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ABSTRACT Robotic computed tomography (CT) consists of two separate manipulators which carry the
source and detector, respectively. Various errors occur in motion due to lack of rigid connection, which
may change scanning trajectory of this system. Some methods aimed at recovering geometry relation have
occurred. However, these methods are relied on circular scanning trajectory. Projection matrix is the matrix
form of geometry definition, which contains geometric parameters in the matrix and transforms geometry
calculation into homogeneous matrix calculation. It is suitable for robotic CT because of its irrelevance
between angles. Besides, iteration reconstruction algorithm makes no assumptions on scanning trajectories,
which is suitable for arbitrary scanning trajectories. Hence, this study combines iteration reconstruction
algorithm with the concept of projection matrix to fill the gap. In this study, we established a transformation
between projection matrix and ray function, and construct corresponding projection model. Projection matrix
based iterative reconstruction algorithm was then developed and validated by simulation and experiment.
Uncooperative rotation of manipulators, jitter in motion and non-circular motion trajectories were simulated.
FDK, projection matrix-based FDK and projection matrix-based iterative method were compared. Real
experiments were also conducted. The results showed projection matrix based iterative reconstruction
could lead to better image quality against motion error. In summary, this study provided a high-precision
reconstruction approach for robotic CT.

INDEX TERMS Robotic CT, calibration phantom, projection matrix.

Calibration methods of robotic CT are derived from con-
ventional CT like cone-beam CT. Some of these calibration

I. INTRODUCTION
Robotic computed tomography (CT) is a novel CT structure

which uses two manipulators to carry the source and detector,
respectively. It differs from conventional CT structures like
gantry CT and C-arm with no mechanical link between two
manipulators. As a result, it can adjust geometry parameters
before and during scanning to adapt to object size. Projection
data are acquired through rotation of manipulators around
object. However, motion error may occur during this rotation
because of limited mechanical accuracy. Direct reconstruc-
tion without calibration will bring in artifacts in images.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang

techniques rely on specific scanning trajectory [1], [2], [3],
or make an assumption of structure information [4], [5], [6].
Such prerequisites are not satisfied in robotic CT because of
its special structure hence these methods are not appropriate
for this new system. There are also methods intended to offer
geometry information of single angles [7], [8], [9]. Major-
ity of these methods are based on well-designed calibration
phantoms. The helical configuration phantom [10] is the most
popular design among these phantoms, because it can avoid
overlap of markers in almost all angles, which benefits extrac-
tion of markers. After acquiring projections of the phantom,
geometry calibration can be performed through nonlinear
optimization [11], [12], or linear optimization followed by
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parameters decomposition [13]. The former created projec-
tion relation using specified geometric parameters, combined
it with coordinates of marker points and their corresponding
projection points to create nonlinear equations, then used
optimization concept to obtain the solution of equations.
The latter first expresses projection relation as homogeneous
coordinates, calculates projection relation in the homoge-
neous coordinate system by creating linear equations, specific
geometric parameters are then gained by matrix decomposi-
tion. It does not directly associate geometric parameters with
the coordinates of markers. Accuracy of geometry parameters
for both methods rely on the precision of calibration phantom.

However, various kinds of mistake may be introduced
during calculation, which increased the requirements for
phantom’s precision. As image resolution has been gradu-
ally improving, phantom’s precision is usually insufficient,
which may result in error in geometry parameters [12].
Researchers have done some work on this problem. Some
aimed at exploring phantom-free calibration method [14],
[15], [16]. Li et.al [17] proposed a locally linear embedding-
based motion correction method which alternately optimized
system geometry and reconstruction images without accurate
phantom, this method got rid of the dependence of calibration
phantom and had obtained excellent performance in prac-
tical experiments. Some researchers focused on improving
the accuracy of phantom. Xu et.al [18] set phantom error
index integrated with image quality index as object function,
and simultaneously improved phantom precision and image
quality through optimization. Duan et.al [19] gathered mul-
tiple projections through separately moving source position.
Coordinates of markers under these projections were then
used in an optimization of phantom markers. But these phan-
tom calibration methods also have limitations, error may be
introduced by additional calibration process, which limit final
phantom precision after these phantom calibration methods.
Additionally, some are too complex to be applied in practice.
Meanwhile, some researchers noticed the intermediate prod-
uct called projection matrix during geometry calibration can
be directly used in reconstruction, which may reduce calcu-
lation error to some extent. So they introduced FDK based
on projection matrix [20] by combining projection matrix
with back-projection process. However, the FDK model is the
foundation of this reconstruction approach, which is based
on circular scanning trajectory and may cause abnormality in
gray value when facing mechanical motion error.

In this paper, we proposed a projection matrix-based itera-
tive reconstruction method to fulfill this gap. In both forward
and backward projection process, we used projection matrix
to define projection geometry. A line-driven forward projec-
tion model and a point-driven backward projection model
were established. The method was made up of these two
models as well as regularization term structure.

This paper is organized as follows: Section II explains
the notion of traditional projection geometry and projec-
tion matrix, followed by the fundamentals of forward and
backward projection model. The conditions of simulation
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FIGURE 1. Typical projection geometry.

experiment and actual data will be covered in section III.
Results are shown in section IV. Section V is discussion and
conclusion.

Il. METHODS AND MATERIALS

A. PROJECTION MATRIX

A typical projection geometry is shown in Fig. 1, source
denotes the source of ray, O — xyz represents the phantom
coordinate system, source — xyz represents the coordinate
system of source, (ug, Vo) represents the projection point of
source vertically to the detector, and SDD is the distance
between source and (ug, vo) point. An integral point in phan-
tom coordinate system is expressed as (x, y, z), and its cor-
responding projection point is (u, v). The projection matrix
P gives a homogenous description of projection connection
from phantom coordinate system to the detector. The matrix
form is as follows:

[uw, vw, w]" =P [x,y,z, 11" (1

where w is a distance weighting factor, and P is a 3 x 4
projection matrix, which is:

Pi1 Pip P13 Py
P = | Py Py Py3 Py )
P31 P3 P33 Py

The projection matrix is composed of a 3 x 3 intrinsic matrix,
a 3 x 3 rotation matrix, and a 3 x 1 translation vector, named
K, R and ¢, respectively.

P=K-[R 1] (3)

where R and ¢ represent rotation and translation transforma-
tion from object coordinate system into source coordinate
system. And K stands for the projection process in the source
coordinate system. According to Eq.1, linear equations can
be established after gaining coordinates of marker points and
its corresponding projection points. By eliminating weighting
factor w, two separate linear equations can be established
using coordinates of one pair of marker point.

Prx + Py + Pisz + Pia = u (P31x + P3oy + P33z + P34)

Po1x + Py + Pa3z + Pg = v (P31x + P32y + P33z + P3g)
@
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FIGURE 2. Structure of FP and BP models.

where variables are twelve elements of matrix P in Eq.2.
When given coordinates of multiple pairs of markers,
an overdetermined system of linear equation was established.

APvecmr =0
Pyecior = [P11P12 - - P21P2 - - - P33P34]" (5)

where A contained the coefficient in Eq.4.

Problem-solving of Eq.5 is a traditional linear least squares
problem, which can be solved through singular value decom-
position (SVD). Detailed solution was described in [13].

B. PROJECTION MATRIX BASED FORWARD AND
BACKWARD PROJECTION

The coordinates of the marker points and the related pro-
jection points of single angles can be used to calculate the
projection matrix P. The projection relation is equal to the
ray equation, and it is known that the projection matrix can
express the projection relation under single angles. As a
result, during forward projection, the projection matrix can
be used to find linear equation of projection ray and this
linear equation can be used to calculate projection value.
Back-projection value can be gained by calculating the two-
dimensional projection point corresponding to a voxel point
and applying interpolation, matrix multiplication can be used
in the back projection under the homogeneous coordinate
system. The process of FP and BP algorithms were shown in
Fig.2. Besides, the regularization terms can be incorporated
into iterative reconstruction to improve the reconstruction
quality. Final image X™* was obtained by:

X* = argmin ||[AX — P||5 + R (6)

where R is the regularization term, A is the coefficient
term of reconstruction, and X, P are images and projections,

VOLUME 11, 2023

respectively. We used TV minimization for regularization in
the reconstructions presented in this paper.

1) FORWARD PROJECTION
The projection matrix P is presented in manner depicted
in Eq. 2. By removing the distance weighting factor w,
we obtain:

P11 —uP31 Pyy —vP3;
P12 —uP3 Py —vP3

.32 11 P13 — uP33 Py3 —vP33 | o @
P14 — uP34q Pyg — vP3g
It can be simplified as follows:
T
al b1 C1l d1 _
[X7Y»Z’1]‘|:a2 b2 C2d2i| =0 (8)

The equation for the line projected to point (u,v) in the
modular coordinate system’s is Eq. 8. Calculating projection
value through the phantom space comes after obtaining the
line’s equation. The line integral of the ray traversing the
voxel space is the projection. It takes a lot of processing
power to calculate intersection of grid and the line after labo-
riously converting coordinate system space into grid space.
Therefore, we streamlined the model by consulting earlier
research. We drastically reduced the computation by turning
the threedimensional space of coordinate system into a multi-
layer structure and replacing the integral length of the ray
through voxel element with an interpolation of intersection
point between ray and single-layer center. In the new model,
the linear direction vector is determined as follows:
i j ok
I=1| a1 b1 cq )
an b2 (6]

where i, j, k represent three space unit vectors. Then voxel
space is divided along the x, y, or z axes depending on the
ray vector’s direction. After that, a set of two-dimensional
layers is created from the voxel space. Take a segmentation
in the x direction as an example. The two-dimensional layers’
corresponding x coordinate is:

i—1

X = wherei=1,2...n (10)

First, determine the coordinates of the intersection point
where the line crosses the single-layer image (y;, z;) in order
to calculate the projection:

- (s — i = (ar — L) x) / (b1 — 22)
Zi

(%dz —d — (al — %az) x) / (c1 - %cz)
Then the points (x;, y;, z;) are interpolated:

(11)
I — upy — yi Trrd,d) 1, w up, — zi
"Ly —downy | | 1w d) 1w || zi—down,
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FIGURE 3. Schematic diagram of the digital calibration phantom.

where up,, and down,, represent the round up and down of
a given variable m. I (u(d), u(d)) stands for the pixel value
of corresponding round up or down projection point. The
integral value of image interpolation at each layer is the
projection value of the final ray:

P(u,v) = Zli (13)

2) BACKWARD PROJECTION

When it comes to backward projection, its theory stays con-
sistent with the projection matrix-based FDK algorithm. The
voxel points are traversed in the homogeneous coordinate
system, and corresponding projection point coordinates are
computed point by point using the two-dimensional interpo-
lation within projection images.

Ill. EXPERIMENTS CONDITION

In this study, simulation and experiments were conducted to
verify the feasibility of proposed iterative method. In sim-
ulation, motion error of robotic CT was divided into three
cases, which were deviation of two manipulator’s rotation,
jitter in rotation of manipulator, and non-circular rotation of
source, respectively. For comparison, we used FDK, projec-
tion matrix based FDK(P-FDK) and projection matrix based
SART(P-SART) in reconstruction. For simulation and exper-
iment, we used offline correction technique. A calibration
was performed before the scan. The calibration phantom used
in simulation was generated according to parameters of real
plastic phantom.

A plexiglass hollow cylinder with 13 markers points was
generated through digital phantom generator [21], which
was shown in Fig.3. No error was added into position of
markers.

It was worth mentioning that the repeated positioning accu-
racy of robotic arm was 50 um, which was much smaller than
motion error of robot CT. It was assumed to be negligible
in experiments. The calibration phantom was placed inside
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FOV, and projection images of every single view was col-
lected. The circle center of projected circle of markers was
gathered through the Hough transform algorithm.

A. SIMULATION

The simulation experiments were performed on a self-made
simulation platform, which was improved from the ASTRA
simulation platform [22]. The platform adopted line-driven
forward projection and point-driven back-projection models.

In simulation, we used a self-made digital phantom, which
came from real data. The geometry was defined according
to real situation, with 810 mm as source to detector distance
(SDD), and 540 mm as source to center distance (SOD).
Detector size was 536 x 536, with pixel size of 0.8 mm. Image
size was 536 x 536 pixels, with unit size of 0.4 mm.

We performed one simulation without noise first to analyze
algorithm performance under ideal situation. Then we added
noise to simulate performance in real situation. Complete
flow chart of simulation was shown in Fig. 4.

1) SIMULATION OF UNCOOPERATIVE ROTATION

The motion range used in simulation was generated by refer-
ring to actual motion of the manipulator. Two manipulators in
real activity may have different rotation speed under different
load. Therefore, we assumed that rotation angle of ray source
gradually fell behind detector under a continuous scanning
mode in simulation. The maximum angle variation was deter-
mined at 0.68°. Deviation of in each angle was first evenly
split by maximal angel deviation, then a Gaussian random
deviation was added into it. The final deviation of rotation
angle was displayed in Fig. 5.

2) SIMULATION OF JITTER

This case was introduced in order to simulate mechanical
unsteadiness in real situation. In simulation, both source and
detector rotated around the center point. We added Gaussian
random deviation into three components of position, for both
source and detector. The standard deviation of this deviation
was 0.5 mm. The deviation value of source position in each
scanning angle was shown in Fig. 6.

3) SIMULATION OF NON-CIRCLE SCANNING TRAJECTORY
In the simulation experiment, in order to simulate scanning
trajectory in real system, only the motion trajectory of the
ray source was elliptical while trajectory of detector stays
circular. The detector and ray source rotate at same angle.
Eccentricity of ellipse trajectory was set at 0.7. Motion tra-
jectories of source and detector was displayed in Fig. 7.

B. EXPERIMENTS

A turkey leg was scanned in experiment, with 120 kV and
100 mAs. Geometry parameters were 810 mm of SDD,
540 mm of SOD. A calibration was performed first with a
well-designed phantom. Projections within 200° were col-
lected due to physical limitation of scanning space.
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FIGURE 5. Deviation of rotation angle between source and detector.

1) ROBOTIC CT IN LABORATORY

Fig. 8 depicted robotic CT system in laboratory, which con-
sisted of two robotic arms that held a ray source and detec-
tor. The translation stage was placed in the center. During
scanning, object was rotated by two robotic arms to capture
projected images. The manipulator’s positioning accuracy
was roughly 0.5 mm.

2) CALIBRATION PHANTOM
The special designed phantom was displayed in Fig. 9. It was
made of thirteen steel balls placed in a plexiglass ring.

The ball’s diameter was 3 mm, and the precision of its
position was 0.05 mm. The plexiglass ring was 76 mm in
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height, and the outer and inner diameter length were 90 mm
and 77 mm, respectively.

3) EVALUATION INDEX

In simulation and experiments, the quality of the recon-
structed image was used to evaluate the validity. The peak
signal to noise ratio (PSNR) and structure similarity index
measure (SSIM) values of reconstructed images were also be
considered in the simulation experiment.

IV. RESULTS

A. SIMULATION RESULTS

Reconstructed images using FDK, P-FDK, P-SART and P-
SART-TV were shown in Fig. 10, among which FDK was
conducted under a standard circular geometry. The gray scale
range of reconstructed images was [0,0.035]. Case 1-3 rep-
resents simulation of uncooperative rotation, jitter and non-
circular scanning trajectory.
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‘We could see that in all three cases, P-SART and P-SART-
TV had similar performance, and the two methods had the
best image quality among all algorithms. Besides, in case
1 and case 2, P-FDK algorithm and the two SART meth-
ods had similar performance under these motion error. And
image evaluation index showed barely the same value of these
methods. Meanwhile, three projection matrix-based methods
had obvious improvement compared with direct FDK without
calibration. While in case 3, although there was no obvi-
ous structural misalignment in images, structure similarity
index indicated that brightness of images was dramatically
different from real images. In case 1 and case 3, motion
error during scan brough in obvious structural artifacts in
reconstructed images of FDK algorithm. While in case 2,
the jitter during rotation of manipulators would also bring
in artifacts in images, which was more like interference by
noise. In addition, P-SART with the absence of TV achieved
slightly better performance than the one with TV regulariza-
tion, which could be explained by strict constrains on image
gradient brought by TV.
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FIGURE 9. Calibration phantom in laboratory.

Fig. 11 showed results under Poisson noise interference.
The gray scale displayed was also [0,0.035]. We could see
that, compared with results in ideal situation, reconstructed
images of all methods were influenced by noise to a certain
extent. By analyzing image quality, we found that P-FDK had
similar noise interference with direct FDK algorithm in case
1 and case 3. While in case 2, P-FDK method showed obvi-
ously higher resistance against noise compared with FDK.
Both SART methods were also influenced by noise inter-
ference, but we can see that SART with TV regularization
had higher resistance against noise, while the one with the
absence of TV was seriously disturbed. SSIM dropped 2.2%
for P-SART-TV after noise was added, while the same index
dropped 7.7%, 11.7% and 32.2% in P-SART, P-FDK and
FDK, respectively.

Meanwhile, although image quality and evaluation index
had offered some support on evaluating algorithm perfor-
mance. Detail information could be told by analyzing gray
value on reconstructed results. As shown in Fig. 12, gray
value of the 337" row under noise interference was plotted.
The grayscale range of images was enlarged from [0,0.035]
into [0,255]. It could be seen that in case 1 and case 3,
P-FDK and P-SART had right structural information, while
reconstructed images of FDK were not consistent with stan-
dard images. Besides, P-SART had a wider range of fluc-
tuations compared with P-SART-TV. In case 2, all methods
had right geometry structure. FDK and P-SART had more
dramatic fluctuations compared with P-SART-TV method. P-
FDK showed obviously lower gray value than ideal images in
case 3. P-SART-TV showed the best consistent with standard
images in all cases.

B. EXPERIMENT RESULTS

A turkey leg was scanned in experiment. 200 slices were
reconstructed using these methods with the slice thickness
of 0.5 mm. The size of projection images we used in
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FIGURE 10. Simulation results without noise. (The reconstruction results of Case 1-3 were shown from top to bottom. From left to right were images
using FDK, projection matrix-based FDK, projection matrix-based SART without TV, and projection matrix-based SART without TV, and projection

matrix-based SART with TV).

reconstructions was 536 x 536 pixels, with pixel size of
0.8 mm. Reconstruction image size was 536 x 536 pixels, with
pixel size of 0.35 mm. 110 projections within 220 degrees
were used in reconstruction. Three slices were shown in
Fig. 13, with gray scale range of [0,0.04]. We could see that
mechanical errors of manipulators during scan would bring in
mistakes, FDK without calibration would result in geometry
artifacts in reconstructed images. Analyzing bone edges in the
140™ slice, we could see that these projection matrix-based
methods were able to restore artifacts brough by motion error.
And they achieved similar performance. However, when
looking at the soft tissue in the 100%™ slice, we could find that
there was stripe artifact in reconstruction images of P-FDK,
and P-SART-TV removed this artifact obviously. Besides,
P-SART-TV provided the smoothest grayscale change in all
three slices, and it had less noise interference compared with
P-SART, which showed a better performance in real data.

It was worth mentioning that center of reconstructed image
by FDK algorithm was inconsistent with other methods. This
could be explained by different reconstruction centers of FDK
algorithm and the projection matrix-based methods. Recon-
struction center of FDK algorithm was the origin of world
coordinate system, and reconstruction center of the latter
was the origin of the phantom coordinate system. During
data acquisition, it was hard to stay the center of calibration
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phantom at center of world coordinate system, which caused
difference in reconstruction center.

V. DISCUSSION AND CONCLUSION
Motion error often appeared during movement of manipula-
tors, a calibration through projection matrix could bring cor-
rect geometry relationship into reconstructions. But P-FDK
relied on circular scanning trajectory and introduced abnor-
mal gray value under non-circular scanning trajectory. The
back-projection weights of iterative method were determined
through iterative solution and correct geometry definition
could be provided by projection matrix. Therefore, we com-
bined SART with projection matrix. Besides, real data were
usually disturbed by noise. Regularization terms could be
added into reconstruction to constrain interference in images.
Under ideal situation without noise, P-FDK showed good
image quality in case 1 and case 2, which was barely the
same with iterative methods. While its reconstructed image
showed obvious abnormal gray value without artifacts in case
3. Meanwhile, P-SART showed the best image restoration
performance in all cases. When noise was added into simu-
lations, P-SART with regularization showed better resistance
to noise. And in experiments, P-FDK and iterative methods
achieved similar performance in image restoration, which is
obviously better than traditional FDK.
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FIGURE 12. Image gray value evaluation. The reconstruction results of
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Considering that P-FDK and P-SART used the same pro-
jection matrix in expressing geometry relationship, both
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methods should be able to reconstruct images under motion
error. Back-projection process of P-FDK method was
depended on magnification ratio to determine weight value.
In case 1 and case 2 of simulation, the motion error
did not bring in obvious change in magnification ratio.
This explained similar performance of P-FDK and P-SART.
In case 3, however, magnification ratio under ellipse tra-
jectory was obviously different from the one under circular
trajectory. According to the way it deviated from real value,
back-projection weight value became bigger or smaller than
real value, which eventually caused abnormal gray value in
images. Looking back at projection matrix-based iterative
methods, image gray value was determined through iteration
process. Calibrated geometry was converted into the algo-
rithm through projection matrix. Because projection matrix
was able to express geometry relationship under any scan-
ning trajectory, Projection matrix-based iterative methods had
better performance than others in all cases. When noise was
added, P-SART-TV had obviously better resistance against
noise interference because total variation was integrated into
reconstruction process. In experiments, P-FDK had similar
image quality with P-SART. This could be explained by
approximate circular scanning trajectory of robotic CT.

The concept of a projection matrix was the foundation
of the entire algorithm. A geometry calibration with phan-
tom had to be performed before image reconstruction. As a
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FIGURE 13. Reconstruction images in experiments (from left to right were images using FDK, projection matrix-based FDK, projection matrix-based SART

without TV, and projection matrix-based SART with TV).

result, mistakes may be created during this procedure, includ-
ing mistakes in center identification of projected image and
error of phantom manufacturing. These mistakes would be
further brought into projection matrix, which may bring in
wrong geometry relationship into reconstruction eventually.
Typical geometry calibration based on projection matrix
involved matrix decomposition in order to gain geometry
parameters. This process may introduce new error into final
results because of non-uniform unit between different geom-
etry parameters. FDK based on projection matrix skipped
matrix decomposition and used projection matrix directly in
reconstruction, which avoided mentioned error to a certain
extent. But P-FDK was based on traditional FDK algorithm,
which relied on circular scanning trajectory. P-FDK could not
achieve good performance under arbitrary trajectory which
was common in robotic CT, and might introduce wrong
back-projection weights during reconstruction. The proposed
iterative method combined projection matrix with iterative
reconstruction. The geometry information of single angle
was provided by projection matrix directly, back-projection
value was determined by iteration process, which got rid of
dependence on scanning trajectory. Besides, an experiment

VOLUME 11, 2023

under arbitrary scanning trajectory could be conducted to
further confirm the effectiveness of mentioned method.

In general, we proposed a new reconstruction algorithm,
which was able to restore images under motion error of
robotic CT, and verified its viability through simulation and
experiments.
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