing to its
decreasing population diversity, and particle reduction as the
iterations proceed, affecting its ability to obtain the best solu-
tion [14]. Therefore, it is necessary to address this problem
by finding a solution to increase the population diversity
and overcome the limitation of falling in the local optimum
solution, which is the main challenge of heuristic approaches,
and leads to accomplishing the desired scheduling objectives
(i.e., energy consumption, delay, cost, makespan, etc.).

At this point, Multiple-objective problems (MOP), rather
than having a single objective, attract considerable critical
attention. MOP can provide trade-off solutions that satisfy
conflicting objectives. Thus, there are two main techniques to
solve the MOP: the decomposition technique for generating
non-Pareto solutions and finding Pareto optimal solutions
through an individual run in the problem space [15]. A Pareto-
optimal or non-dominated solution guarantees the best per-
formance. If there is no best solution, it provides at least one
best value, and the remaining solutions are of the same quality
[16]. The essential problem of this study is the increasing
demand for cloud and fog servers with the astronomical
volume of data generated from IoT applications and the rapid
increase in users’ requests. Thus, transferring tasks from end
users’ devices to fog nodes will increase the energy consumed
by fog nodes on the user side and reduce transmission delay
owing to the short transmit distance between users and fog
nodes. In contrast, sending tasks to the cloud servers will
reduce the energy consumption of the end users but increase

the transmission delay owing to the long transmission dis-
tance between end users and cloud servers. Therefore, this
critical problem requires an effective trade-off strategy. Thus,
the Pareto-optimal solution can significantly solve conflicting
objectives while allocating workloads in cloud-fog comput-
ing, and this solution solves the main challenge in this study.

It is mandatory to propose a practical algorithm for
reducing transmission delay and energy consumption during
workload allocation and provide reasonable performance in
reducing delay and energy consumption to enhance the pro-
cessing of tasks uploaded by IoT devices and speed up the
execution time in various applications such as smart manufac-
turing, smart homes, and smart transportation. Therefore, this
study contributes significantly to the research on workload
allocation in cloud-fog computing by deploying MOP. It pro-
poses a trade-off technique between the energy consumed
and the delay threshold. To the best of our knowledge, this
is the first study that addresses using an NPSO algorithm
for workload allocation in cloud-fog computing and proposes
an MLLF algorithm to reduce delay threshold. The main
contributions of this study are as follows:

• A mathematical framework with queue theory was
developed to reduce power consumption and delay via
efficient workload allocation.

• An optimal online algorithm called MLLF was pro-
posed to reduce the maximum upper bound of the delay
threshold.

• An NPSO algorithm was proposed to perform workload
allocation for each layer using MOP to reduce energy
consumption and delay.

• The experimental results show the superiority of the
NPSO algorithm in reducing energy consumption and
the NSGA in reducing transmission delay, Also, the
MLLF algorithm in reducing the delay threshold by
11% compared with the First Comes First Serve (FCFS),
scheduling to minimize lateness (STML), and (LLF)
algorithms.

This paper is structured as follows: Section II reviews related
works, discusses relevant algorithms and workload allocation
techniques, and illustrates comparative studies on workload
allocation in cloud-fog computing. Section III presents the
mathematical framework of the cloud-fog integration system
in detail. Section IV illustrates the proposed algorithm, and
Section V presents a performance evaluation and describes
the simulation environment. The simulation and numerical
results are presented in Section VI. finally, the concluding
remarks are presented in Section VII. along with potential
future works.

II. RELATED WORK
Workload allocation in distributed computing has attracted
significant attention over the years because it affects QoS.
Thus, scholars have proposed various techniques to determine
where and how to allocate the workload while maintain-
ing the QoS of the target applications. This section briefly

VOLUME 11, 2023 45395

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

reviews prior studies on workload allocation in cloud-fog
computing. Asmentioned in [17], a newmethod called BCM-
XCS utilizes learning classifier systems (LCS called XCS)
for workload allocation and resource management in cloud-
fog computing. It uses a GA algorithm and considers four
dimensions: workload, delay, power consumption, and bat-
tery status. The goal was to strike a balance between the
power consumption at the fog layer and the delay at the
cloud layer. The simulation results show that the proposed
algorithm reduces the processing delay by about 42%. Also,
it can recharge the renewable batteries utilized at the edge
layer around 18 % more than comparing algorithms. How-
ever, adopting AI requires massive computation and mem-
ory resources that are more appropriate when executing at
the task on a cloud platform and not on a cloud-fog com-
puting platform. In addition, GA has more parameters and,
thus, a higher complexity and computation time than other
heuristic approaches. Similarity, [18] proposed a modified
energy-efficient workload allocation model within the IoT-
fog-cloud framework to decrease power consumption and
delay using the NSGA II algorithm. Solar or wind energy
can be used as renewable energies for complementary power
supply to reduce the energy consumption of fog devices. The
experiment results present the proposed algorithm’s ability to
reduce the energy consumption of fog nodes and reduce task
delay of IoT devices. The NSGA II algorithm also reduces
energy consumption and delay for various workloads. How-
ever, offloading of several edge nodes must be considered.
In addition, the central controller requires information on
all fog nodes. As others have highlighted, [3] proposed a
delay-aware online workload allocation and scheduling algo-
rithm (DAOWA) for cloud-fog computing to decrease task
service delay while satisfying QoS requirements. The sim-
ulation results reveal that the DAOWA algorithm can reduce
the task service delay and optimize the policy of allocating
the workload respecting the system status. However, this
study excluded energy consumption, which is a significant
consideration in cloud-fog computing. The optimal workload
allocation in cloud-fog computing was introduced in [4] to
trade-off delay and energy consumption by dividing the pri-
mary problem into three subproblems using an approximation
method. The numerical result demonstrates that the fog node
complements the cloud and does not substitute it. Also, the
fog node can improve the performance of cloud computing
by sacrificing humble computation resources to maintain
the communication bandwidth and minimize transmission
delay. However, this mechanism is characterized by an over-
head. As reported in [19] workload allocation in cloud-fog
computing with an energy-delay trade-off was studied. This
problem is formulated as a MOP that is solved using the
NSGA II algorithm. The simulation result illustrates the
proposed algorithm’s ability to reduce energy consumption
and delay. Also, allocating workload to fog devices is about
25%. However, GA consumes more energy during computa-
tion than other meta-heuristic approaches because it adopts
more parameters and does not consider other state-of-the-art

comparative algorithms for evaluation. Referring to [20] pro-
posed the idea of distributing workloads in an IoT edge-cloud
computing system while guaranteeing energy efficiency and
minimal delay via a delay-based workload allocation algo-
rithm (DBWA). The algorithm uses the Lyapunov drift-plus-
penalty theory to reduce the system’s energy consumption
with a granular delay for each job. The result shows that the
proposed algorithm can better balance workload distribution
than other algorithms. At the same time, it reduces the delay
by about 40%. It reduces the energy consumption of the
vehicular network, this strategy attempt to reduce battery
consumption by exploiting renewable energies. However, the
non-availability of green energy results in sending all requests
to the cloud, and edge servers lose their ability to reduce
delays. Similarly, the authors of [21] proposed a queue-
theory-based workload allocation in cloud-fog computing to
achieve a trade-off between energy consumption and delay.
It aims to determine an optimal workload when new tasks
are generated following the dynamic nature of IoT applica-
tions. The problem was solved using non-linear program-
ming to reduce energy consumption while utilizing (STML)
algorithm to reduce the delay threshold. They proposed a
cloud-fog cooperation algorithm that considers computa-
tional energy. Even more, they presented a task offloading
algorithm for nodes that run off to another node in the same or
upper layer. The numerical analysis presents that energy con-
sumption was reduced around 22%, while the delay reduces
by 12.5 %, less than the compared approach FCFS algorithm.
However, optimal optimization requires higher computation
and energy consumption. According to a study in [22] pro-
posed an energy-efficient model for workload allocation and
computation for multiple VM configurations. Discussing the
trade-off between energy cost and SRP, they theoretically
demonstrated an ideal SRP that achieves the lowest energy
cost. They determined the closed-form conditions to reach
this minimal energy point and investigated the joint task allo-
cation and computation frequency configuration challenge.
The simulation was conducted on synthetic and real-world
workload trace data. The results reveal that the proposed algo-
rithm can perform minimum energy consumption compared
to conventional fixed-SRP configuration schemes. However,
the scalability of VMS was challenging in this study. Adding
more VMs increase the energy cost, and the maintenance and
orchestration of VMs make it challenging to reduce the delay
and overhead problems.

It is evident from previous studies that standard tech-
niques implemented in investigating workload allocation in
cloud-fog computing are solved by an optimal technique
or artificial techniques that both have robust performance.
However, these methods have high complexity that leads to
higher resource computation and energy consumption, which
could be unfavourable in a cloud-fog computing environment
that requires minimum delay and energy consumption. How-
ever, some studies have utilized GA, a popular meta-heuristic
approach. Generally, the meta-heuristic approach provides a
reasonable high-quality solution with lower complexity than

45396 VOLUME 11, 2023

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

the optimal solution, which guarantees a reduction in energy
consumption. Nevertheless, the GA consumes more energy
than othermeta-heuristic approaches because it requiresmore
parameters to obtain the results. This factor leads to more
computation time and energy consumption and does not meet
the service requirements required for processing IoT applica-
tions in a cloud-fog computing environment.

From this perspective, finding a suitable approach to meet
the platform’s demands is essential. Thus, the PSO algorithm
has a minimal number of parameters while providing reason-
able solutions compared to other metaheuristics, making it
the ideal option for workload allocation in cloud-fog. There-
fore, this study employs a MOP approach (NPSO algorithm)
because it requires fewer parameters, which leads to reduced
execution time and decreased energy consumption, which are
the main objectives of this study. In addition, there is the
ability of optimal solutions to reduce the delay. Thus, this
study proposes an optimal online MLLF algorithm to reduce
the maximum delay threshold and guarantee that the delay
requirements are met. Thus, reducing the response time and
processing more tasks from the IoT devices is necessary.
Based on the above points, this study meets the requirements
for reducing delay and energy consumption.

III. CLOUD-FOG SYSTEM AND PROBLEM FORMULATION
The cloud-fog system proposed in Figure 2 was adopted
because of its simplicity and feasibility of implementation
[22]. The system comprisesM end devices that communicate
with each other via wireless links, F fog nodes, and C cloud
servers. The role of fog nodes is to provide services to end-
user devices. Cloud servers are responsible for fog nodes.
While the monitoring center moderates task scheduling in
the cloud, thereby reducing communication costs. Whereas,
the traffic model captures a variant of the power and capacity.
The modelling of the entire cloud-fog computing system
using queue theory. The traffic model follows an M/M/1
queue at the end devices, M/M/C queue at the fog node, and
M/M/∞ queue at the cloud server. The workload allocation
procedure is described as follows: if the arrival rate of the
generated tasks is less than the service rate of the end devices,
then process tasks are at the end devices. However, they are
sent to the fog node if the arrival rate of the tasks exceeds
the service rate of the devices. Otherwise, the tasks are sent
to the cloud servers. The average task arrival rate followed
a Poisson process that are utilized in scenarios where when
the continuous occurrences of specific events which appear
to occur at the specific rate, but randomly [23]. Also, the
wireless channels between terminal devices and fog required
are exponentially distributed. The task is characterized by the
number of tasks, length of the task input, task deadline, flag of
task execution, and required computing unit by task. Table 1
lists the primary notations used in this study.

A. DELAY THRESHOLD DEFINITION
In this study, the delay threshold was modelled as Dtotal ≦
Dmax . Hence, to reduce the delay, we reduce because it affects

Algorithm 1MLLF Algorithm
BEGIN
1 For scheduling instant xi
2 For each r ∈ R (xi) do
3 Calculate Laxity (xi) = Di − (Ti + Ci)

4 End for
5 n← adding (R (xi) , laxity (xi))
6 for (i = 0; i < n;+ + i){
7 for (j = i+ 1; j < n;+ + j){
8 IF (num [i] > num

[
j
]

9 a = num [i] ;
10 num [i] = num

[
j
]
;

11 num
[
j
]
= a; } } }

12 rlist = num
[
j
]

13 Else IF (num [i] = num
[
j
]
){

14 Calculate WT(xi) = xbegin − xarrive
15 WT(xj) = xbegin − xarrive
16 rlist = assign priority to the max

(
WT (xi) ,WT

(
xj

))
;}

17 End For
18 End For
19 rlist← sort (R (xi) , laxity (xi))
20 Return rlist
END

FIGURE 2. The architecture of cloud-fog computing.

the task completion time and workload allocation. Thus, it
is essential to determine an algorithm that can guarantee at
reduction in Dmax . Generally, in a real-time system, there
are two categories of scheduling: online and offline [24].
In offline scheduling, the decision (resource allocation, exe-
cution time, deadline, and priority allocation) is made before
the system start-up time because it has complete knowledge
of the tasks for execution. Meanwhile, in online scheduling,
the decision is made during the system run time by assign-
ing priority to tasks, which is more appropriate for an IoT
environment with a dynamic nature and unpredictable tasks.
Hence, there are two online algorithms: the Earliest Deadline

VOLUME 11, 2023 45397

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

TABLE 1. Summary of notations [21].

First (EDF) algorithm and (LLF) algorithm. This study chose
the LLF algorithm because it is more dynamic than the EDF.
Fixed deadlines characterize the EDF, whereas the deadlines
of the LLF change over time and are more flexible to IoT
tasks. This study proposes a new algorithm, namely MLLF,
an online-based algorithm derived from LLF.

The LLF algorithm is an optimal algorithm based on cal-
culating the laxity value for each task and then assigning the
priority according to the minimum values to guarantee reduce
of the delay, the maximum tolerable delay that tasks can
experience. However, The LLF performs poorly when more
than one task has equal laxity values. Thus, an enhancement is
required to tackle this challenge while finding a way to reduce
delay in the system, which leads to improved response time,
as a higher priority is assigned to the maximum waiting time
in the queue to release tasks from the system.

Algorithm 1 presents the proposed MLLF, initially calcu-
late the laxity of each task, whereDi is the task deadline, Ti is
the current system time, Ci represents the worst-case execu-
tion time (WCET). After that, sorting the tasks in ascending
order based on the laxity values in the store called (n). Then,
sorting the laxity value from store n in ascending order.
In case, the equal values of laxity the algorithm improve it
by calculating the waiting time of tasks with equal laxity
value. After that, assign the priority to the task withmaximum
waiting time and add it to the r list that indicates the task laxity
list, where the waiting time (WT) is the duration between the
arrival of the requested task in the queue of the server and
when it starts processing. xbegin represents when the task starts
execution, and xarrive is when the task arrives in the queue.
This technique can fasten the responding time.

The validation of theMLLF performance is provided in the
Results section.

B. END USER DEVICE
We assume the service rate µ of the end-user device i fol-
lows an exponential distribution, with an M/M/1 task queue.
In addition, the generation of tasks from the end device is

based on at Poisson process with an average arrival rate λ.
Ped is the energy of end-device i and Ted is its processing
time. The power consumption of X ied for the task’s execution
at the end device calculated by

Pied ≜ Ted × Ped =
X ied

µ− λ
× Ped (1)

We consider computing latency because tasks performed on
mobile terminal devices have little communication delay.
As deduced from queue theory, the delay is described as

Died ≜
λ

µ (µ− λ)
. (2)

C. FOG NODE
The task queue in fog node j is modelled as M/M/C. The
energy consumption reflects the amount of computation,
which is a monotonically increasing and strictly convex func-
tion. Quadratic and piecewise linear functions are two alter-
natives to this function [4]. Fog nodes can flexibly adapt to
any function of energy consumption as long as they meet
these two attributes:1) there is a direct relationship; that is,
increasing energy consumption increases the computation
amount. 2) The energy consumption margin increases for
each fog device. The power energy expression Pjfog of the fog

node is related to the workload Y jfog as follows:

Pjfog ≜ aY j
2

fog + bY
j
fog + c (3)

where a > 0 and b and, c ≥ 0 are pre-determined parameters.
The fog node j consists of both communication and com-

puting delays. The computing delayDcomfog is related to waiting
time. Using queue theory, we can express the computing
delay as follows:

Dcomfog ≜
QL
λ
× Y jfog, (4)

where Y jfog is the workload allocated to fog node j and. QL
is the average queue length. As a result of task execution at
the fog node, communication is related to the input length of
the tasks. The communication delay Dcommj is expressed as
follows:

Fcomm
(
Ig

)
≜ {γ IgεIg,

ut ∈ cloud,

ut ∈ fog
(5)

where Ig is the input length of the task t (γ ≫ ε). Therefore,
the communication delay of the fog node is Dcommfog = εIg.
The fog node delay is composed of computing and commu-
nication delays, which can be expressed as follows:

Djfog ≜= Dcomfog + D
comm
fog (6)

D. CLOUD COMPUTING
For cloud server k, the task queue is modelled as an M/M/∞
queue. Assuming that every cloud server has several homoge-
neous computing machines and that the CPU frequency of all
machines is equal, this implies that the energy consumption
for all servers is the same. The approximate energy consumed

45398 VOLUME 11, 2023

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

by every machine on cloud server k can be obtained by
utilizing the frequency of the CPU machine function. fk :
AkZ kcloud + Bk , where Ak and Bk are positive constants [25].
Assigning more workload to the cloud server implies more
power-on. Whenever the assigned workload decreases, some
cloud servers are turned off to save energy. The power con-
sumption of the cloud server Pkcloud is related to the on/off
state of the machine.

Pkcloud ≜ σknk (akZ kcloud + bk), (7)

where ak and bk are the positive constants. σk indicates the
on/off state of cloud server k, where 1 denotes the cloud server
on and 0 indicates its off state. nk denotes the number of
on-state machines on the cloud server. Owing to the heavy
computational resources of cloud servers, the computing
delay can be assumed to be negligible; thus, the delay is the
communication delay that defines as

Dkcloud ≜ γ Ii (8)

IV. MULTI-OBJECTIVES OPTIMIZATION PROBLEM (MOP)
The main purpose of MOP is to optimize conflicting multi-
objectives simultaneously. With m decision variables and n
objectives, it can be defined as:
Min(y = f (x) = [f1 (x) , , fn (x)]), where x =

(x1, , xm) ϵX is an m-dimensional decision vector, X is
the search space, y = (y1, , ym) ϵY is the objective
vector; and Y is the objective space. Generally, there is no
single optimal solutionwith respect to other objectives. In this
type of problem, the desired solution is regarded as at set of
possible solutions that are optimal for a single objective or
more. These solutions are considered Pareto optimal sets. The
main Pareto concepts used in the MOP are as follows:
(i) Pareto dominance. For two decision vectors x1 and x2,

dominance (indicated by ≺): is known as
x1 ≺ x2 ⇐⇒ ∀ifi (xi) ≤ fi (xi) ∧ ∃i (xi) < fi(xi).
The decision vector x1 dominates x2, in this case, x1
outperforms x2 for at least single objective.

(ii) Pareto optimal set. Pareto optimal set Ps is the set of
all Pareto optimal decision vectors.

Ps = {x1 ∈ X , |∃ x2 ∈ X , x2 ≺ x1,

where decision vector x1 is said to be Pareto optimal
when it is not dominated by any other decision vector,
x2, in the set.

(iii) Pareto optimal front. The Pareto optimal front PF
is an image of the Pareto optimal set in the objective
space.

PF = {f (x) = (f1 (x) ,, fn (x)) |x ∈ Ps}

V. THE PROPOSED ALGORITHM NPSO
PSO was developed by Kennedy and Eberhart and is built
on the behaviour of the animals’ social system [26]. It is a
population-based evolutionary algorithm known as swarm,
where; each swarm has many particles indicated as a solution.

Every particle has previous local information regarding the
best solution and the global best solution found by the entire
swarm. The search space of PSO has D dimensions, and the
technique utilized is the velocity vector for every particle
without selection operators, which increases the computation
time. Furthermore, the PSO particles moved Towards the
search space. PSO relies on the direction and velocity to
select at particle’s motion. However, the main shortcoming of
PSO is that it traps the local optimal solution [14]. Thus, the
motivation is to improve the limitation of PSO by proposing
NPSO algorithm by adapting a mutation operator to increase
the diversity of the particle population to avoid falling into
the local optimum search and improve its exploration in the
search space to facilitate finding the solution to the MOP.
Each particle had its own position and velocity. The velocity
of the i th particle at the t th iteration is denoted as vti =
vt1, v

t
2,v

t
nd while its position is s

t
i = st1, s

t
2,s

t
nd .

D denotes the dimension of the search space. Pbest ti refers
to the best previous position based on the best fitness value
determined by the i th particle at the t th iteration. This
is indicated by Pbest ti = Pbest t1,Pbest

t
2,Pbest

t
nd .

Gbest ti is the global best particle position found in the entire
generation based on the fitness function. It depends on the
optimization problem and it chosen from the top of the exter-
nal archive. The global best particle is denoted as Gbest ti =
Gbest t1,Gbest

t
2,Gbest

t
nd . The main equation of the

NPSO is described as follows. The NPSO strategy is shown
in Algorithm 2.

A. THE VELOCITY OF EACH PARTICLE IS UPDATED AS
FOLLOWS

vt+1i = w · vti + C1 · r1
(
Pbest tid − s

t
nd

)
+C2 · r2(Gbest tnd − s

t
nd), (9)

r1 and r2 are random numbers in [1, 0]. C1 C1 is the cognitive
coefficient with respect to the prior exploration of particles
and C2 is a social coefficient that depends on the experience
of swarms. Here, w refers to the inertia weight, which is
formulated as a non-linear decreasing function to balance the
exploration of the global and local search space. A larger
value of inertia weight indicates a greater global search ability
(i.e., searching for a new area), whereas a smaller value
of inertia weight indicates a greater local search area (i.e.,
current search area) [27]. This study adopted a new tech-
nique [28] to improve the inertial weight of the algorithm as
follows

w(t) = ωmax ∗
1

1+ (t/H1)
H2
+ ωmin (10)

where ω(t) varies with the number of iterations. H1 is the
max. number of iterations, H is 10, and t denotes the number
of current iterations. Where ωmax is 0.5, ωmin is 0.4.

B. THE POSITION OF EACH PARTICLE IS UPDATED AS
FOLLOWS

st+1nd = stnd + v
t+1
i (11)

VOLUME 11, 2023 45399

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

stnd is the current position of particle i at time t and st+1nd is the
new position of the particle.

C. FITNESS FUNCTION
The fitness function evaluates the movement of a particle
using optimization problems to obtain the Pareto solution.
The fitness value indicates the quality of the solution and
the essential metrics for guaranteeing the diversity of the
solution [29]. Thus, the fitness function is used to select
a solution based on the minimum delay and energy con-
sumption. The fitness function computes using the weighted
sum approach that based on gathering various objectives into
single objective function, that can be calculated by

F(n) = α1 ∗ Energy+ (1− α2) ∗ delay (12)

Hence, Energy and delay are scaled and weighted based on
their importance and incorporate to provide the objective
function. Where α is the energy-delay balance factor and it
value varies between [0, 1]. It is a significant factor to assign
the priority to the objective. In the scenario of fog-cloud
computing, we focused on allocating workload depending on
the delay and energy consumption simultaneously. Thus, the
total energy and total delay balance coefficient. α1 = α2 =

0.5 means that the total energy and total delay are assigned
the same priority in the optimization procedure. In this article,
a general problem is considered that gives equal preference to
both the objectives.

D. ADAPTIVE MUTATION
Incorporating a mutation operator with PSO plays an essen-
tial role in maintaining the diversity of the particle popula-
tion, which overcomes the challenge of having PSO trapped
in local optimal solutions. The mutation operator randomly
changes the position of the particle, thereby enhancing the
local search capabilities. Moreover, it improves the accuracy
of the obtained solutions, as shown in Figure 3.

E. EXTERNAL ARCHIVE
The external archive adopted in the proposed algorithm for
storing Pareto solutions was obtained from each iteration
until the termination condition was satisfied, which signifi-
cantly affected the search performance [13]. It maintains the
diversity of the solutions and a uniform distribution based
on the Pareto front. Typically, the external archive is pruned
if the number of non-dominated solutions exceeds its maxi-
mum size based on the crowding distance (CD). The external
archive strategy is described in Algorithm (3).

F. CROWDING DISTANCE (CD)
The purpose of CD is to maintain the spread of solutions
uniformly along the Pareto front. When the external archive
is full, the crowding distance evaluates the solutions and
determines which solutions should be deleted andwhichmust
remain in the external archive. Because we cannot determine
the priority among solutions in the archive, we adopt the CD

Algorithm 2 NPSO Algorithm
BEGIN
1. set (number of Particle NP, size of particle swarm N)
2. set EA = Ø; // initialize an empty archive, to restore non
dominated solutio
3. initialize randomly {vti , s

t
i , Pbest

t
id ,Gbest

t
id}

4. For i = 1 to N (N the size of particle swarm)
5. Update vt+1i = w.vti + C1.r1

(
Pbest tid − s

t
nd

)
+

C2.r2(Gbest tnd − s
t
nd)

6. Update st+1nd = stnd + v
t+1
i

7. Compute F(n) = α * Energy + (1− α) * delay
8. Add the non-dominated solutions found in S into EA //
algorithm 2
9. Update Pbest tid
10. If (f

(
Pbest tid

)
< F(n)

Then f
(
Pbest tid

)
11. Elseif (f

(
Pbest tid

)
> F(n)

Then F(n)
12. Else (random select
13. End for
14. Update Gbest tid from EA// from external archive
15. For i = 1 to N (N the size of particle swarm)
16. Update vt+1i = w.vti + C1.r1

(
Pbest tid − s

t
nd

)
+

C2.r2(Gbest tnd − s
t
nd)

17. Update st+1nd = stnd + v
t+1
i

18. Mutate particle
19. Compute F(n) = α * Energy + (1− α) * delay
20. Update the External Archive E
21. Update the Pbest tid
22. End For
23. Retain the best pareto solution in external archive EA
END

to choose solutions with a higher crowding distance. The
primary purpose of CD is to limit the archive size and reduce
the complexity of the algorithm by arranging the particles in
descending order. In this case, it is necessary to choose the
minimum value, Gbest tnd . Crowding distance can be defined
as

CD =
f ti+1 − f

t
i−1

f tmax − f
t
min

(13)

where fmax and fmin indicate the maximum and minimum
values of particles in each iteration, respectively, and t. f ti
indicates the particle weights of the i th and i+th particles in
the iteration. where f ti+1 represents the next objective function
value of the particle, f ti−1 represents the previous objective
function value of this particle.

VI. SIMULATION SET-UP AND RESULT
This section presents the verification of the effectiveness
of the proposed NSPO algorithm for workload allocation.
The objective function are the delay and energy consump-
tion. MATLAB R2018b was used for the simulation to com-
pare the NPSO algorithm with a non-linear programming

45400 VOLUME 11, 2023

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

FIGURE 3. Mutation operation.

Algorithm 3 External Archive E
BEGIN
1. For i = 1 to N (population size)
2. IF EA=0 |EA < N
3. EA← F(n)// adding the pareto solutions
4. Else
5. Calculate the CD
6. Delete minimum CD
7. End if
8. End For
9. Sorting the Non-dominated solutions in descending order
END

TABLE 2. Simulation key parameters [21].

approach [21], MOPSO-CD [30], and NSGA-II algorithms.
The cloud-fog scenario considers seven end-users, three fog
nodes, and one cloud server. The extensive simulation was
conducted with five groups of tasks, and their total work-
loads are 30, 50, 90, 150, and 200, on a computer equipped
with Windows 11, CPU Core i7, and 8 GB of RAM. The
length of the tasks is randomly generated because they cannot
be predicted in reality. Validating the proposed algorithm
by performing 30 independent runs, for each run, the best
obtained delay and energy consumption were recorded to get
average result [31]. The main parameters for validating the
performance of the algorithms are summarized in Table 2
referring to [20], and NPSO parameters referring to [32] that
indicate and the represents the suitable settings to provide the
best convergence rate.

First, it is obvious from Figure 4 that the quantitative com-
parison in terms of delay illustrates a set of tasks scheduled
by the FCFS, STML, LLF, andMLLF algorithms. The X-axis
indicates 100 tasks divided into 10 groups, and the y-axis rep-
resents delay. The simulation results show that the maximum
delay incurred by the FCFS is approximately 125.10, STML

FIGURE 4. Delay of the FCFS-STML-LLF-MLLF.

FIGURE 5. Max delay of FCFS- STML-LLF-MLLF.

is approximately 126.00, LLF is approximately 86.67, and
MLLF is approximately 51.71. From the simulation experi-
ments, it is evident that the MLLF outperforms the compared
algorithms with respect to reducing the delay to the minimum
value, which can guarantee a reduction in transmission delay.

The reduction in the maximum delay of all approaches
related to 10 groups of tasks is shown in Figure 5, where
the X-axis indicates the FCFS, STML, LLF, and MLLF algo-
rithms, and the Y-axis Depicts the results of 100 tasks divided
into ten groups. A comparison among various algorithms
was made to determine the maximum delay. We observed a
stable reduction in delay when the number of tasks executed
was increased, and MLLF performed best in reducing the
maximum delay by approximately 11% compared to the
other algorithms. This affects the task completion time and
effectively allocates the workload.

VOLUME 11, 2023 45401

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

TABLE 3. Result of energy consumption based on various workload.

TABLE 4. Result of delay based on various workload.

Figure 6 compares the proposed algorithm, NPSO, non-
linear optimization [20], MOPSO-DC, and NSGA-II regard-
ing the energy consumption when D_max = 100. Recall
the average delay threshold of the MLLF in Figure 5; that
is, the normal delay threshold is (−∞, 100). The workload
was divided into five groups (30, 50, 90, 150, and 200).
The results show the superiority of the NPSO algorithm over
comparison techniques in reducing energy consumption, fol-
lowed by MOPSO-CD with a slight difference during a small
workload size. Then, the obvious difference appears with the
increasing workload size, which proves the effectiveness of
the NPSO in reducing energy consumption with an increase
in the number of workload groups. The worst performance
in reducing energy consumption goes to NSGA-II because it
has selection and mutation operations that increase the algo-
rithm’s complexity and consume more energy. See Table 3.

Figure 7 shows the performance comparison among the
NPSO algorithm with a non-linear optimization approach,
MOPSO-CD, and NSGA-II algorithms in terms of delay
when D_max = 100 is the average delay threshold of the
MLLF in Figure 3. The normal delay threshold is (−∞, 100).
Moreover, the delay threshold at D_max=100 guarantees the
completion of all tasks in time. In the simulation. The work-
load was divided into five groups (30, 50, 90, 150, and 200).
It can be observed that the lowest task transmission delay is
for the NSGA-II due to its ability to process the workload in
the shortest time based on two operators. In contrast, followed
by the NPSO algorithm over non-linear optimization and
MOPSO-CD in reducing delay due to applying the MLLF
algorithm in reducing the delay threshold when allocating the
workload utilizing the NPSO, which results in a lower delay

FIGURE 6. Energy consumption comparison among NPSO with state of
art techniques in Dmax = 100.

when allocating the workload compared to MOPSO-CD. See
Table 4.

VII. DISCUSSION AND CONCLUSION
This paper proposes a newMOP approach, namely the NPSO
algorithm for workload allocation in cloud-fog computing.
The study adopted the mathematical framework for describ-
ing the energy consumption and delay functions with queue
theory. We solve the delay optimization problem by propos-
ing the MLLF algorithm to reduce the delay threshold and
an external archive to store the non-dominated solution from
the Pareto optimal solutions. The simulation results prove that

45402 VOLUME 11, 2023

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

FIGURE 7. Delay comparison among NPSO with state of art techniques in
Dmax = 100.

the proposed MLLF effectively reduces the delay compared
to the other approaches (FCFS, STML, and LLF) by approxi-
mately 11%. Moreover, Pareto optimal solution is adopted to
find the optimal workload by reducing energy consumption
and delay.

Furthermore, the proposed NPSO algorithm can reduce
energy consumption compared to Nonlinear programming,
NSGA-II, and MOPSO-CD methods. While reducing the
transmission delay, the best performance goes to NGSA-II
due to the operations that accelerate the processing of work-
load and lead to reducing the transmission delay. Then, the
NPSO algorithm achieves better performance than MOPSO-
CD owing to utilizing the Proposed MLLF algorithm to
reduce the delay threshold, which contributes to reducing the
transmission delay. The worst performance was for Nonlin-
ear programming in reducing transmission delay and energy
consumption. Overall, the NPSO algorithm can perform a
reasonable performance in balancing the delay and energy
consumption during the allocating of the workload between
fog and cloud computing. Furthermore, the results prove
that the metaheuristics approaches are more appropriate for
distributed computing than the optimal approach.

The main limitations of this study are considering the
heterogeneity of fog nodes, conducting experiments in
a real-world system instead of simulation, and consider-
ing more objectives to solve many-objective optimization.
In future work, we will overcome the limitations of this study
for enhancement. In addition, adopting artificial intelligence
to predict the allocation workload.

ACKNOWLEDGMENT
This study supported technically and financially byUniversiti
Putra Malaysia.

REFERENCES
[1] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,

‘‘IoT Middleware: A survey on issues and enabling technologies,’’
IEEE Internet Things J., vol. 4, no. 1, pp. 1–20, Feb. 2017, doi:
10.1109/JIOT.2016.2615180.

[2] R. Tyagi and S. K. Gupta, ‘‘A survey on scheduling algorithms for parallel
and distributed systems,’’ in Advances in Intelligent Systems and Comput-
ing, vol. 718. Singapore: Springer, 2018, pp. 51–64, doi: 10.1007/978-981-
10-7656-5_7.

[3] Li, Guo, Ma, Mao, and Guan, ‘‘Online workload allocation via fog-fog-
cloud cooperation to reduce IoT task service delay,’’ Sensors, vol. 19,
no. 18, p. 3830, Sep. 2019, doi: 10.3390/s19183830.

[4] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016, doi: 10.1109/JIOT.2016.2565516.

[5] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih, ‘‘Schedul-
ing Internet of Things requests to minimize latency in hybrid fog–
cloud-computing,’’ Future Gener. Comput. Syst., vol. 111, pp. 539–551,
Oct. 2020, doi: 10.1016/j.future.2019.09.039.

[6] Z. He, Q. Zhao, H. Mei, and L. Peng, ‘‘Optimal scheduling of IoT tasks in
cloud-fog computing networks,’’ in Proc. Int. Symp. Artif. Intell. Robot.,
2021, pp. 103–112, doi: 10.1007/978-3-030-56178-9_8.

[7] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2017, doi: 10.1109/ACCESS.2017.2778504.

[8] J. Xu, Z. Hao, R. Zhang, and X. Sun, ‘‘A method based on the com-
bination of laxity and ant colony system for cloud-fog task schedul-
ing,’’ IEEE Access, vol. 7, pp. 116218–116226, 2019, doi: 10.1109/
ACCESS.2019.2936116.

[9] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, ‘‘Multiob-
jective optimization for computation offloading in fog computing,’’
IEEE Internet Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018, doi:
10.1109/JIOT.2017.2780236.

[10] M. Han, T. Zhang, Y. Lin, and Q. Deng, ‘‘Federated scheduling for
typed DAG tasks scheduling analysis on heterogeneous multi-cores,’’
J. Syst. Archit., vol. 112, Jan. 2021, Art. no. 101870, doi: 10.1016/
j.sysarc.2020.101870.

[11] R. O. Aburukba, T. Landolsi, and D. Omer, ‘‘A heuristic schedul-
ing approach for fog-cloud computing environment with stationary IoT
devices,’’ J. Netw. Comput. Appl., vol. 180, Apr. 2021, Art. no. 102994,
doi: 10.1016/j.jnca.2021.102994.

[12] F. A. Saif, R. Latip, M. N. Derahman, and A. A. Alwan, ‘‘Hybrid meta-
heuristic genetic algorithm: Differential evolution algorithms for scien-
tific workflow scheduling in heterogeneous cloud environment,’’ in Proc.
Future Technol. Conf., vol. 3, 2023, pp. 16–43, doi: 10.1007/978-3-031-
18344-7_2.

[13] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and
Y. Yang, ‘‘A novel directional and non-local-convergent particle swarm
optimization based workflow scheduling in cloud–edge environment,’’
Future Gener. Comput. Syst., vol. 97, pp. 361–378, Aug. 2019, doi:
10.1016/j.future.2019.03.005.

[14] A. M. Manasrah and H. B. Ali, ‘‘Workflow scheduling using
hybrid GA-PSO algorithm in cloud computing,’’ Wireless Commun.
Mobile Comput., vol. 2018, pp. 1–16, Jan. 2018, doi: 10.1155/2018/
1934784.

[15] M. Adhikari, T. Amgoth, and S. N. Srirama, ‘‘Multi-objective scheduling
strategy for scientific workflows in cloud environment: A firefly-based
approach,’’ Appl. Soft Comput., vol. 93, Aug. 2020, Art. no. 106411, doi:
10.1016/j.asoc.2020.106411.

[16] J. Sun, H. Li, Y. Zhang, Y. Xu, Y. Zhu, Q. Zang, Z. Wu, and
Z. Wei, ‘‘Multiobjective task scheduling for energy-efficient cloud imple-
mentation of hyperspectral image classification,’’ IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 14, pp. 587–600, 2021, doi:
10.1109/JSTARS.2020.3036896.

[17] M. Abbasi, M. Yaghoobikia, M. Rafiee, A. Jolfaei, and M. R. Khosravi,
‘‘Efficient resource management and workload allocation in fog–
cloud computing paradigm in IoT using learning classifier systems,’’
Comput. Commun., vol. 153, pp. 217–228, Mar. 2020, doi: 10.1016/
j.comcom.2020.02.017.

[18] M. Abbasi, E. Mohammadi-Pasand, and M. R. Khosravi, ‘‘Intelligent
workload allocation in IoT–fog–cloud architecture towards mobile edge
computing,’’ Comput. Commun., vol. 169, pp. 71–80, Mar. 2021, doi:
10.1016/j.comcom.2021.01.022.

[19] M. Abbasi, E. M. Pasand, and M. R. Khosravi, ‘‘Workload allocation
in IoT-fog-cloud architecture using a multi-objective genetic algorithm,’’
J. Grid Comput., vol. 18, no. 1, pp. 43–56,Mar. 2020, doi: 10.1007/s10723-
020-09507-1.

VOLUME 11, 2023 45403

http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1007/978-981-10-7656-5_7
http://dx.doi.org/10.1007/978-981-10-7656-5_7
http://dx.doi.org/10.3390/s19183830
http://dx.doi.org/10.1109/JIOT.2016.2565516
http://dx.doi.org/10.1016/j.future.2019.09.039
http://dx.doi.org/10.1007/978-3-030-56178-9_8
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/ACCESS.2019.2936116
http://dx.doi.org/10.1109/ACCESS.2019.2936116
http://dx.doi.org/10.1109/JIOT.2017.2780236
http://dx.doi.org/10.1016/j.sysarc.2020.101870
http://dx.doi.org/10.1016/j.sysarc.2020.101870
http://dx.doi.org/10.1016/j.jnca.2021.102994
http://dx.doi.org/10.1007/978-3-031-18344-7_2
http://dx.doi.org/10.1007/978-3-031-18344-7_2
http://dx.doi.org/10.1016/j.future.2019.03.005
http://dx.doi.org/10.1155/2018/1934784
http://dx.doi.org/10.1155/2018/1934784
http://dx.doi.org/10.1016/j.asoc.2020.106411
http://dx.doi.org/10.1109/JSTARS.2020.3036896
http://dx.doi.org/10.1016/j.comcom.2020.02.017
http://dx.doi.org/10.1016/j.comcom.2020.02.017
http://dx.doi.org/10.1016/j.comcom.2021.01.022
http://dx.doi.org/10.1007/s10723-020-09507-1
http://dx.doi.org/10.1007/s10723-020-09507-1

F. A. Saif et al.: Workload Allocation Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing

[20] M. Abbasi, M. Yaghoobikia, M. Rafiee, M. R. Khosravi, and V. G. Menon,
‘‘Optimal distribution of workloads in cloud-fog architecture in intelligent
vehicular networks,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 4706–4715, Jul. 2021, doi: 10.1109/TITS.2021.3071328.

[21] G. Li, J. Yan, L. Chen, J. Wu, Q. Lin, and Y. Zhang, ‘‘Energy con-
sumption optimization with a delay threshold in cloud-fog coopera-
tion computing,’’ IEEE Access, vol. 7, pp. 159688–159697, 2019, doi:
10.1109/ACCESS.2019.2950443.

[22] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and V. C. M. Leung,
‘‘Energy-efficient workload allocation and computation resource con-
figuration in distributed cloud/edge computing systems with stochastic
workloads,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1118–1132,
Jun. 2020, doi: 10.1109/JSAC.2020.2986614.

[23] S. Atapattu, C. Weeraddana, M. Ding, H. Inaltekin, and J. Evans, ‘‘Latency
minimization with optimum workload distribution and power control for
fog computing,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
May 2020, pp. 1–6, doi: 10.1109/WCNC45663.2020.9120694.

[24] N. Ahmad, N. Javaid, M. Mehmood, M. Hayat, A. Ullah, and H. A. Khan,
Fog-Cloud Based Platform for Utilization of Resources Using Load
Balancing Technique, vol. 22. Cham, Switzerland: Springer, 2019, doi:
10.1007/978-3-319-98530-5_48.

[25] L. Rao, X. Liu, M. D. Ilic, and J. Liu, ‘‘Distributed coordination of internet
data centers under multiregional electricity markets,’’Proc. IEEE, vol. 100,
no. 1, pp. 269–282, Jan. 2012, doi: 10.1109/JPROC.2011.2161236.

[26] Q. S. Khalid, S. Azim, M. Abas, A. R. Babar, and I. Ahmad, ‘‘Mod-
ified particle swarm algorithm for scheduling agricultural products,’’
Eng. Sci. Technol., Int. J., vol. 24, no. 3, pp. 818–828, Jun. 2021, doi:
10.1016/j.jestch.2020.12.019.

[27] W. Lin, Z. Lian, X. Gu, and B. Jiao, ‘‘A local and global search
combined particle swarm optimization algorithm and its convergence
analysis,’’ Math. Problems Eng., vol. 2014, pp. 1–11, Oct. 2014, doi:
10.1155/2014/905712.

[28] H. Yu, Y. Gao, and J. Wang, ‘‘A multiobjective particle swarm optimiza-
tion algorithm based on competition mechanism and Gaussian variation,’’
Complexity, vol. 2020, pp. 1–23, Nov. 2020, doi: 10.1155/2020/5980504.

[29] Z. Xu, Q. Geng, H. Cao, C. Wang, and X. Liu, ‘‘Uncertainty-aware
workflow migration among edge nodes based on blockchain,’’ EURASIP
J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1–12, Dec. 2019, doi:
10.1186/s13638-019-1583-1.

[30] C. R. Raquel and P. C. Naval, ‘‘An effective use of crowding dis-
tance in multiobjective particle swarm optimization,’’ in Proc. 7th
Annu. Conf. Genetic Evol. Comput., Jun. 2005, pp. 257–264, doi:
10.1145/1068009.1068047.

[31] B. M. H. Zade, N. Mansouri, and M. M. Javidi, ‘‘Multi-objective schedul-
ing technique based on hybrid hitchcock bird algorithm and fuzzy signa-
ture in cloud computing,’’ Eng. Appl. Artif. Intell., vol. 104, Sep. 2021,
Art. no. 104372, doi: 10.1016/j.engappai.2021.104372.

[32] R. Hassan, B. Cohanim, O. de Weck, and G. Venter, ‘‘A comparison of
particle swarm optimization and the genetic algorithm,’’ in Proc. 46th
AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn.Mater. Conf., Apr. 2005,
pp. 1138–1150, doi: 10.2514/6.2005-1897.

FATEN A. SAIF received the bachelor’s degree in computer science degree
from Sana’a University, in 2008, and the master’s degree in computer science
fromUniversiti PutraMalaysia (UPM), in 2019, where she is currently pursu-
ing the Ph.D. degree with the Faculty of Computer Science and Information
Technology. Her research interests include computer networks, workflow
and task scheduling, cloud computing, the Internet of Things, optimization,
workload allocation, and task offloading.

ROHAYA LATIP (Member, IEEE) received the
bachelor’s degree in computer science from Uni-
versiti Teknologi Malaysia, in 1999, and the
M.Sc. degree in distributed systems and the Ph.D.
degree in distributed database from Universiti
Putra Malaysia (UPM). She was the Head of the
HPC Section with UPM, from 2011 to 2012. She
consulted the Campus Grid Project and the Wire-
less for Hostel in Campus UPM Project. She is
currently an Associate Professor with the Faculty

of Computer Science and Information Technology, UPM. She is also the
Head of the Department of Communication Technology and Networks and
a Co-Researcher with the Institute for Mathematical Research (INSPEM).
Her research interests include big data, cloud and grid computing, network
management, and distributed databases.

ZURINA MOHD HANAPI (Member, IEEE)
received the B.Sc. degree in computer and elec-
tronic systems from the University of Strathclyde,
Glasgow, U.K., in 1999, the M.Sc. degree in
computer and communication system engineering
from Universiti Putra Malaysia (UPM), Malaysia,
in 2004, and the Ph.D. degree from Universiti
Kebangsaan Malaysia, in 2011. She is currently an
Associate Professor with the Department of Com-
munication Technology and Networks, Faculty of

Computer Science and Information Technology, UPM, where she has been a
Lecturer, since 2004. She has authored more than 70 papers in cited journals
and conferences in the area of security and wireless sensor networks. Her
current research interests include security, routing, wireless sensor networks,
wireless networks, distributed computing, and cyber-physical systems. She
is a member of the Malaysian Security Committee Research.

MOHAMED A. ALRSHAH (Senior Member,
IEEE) received the B.Sc. degree in computer sci-
ence from Naser University, Libya, in 2000, and
the M.Sc. and Ph.D. degrees in communication
technology and networks from Universiti Putra
Malaysia (UPM), inMay 2009 and February 2017,
respectively. He is currently a Senior Lecturer with
the Department of Communication Technology
and Networks, Faculty of Computer Science and
Information Technology, UPM. He has published

a number of articles in high-impact-factor scientific journals. His research
interests include high-speed TCP protocols, high-speed wired and wireless
networks, parallel and distributed algorithms, WSN, the IoT, and cloud
computing.

SHAFINAH KAMARUDIN received the Diploma
degree in computer science and the B.Sc. and
M.Sc. degrees from Universiti Putra Malaysia
(UPM), in 2000, 2003, and 2009, respectively,
and the Ph.D. degree from Universiti Kebangsaan
Malaysia, in 2016. She is currently a Senior
Lecturer with UPM. She has actively written
book chapters and published numerous papers in
journals and conferences. Her current research
interests include computer networks, management

information systems, ICT for agriculture, and scholarship for teaching and
learning (SoTL).

45404 VOLUME 11, 2023

http://dx.doi.org/10.1109/TITS.2021.3071328
http://dx.doi.org/10.1109/ACCESS.2019.2950443
http://dx.doi.org/10.1109/JSAC.2020.2986614
http://dx.doi.org/10.1109/WCNC45663.2020.9120694
http://dx.doi.org/10.1007/978-3-319-98530-5_48
http://dx.doi.org/10.1109/JPROC.2011.2161236
http://dx.doi.org/10.1016/j.jestch.2020.12.019
http://dx.doi.org/10.1155/2014/905712
http://dx.doi.org/10.1155/2020/5980504
http://dx.doi.org/10.1186/s13638-019-1583-1
http://dx.doi.org/10.1145/1068009.1068047
http://dx.doi.org/10.1016/j.engappai.2021.104372
http://dx.doi.org/10.2514/6.2005-1897

