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ABSTRACT Machine learning and deep learning techniques are widely used to evaluate intrusion detection
systems (IDS) capable of rapidly and automatically recognizing and classifying cyber-attacks on networks
and hosts. However, when destructive attacks are becoming more extensive, more challenges develop,
needing a comprehensive response. Numerous intrusion detection datasets are publicly accessible for
further analysis by the cybersecurity research community. However, no previous research has examined
the performance of the proposed model on a variety of publicly accessible datasets in detail. Due to the
dynamic nature of the attack and its rapidly changing attack techniques, the publicly accessible intrusion
datasets must be updated and benchmarked regularly. The deep neural network (DNN) and convolutional
neural network (CNN) are examined in this article as types of deep learning models for developing a flexible
and effective IDS capable of detecting and comparing them with the proposed model in detecting cyber-
attacks. The constant development of network behavior and the fast growth of attacks need the development
of IDS and the evaluation of many datasets produced over time through static and dynamic methods. This
kind of research enables the identification of the most efficient algorithm for identifying future cyber-attacks.
We proposed a novel two-stage deep learning technique hybridizing Long-Short TermMemory (LSTM) and
Auto-Encoders (AE) for detecting attacks. The CICIDS2017 and CSE-CICDIS2018 datasets are used to
determine the optimum network parameters for the proposed LSTM-AE. The experimental results show that
the proposed hybrid model works well and is applicable for detecting attacks in modern scenarios.

INDEX TERMS Convolutional neural network, deep neural networks, network intrusion detection, deep
learning, two-stage model, LSTM-AE.

I. INTRODUCTION
Information and communications technology (ICT) systems
and networks manage various sensitive user data that are
susceptible to attacks from internal and external attackers.
These attacks may be manual or automatic and continu-
ously improve their capabilities, resulting in undetected data
breaches. With the growing usage of computer networks in
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various areas and applications, network security is becom-
ing more essential. Numerous businesses defend themselves
against network attacks by using conventional security tech-
nologies such as firewalls, anti-spam methods, and anti-virus
software. Unfortunately, these technologies are incapable of
identifying new or complex threats [1]. As a result, Network
Intrusion Detection Systems (NIDS) are now employed as
a secondary line of defense to monitor network traffic and
identify any intrusive event [2]. A NIDS is a very effective
defensive technology capable of mitigating complex attacks
and threats [3].
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Intrusion detection has always been a significant area of
study in network security since it is critical to recognize
anomalous access to protected internal networks [4], [5].
A NIDS is gathered by network equipment through mirroring
by network devices such as switches, routers, and network ter-
minal access points (TAP). These devices act as a surveillance
tool to monitor network infractions and policy breaches [6].
Numerous companies use NIDS in conjunction with firewalls
and an application firewall to safeguard web servers on the
same network and system. Recently, advanced cyber-attacks
circumvent security measures by using irregular patterns like
encoding and obfuscation. To address these issues, we used
AI-based IDS to identify variant attacks that are undetectable
by traditional signature-based NIDS.

Traditionally, intrusion detection relied heavily on conven-
tional methods such as the encryption-decryption method,
protocol control, firewalls, and anti-virus software models.
While these methods were successful in identifying limited
attacks, they had difficulties in detecting a large number of
attacks and result in a high rate of false positives. Specifically,
hackers launch a huge number of Denial-of-Service (DoS)
attacks that are difficult to identify and defend against using
traditional methods. The majority of current research has
moved its emphasis toward incorporating machine learning
(ML) techniques for intrusion detection. In comparison to tra-
ditional techniques, they tend to increase identification rates
while lowering the overhead associated with managing mas-
sive attacks. Support Vector Machines (SVMs) are capable of
recognizing target attacks in test datasets based on the proper-
ties of the training data and are also memory efficient [7]. The
IDS model with SVM uses hyperplanes and kernel functions
to identify the attack class. K-nearest neighbor (KNN) design
offered a simple, quick, and efficient solution [8]. It classifies
the input as samples in the search space and uses a single
or multiple feature vector to determine which samples are
most similar to the normal or attack class. To minimize the
error rate associated with detecting attacks, the naive bayes
method uses the probability model with independent assump-
tions about the characteristics, bias, and variance [9]. The
random forests approach [10] ranks features for attack class
classification using the integrated feature selection technique
and intrinsic metrics. Other methods, like k-means clustering
and logistic regression, make use of clustering and regression
to determine attack types. Nonetheless, conventional machine
learning algorithms have significant shortcomings when it
comes to identifying the attacks with highly integrated fea-
tures [6]. Additionally, these algorithms perform poorly when
dealing with noisy and multi-dimensional traffic data. Hybrid
machine learningmethods combining two ormore techniques
for IDS have been developed, but they tend to be less efficient
due to their large model complexity.

Deep Learning (DL) algorithms have recently advanced
intrusion detection [11]. Models for intrusion detection based
on non-linear structured deep learning systems such as Deep
Neural Networks (DNN) [12], Convolutional Neural Net-
works (CNN) [13], Recurrent Neural Networks (RNN) [14],

and Long-Short Term Memory (LSTM) [15] have shown
enhanced learning behaviors and improved accuracy rates for
intrusion detection. Additionally, hardware designs have been
upgraded in recent years to accommodate the DL models’
extensive security enhancements. CNN regularizes the multi-
layer perceptron and therefore determines the attack class
using fully linked networks. Due to the seriousness of this
issue, ensuring the security of network systems is imperative.
It is critical to use tools to assist with management and secu-
rity operations. Additionally, these tools must be automated
in order to simplify the detection of abnormal occurrences
and the implementation of countermeasures to mitigate the
impacts of hostile agents. In this study, we propose a two-
stage detection system that uses data pre-processing and
model training. The model combines an LSTM with an AE
to improve detection and accuracy, as illustrated in Figure 1.

In this paper, the main goal of our research is to propose
a robust IDS that is able to process a large volume of com-
plicated raw network data efficiently and provide effective
detection with higher performance results.

The main contributions of this article can be summarized
as follows:
• We present a two-stage Deep Learning-based IDS by
hybridizing an LSTM and an AE termed LSTM-AE,
where data has been filtered in order to lessen the over-
fitting and under-fitting.

• The LSTM-AE can effectively balance the dimensional-
ity reduction and feature retention in highly imbalanced
datasets. Therefore, the proposed model has been tested
with two datasets.

• The LSTM-AE has a much higher detection perfor-
mance than other popular intrusion detection models.

To analyze the performance of the LSTM-AE model for
IDS, two common error functions, MSE (Mean Squared
Error) and MAE (Mean Absolute Error) can be used to
compare the performance of the model. MSE measures the
average of the squared differences between the predicted
and actual values, while MAE measures the average of the
absolute differences. In general, MSE is more sensitive to
large errors and can be used to penalize the model more
heavily for larger errors, whileMAE ismore robust to outliers
and can provide a better estimate of the average error.

To compare the performance of the LSTM-AEmodel using
MSE and MAE, we can train the model on a dataset of
network traffic data and evaluate its performance on a test
dataset using both error functions. The model that performs
better in terms of both error functions is considered to be the
better model.

The rest of this article is organized as follows: section I is
the introduction to our study. Section II summarizes related
works. In section III, we illustrate the preliminaries of deep
learning. Section IV presents the proposed model in detail.
Section V illustrates the experimental setup used in our
study and the result discussion. We evaluate the experimental
results and make a comparative analysis with other intrusion
detection methods. Finally, section VI concludes the article.
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FIGURE 1. Proposed framework—LSTM-AE Model.

II. RELATED WORKS
Since the invention of computer architectures, there has been
a study of security problems related to NIDS and HIDS.
Since 2017, much research on intrusion detection using a
variety of DL methods has been published. The following
summarizes relevant research on intrusion detection using
deep learning algorithms based on models, features, datasets,
and performance measures.

According to Liu et al. [16], intrusion detection models
based on convolutional neural networks (CNNs) have the
best detection rate and accuracy when compared to other
IDS classifiers. Several techniques, models, and approaches
based on conventional machine learning have been developed
and presented in recent years to address the issue of network
intrusion detection. This section is about the current state
of machine learning and deep learning techniques applied to
the area of network intrusion detection and network intrusion
prevention.

Alzahrani and Hong [17] suggest using an Artificial Neu-
ral Network with a signature-based approach in the IDS to
identify DDoS attacks. After running the tests, it was found
that compared to the signature-based method and the use of
ANN, the combined strategy was more accurate, obtaining a
value of 99.98%.

Kim et al. [18] developed AI-IDS and used a DNN model
to evaluate the performance of deep learning models using

real-time data and public HTTP datasets from CICIDS 2017,
which generated an accuracy rate of 91.69%. When CNN-
LSTM was applied to the same dataset, they could obtain
a 98.07% accuracy rate. Simultaneously, the paper [18] has
highlighted the present IDS detection shortcoming and criti-
cized it for improvement due to its critical nature to security.
Additionally, the study suggests using a CNN-LSTM model
to conduct payload-level deep learning in a high-performance
computing environment.

Zhang et al. [19] used the Monte Carlo tree search method
(MCTS) to generate adversarial instances of cross-site script-
ing (XSS) attacks. Additionally, the authors utilized a GAN
framework to enhance the intrusion detection model’s ability
to identify adversarial attacks. During the experimentation
phase, the CICIDS-2017 dataset was used to create novel XSS
attacks. Instances of XSS attack traffic and regular traffic
were extracted from the dataset. The GAN detection model
achieved an accuracy rate of over 99.9% to identify XSS
attacks and their adversarial instances.

Srinivas and Manivannan [20] proposed a deep learning
method for detecting and blocking DoS-based Hello flood
attacks on the medical IoT network. This kind of attack,
where numerous Hello packets are delivered to slow down
the network, was verified using the Deep Belief Network
(DBN) model. In [20], BAU-ROA was used to help the DBN
model operate more efficiently and provide better outcomes.
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The Rider Optimization Method is a basic optimization algo-
rithm with fewer calculation parameters, while BAU-ROA
is a metaheuristic algorithm created to further improve its
performance. The tests found that the BAU-ROAmethod out-
performs other optimization algorithms because of its ability
to enhance DBN’s overall performance.

Ujjan et al. [21] utilized a deep learning model to address
the sampling-based technique employed in network security
during the early stages of IoT network SDN detection. In their
study [21], the SAE system comprises an encoder that reduces
the subsequent layer and a decoder that raises the subsequent
layer, like a symmetrical system was utilized. To explore
the impact of deep learning on intrusion detection, the SAE
model was used using adaptive polling and sFlow techniques,
and the results were evaluated. Successful findings were
achieved for sFlow (a CPU use study with two samples) and
Adaptive polling (an accuracy rate study), respectively, as a
consequence of the experiment [21].

To identify DDoS attacks, the LSTM deep learning model
described in the paper by Priyadarshini and Barik [22] is
implemented in the SDN control layer of cloud computing
and fog computing environments. Network packets recorded
at a particular time interval are most suited for LSTM training
since they retain the information of the prior packet’s effect
on the present packet. The LSTM deep learning model was
determined to consist of three hidden layers with 128 hid-
den units to be adequate as a result of the tests. This
level of accuracy was achieved when the LSTM model was
applied to the ISCX 2012 and IDS CTU-13 Botnet datasets
(when combined, known as Hogzilla). Simulating DDoS
attacks is accomplished through the use of open-source tools.
Their model achieved an accuracy of 98.88% on the testing
dataset.

Krishnan et al. [23] proposed the Deep Autoencoder
(NDAE) deep learning model and Random Forest (RF)
shallow machine learning method to combat SDN security
threats. According to [23], in NDAE, the autoencoder does
not have an encoder-decoder structure like that of the conven-
tional autoencoder. In order to address the shortcomings of
the shallow machine learning classifiers, researchers favored
the usage of deep learning models. NDAE was selected [23]
due to its better accuracy and its utilization of less CPU and
training time. The DDoS attack detection model employed
in NSL-KDD and CICIDS2017 datasets was evaluated via
the usage of the NSL-KDD and CICIDS2017 datasets.
To test the effectiveness of the model used to identify DDoS
attacks, the NSL-KDD and CICIDS2017 datasets were uti-
lized. An evaluation using the NDAE hybridmodel found that
the model was fit for usage in the intrusion detection system
with accuracy rates of 99.60% and 99.24%, respectively.

Kanna and Santhi [24] proposed Optimized CNN (OCNN)
and Hierarchical Multi-scale LSTM (HMLSTM) and per-
formed evaluation of publicly available IDS datasets; NSL-
KDD, ISCX-IDS, and UNSWNB15. No separate features
were needed to combine the technique. An evaluation using

the OCNN-HMLSTMmodel found that the model was fit for
usage in the intrusion detection system with an accuracy rate
of 90.67%, 95.333%, and 96.334% respectively.

Hussain and Hnamte [25] proposed a DNN model for
detecting attacks on the SDN environment. The model was
trained with KDD-CUP99, NSL-KDD, and UNSW-NB15
datasets, and achieved 99.61%, 98.12%, and 81.70% accu-
racy rates respectively. The study had not proposed any pre-
processing or data cleaning.

Mighan and Kahani [26] proposed hybridizing Stacked
AutoEncoder with Support Vector Machine (SAE-SVM)
model to detect an anomaly. The model was trained using
ISCX-2012 and CIC-IDS2017 datasets and achieved 95.98%
and 99.49% accuracy rates respectively.

Lu and Tian [27] proposed Improved LSTM which is a
combination of SAE and Attention-BiLSTM, for Efficient
Communication Intrusion Detection. The proposed model
was trained with the UNSW-NB15 dataset and achieved a
99.41% accuracy rate in detection.

Binbusayyis and Vaiyapuri [28] suggested an adversarial
deep learning method (CNN, GAN, LSTM, and MLP), and
the GAN framework performed well in identifying DDoS
attacks. The evaluation was performed with a public dataset
called CICDDoS 2019 since the dataset contains the most
up-to-date types of DDoS attacks.

Wu et al. [29] proposed a Robust Transformer-based
Intrusion Detection System (RTIDS), and the model was
trained using CICIDS2017 and CIC-DDoS2019 datasets and
achieved 99.35% and 98.58% accuracy rate respectively.
The study also performed data cleaning before training the
models.

Wang et al. [30] proposed a MANifold and Decision
boundary-based AE detection system (MANDA) to detect
an anomaly. The NSL-KDD and CICIDS-2017 datasets were
used to train the model and achieved a 98.41% accuracy rate
with a 5% false positive rate. The model performs well, but
there was no pre-processing of the data before the training.

Umair et al. [31] proposed a Hybrid Multilayer Deep
Learning Model for detecting network intrusion. The model
was trained with KDDCUP99 and NSL-KDD datasets and
achieved a 99% accuracy rate. Feature selection was also
performed before the training phase.

Ravi et al. [32] proposed Recurrent deep learning-based
for attack detection and classification. The kernel-based
principal component analysis (KPCA) was applied for the
feature selection phase, whereas KDD-Cup-1999, UNSW-
NB15, WSN-DS, and CICIDS-2017 datasets were used to
train the model. The model could achieve a 98% detection
accuracy rate trained with theWSN-DS dataset, whereas 99%
detection accuracy rate with the rest of the datasets.

Bae and Joe [33] proposed an LSTM-AE based model
for UAV anomaly detection with time series data. The pro-
posed model has not been specifically tested for Intrusion
Detection Systems, with a focus on the learning time, and no
detection accuracy rate has been mentioned. Therefore, the
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applicability of their proposed model for IDS is not related to
the detection accuracy but only to the usability.

Lindemann et al. [34] studied the LSTM network for
anomaly detection, highlighting twelve sources between
2015 to 2020 where LSTM, encoder-decoder-based, and
hybrid approaches were proposed. These sources compared
the LSTM network’s performance with other ML and DL
models, but they did not focus on IDS specifically.

Musleh et al. [35] proposed Automatic Generation Con-
trol (AGC) based on LSTM with Stacked Autoencoders to
maintain the stability and operation of power grids. Although
the techniques are model-free and do not require exact sys-
tem models, there are still numerous obstacles to overcome,
such as the high dimensionality of observations that may be
difficult to fit. Additionally, the restricted attack scenarios
employed during training raise questions about the ability of
these detection algorithms to recognize zero-day attacks.

Mushtaq et al. [36] proposed a two-stage IDS by hybridiz-
ing the Auto-Encoder and the LSTM. The proposed model
achieved 89% accuracy in the classification of attacks, using
the NSL-KDD dataset for training.

Mahmoud et al. [37] proposed an AE-LSTM based model
to detect anomalies in an IoT environment. The model was
trained with the NSL-KDD dataset and achieved 98.88%
accuracy in the classification of attacks. The study did not
include any data pre-processing to improve training perfor-
mance.

Altunay and Albayrak [38] proposed a hybrid CNN+
LSTM-based IDS. The UNSW-NB15 dataset was used to
train the proposed model, which achieved a 93.21% accuracy
rate in binary classification and a 92.9% accuracy rate for
multi-class classification. The proposed system was high-
lighted to be used in an industrial IoT network. Despite the
high accuracy detection rate, the loss of training, valida-
tion, and testing is very high. No performance boosting was
proposed.

Issa and Albayrak [39] proposed DDoS detection by
hybridizing CNN and LSTM. The NSL-KDD dataset was
used to train the model, which achieved a 99.20% accuracy
rate. The dataset is old and may not reflect modern attacks
scenerio.

Only a few research studies on intrusion detection have
shown that deep learning successfully outperforms con-
ventional techniques. Unsupervised feature learning tech-
niques and algorithms for network intrusion detection include
Deep Belief Networks (DBNs), DNNs, Restricted Boltzmann
Machines (RBMs), and auto-encoders (AE), among others.

III. PRELIMINARIES OF THE DEEP LEARNING
Deep Learning (DL) is a branch of machine learning that
focuses on the function of neurons in the brain. These algo-
rithms are implemented as artificial neural networks (ANNs).
A machine learning (ML) or DL algorithm can be trained
using various techniques, including supervised and unsuper-
vised learning. Supervised learning involves the classification

of data instances that have been labeled during the training
phase.

A. DEEP NEURAL NETWORKS
DNNs are generally feedforward networks, in which data
flows continuously from the input layer to the output layer,
and the connections between the layers are one-way in a
forward direction. A fundamental component of a DNN is
an ANN inspired by biological neurons found in the human
brain. A DNN calculates and transmits the sum of the data
received on its input side. Each hidden layer applies an activa-
tion function before producing an output, which is essential to
facilitate learning and approximation due to the non-linearity
of real-world issues. The softmax activation function, given
in equation 4, is used in the output layer. The binary cross-
entropy loss function is utilized to measure the loss of a
sample by calculating it using equation 1.

Loss = −
1

outputsize

outputsize∑
i=1

yi ∗ logŷi

+ (1− yi) ∗ log(1− ŷi) (1)

where ŷi is the ith scalar value in the model output, yi is the
corresponding target value, and outputsize is the number of
scalar values in the model output.

FIGURE 2. DNN model architecture.

In a DNN model, there are no feedback links. The three
major components of the Feed-forward Neural Network are
the input and output layers, as well as the hidden layer, which
may include many hidden units. The layers are each weighed
separately. These units are responsible for initiating the acti-
vation operations of the units from the previous layer [40].

A simple DNN can be depicted as Figure 2. Each hidden
layer with a relu activation function can be as the following
mathematical equation:

g(x) = f (xTw+ b) (2)

g(x) = gi(gi−1)(. . . (g1(x))) (3)

softmax(xi) =
exi∑n
j=1 e

xj
(4)

ReLu = max(0, x) (5)
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FIGURE 3. CNN model architecture.

B. CONVOLUTIONAL NEURAL NETWORKS
CNNs are a subclass of deep neural networks that were for-
merly used to analyze visual images, video comprehension,
voice recognition, and natural language processing.

By obtaining the features of the kernel function, this con-
volution function preserves the spatial link between the input
data. The kernel values are adjusted automatically based on
the optimal structural arrangement. The aspect plot’s mag-
nitude is proportional to the layer depth. The supplementary
nonlinear function is employed before convolution to gener-
ate feature maps. The nonlinear activation may take the shape
of a ReLU as formulated in equation 5. The Fully-connected
Layer (FCL) is a multi-level neural layer that initiates the
result layer via softmax initiation. The previous layer nodes
are connected to the next layer nodes. A simple CNN model
can be constructed as Figure 3. The categorical cross-entropy
loss function is utilized to measure the loss of a sample by
calculating the equation 6.

Loss = −
output_size∑

i=1

yi ∗ logi (6)

Since the softmax is used to activate the output layer,
it is possible to determine the loss function’s derivative with
respect to each weight in the network and for each value in
the training set with the given formula as in equation 6. For
other hidden layer activation, relu activation function is used.

IV. METHODOLOGY
The theoretical idea underlying the suggested paradigm is
presented in this section. A novel two-stage deep learning
model, the LSTM-AE, for network intrusion detection is
introduced, and further details on the same topic are provided.
Then, we provide a brief overview of the two models that
were used to test the proposed model. We will describe our
approach before diving into the experiments and discussion.

A. DATASETS
The current and common IDS models utilized a single intru-
sion detection dataset to concentrate on numerous attacks.
On various datasets, not all ideal IDS models performed

similarly. The majority of IDS models are optimized for a
subset of datasets while performing poorly on others. Thus,
well-known public datasets for intrusion detection will be
utilized to evaluate the proposed CNN and DNN in this study.
The primary goal is to develop an adaptive intrusion detection
system (IDS) that performs much better in the majority of
datasets with a variety of attacks. Additionally, it is critical
to choose suitable datasets, since they play a critical role in
the IDS’s assessment process. The CICIDS-20171 and CSE-
CICIDS-20182 were chosen as the datasets for this study as
IDS Datasets suggested by Hnamte and Hussain [41].

While previous research has mostly utilized KDD99 or
KDD, as well as NSL-KDD, these datasets are unsuitable
for real-time detection [42]. These datasets are concerned
with metadata, which makes it difficult to detect illegitimate
attacks in a real workplace context since metadata are not
attack attempts. Additionally, the majority of publicly avail-
able datasets include duplicate data and an uneven number
of categories. Ring et al. [43] examined the features of prior
intrusion detection datasets. This research demonstrates that
a variety of previously released datasets accurately repre-
sent repetitive and unproductive attacks such as DDoS, UDP
Flooding, and brute force, which vary from current web-
attack trends. Indeed, since attack types and data patterns
are continuously changing, it is essential to create a general-
purpose model that reflects the current trends [41].

B. DATA PREPROCESSING DATASET
For several years now, AI has attracted considerable scien-
tific attention for developing Anomaly Intrusion Detection
System (AIDS) to create a secure network that is resistant to
current kinds of attacks, which continues to be a top priority
for researchers. Numerous research aims to improve AIDS
and assess their progress using a variety of measures. The
majority of machine learning algorithms are parameterized,
which means that their behavior cannot be predicted only
on the basis of the processed data. Additionally, random
factors have a major effect on how well AIDS models work.
Following that, the behavior of parameters must be fine-tuned
to get an acceptable evaluation.

Data cleaning is the process of identifying and correcting
or removing errors, inconsistencies, and discrepancies in data
before it is used for analysis ormodeling. It is an essential step
in data preprocessing, especially for deep learning applica-
tions. Here are some reasons why data cleaning is necessary
for deep learning:
• Garbage in, garbage out: The quality of the data used to
train a deep learning model has a significant impact on
the quality of themodel’s predictions. If the data is noisy,
inconsistent, or contains errors, the model’s predictions
will likely be inaccurate or unreliable.

• Overfitting: Deep learning models are prone to over-
fitting, which occurs when the model memorizes the

1CICIDS-2017 https://www.unb.ca/cic/datasets/ids-2017.html
2CSE-CICIDS-2018 https://www.unb.ca/cic/datasets/ids-2018.html
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training data instead of learning the underlying patterns.
If the training data is noisy or contains errors, the model
may overfit to these errors, resulting in poor generaliza-
tion to new data.

• Optimization: Deep learningmodels are optimized using
gradient-based optimization algorithms, which require
the data to be smooth and continuous. If the data contains
outliers or other anomalies, the optimization algorithm
may struggle to find the global minimum.

• Efficiency: Deep learning models require large amounts
of data to train, and cleaning the data can help reduce
the amount of data required. Removing irrelevant or
redundant features, for example, can reduce the dimen-
sionality of the data and make it more efficient to train.

• Ethics and fairness: Data cleaning can also help ensure
that the data used to train the model is representative
and unbiased. Biases in the data can lead to unfair or
unethical predictions, such as racial or gender biases.

To avoid differences in the outcomes of feature quantifi-
cation and to prevent features with a wide value range from
impacting the model’s output, the datasets are normalized for
all features. Normalization of data may enhance the model’s
precision and accelerate the model solution. The Min-Max
normalization method is applied to assume that the dataset
of a group of features is X1,X2, . . .Xn the equation for nor-
malizing a certain data Xi in the set is shown in the following
equation:

X ′i =
Xi − XMin
XMax − XMin

(7)

Here, X ′i is the normalized data and XM in and XMax are the
minimum and maximum values in the dataset, respectively.

Furthermore, it is worth noting that in CSE-CICIDS2018,
there are only 928 Web Attacks available, while the sample
size of the dataset has significantly increased compared to
the CICIDS-2017 IDS dataset, particularly for Botnet and
Infiltration attacks, which have risen by 143 and 4497, respec-
tively. The comparison between the sample sizes of both
datasets is presented in Table 1.

For optimal results, the data must be refined and standard-
ized before training. There are null, redundant, and outlier
values in the datasets. Similarly, dataset samples do not all fall
within the same range andmust be normalized before training
for effective prediction. From the datasets, null, redundant,
and outlier values are removed. We used the standard trans-
form for data normalization since it centers and scales each
feature separately, following every feasible examination of
null and redundant data removal techniques. Table 2 has
shown the features removed from the CICIDS-2017 dataset,
whereas Table 3 has shown the features removed from the
CSE-CICIDS-2018 dataset.

In summary, data cleaning is essential for deep learning
applications to ensure the quality, reliability, and fairness
of the model’s predictions. Data cleaning can help prevent
overfitting, improve optimization, increase efficiency, and
promote ethical and fair use of the model.

C. PROPOSED FRAMEWORK
Traditional approaches have the drawbacks of starting from
scratch, overfitting, and short-term memory issues when the
amount of data increases or the correlation between variables
becomes complex. Using sequential learning models, these
problems are relatively solvable. However, simulating the
temporal and spatial characteristics of network attacks is
complex. In this paper, we propose a novel two-stage model
that combines AE and LSTMwith a data preprocessing phase
to effectively identify attack categories from regular traffic.
The architecture of the proposed model is shown in Figure 6.
The AE encodes the original data and forms a bottleneck,
and the decoding network restores all the data. The main
challenges of the proposed model are the combination of
two types of architectures and the training with smoothing
constraints. The bottleneck is a normal layer whose main goal
is to recover current data, as shown in Figure 4.
The AE is an unsupervised algorithm that sets the target

values to be equal to its input signals. The AE tries to learn
a function hw,b(X ) that satisfies hw,b(X ) ≈ X , where X =
x1, x2, . . . xn represents the original signals, and w and b are
hyperparameters. This implies that the AE tries to learn an
approximation to the identification function so that output
values similar to X can be obtained. Usually, an AE can
be divided into encode/decode layers. The encoding layers
compress the original signals to obtain a low-dimensional
representation, which corresponds to the so-called bottleneck
features. The decoding layers reconstruct the inputs from the
bottleneck features. Thus, the objective function of the AE
can be written as equation 8.

L(hw,b,X ) =
1
2
∥ hw,b(X )−X ∥2 (8)

The forward calculation of the ℓ+1 layers in AE is written
as equation 9.

α(ℓ+1)
= f (W ℓαℓ

+ bℓ) (9)

where f is the activation function and W ℓαℓ and bℓ are the
weights, activation value, and bias of the ℓ layer, respectively.
We first compute the forward output value of the hypothesis
hw,b,X . Then, for each node i in layer ℓ, we compute an
‘‘error term’’ δℓ

i ; it measures how much this unit was a
‘‘response’’ for the output error. For the units in the output
layer, the difference between network’s activation and target
value is intuitive. It can be represented as equation 10.

δ
nℓ

i =
∂L(hw,b,X )

∂znℓ

i
= −(X i − anℓ

i )f ′(znℓ

i ) (10)

where nℓ denotes the output layer, z
nℓ

i and anℓ

i denote the total
weighted sum of inputs and the activation to unit i in layer
nℓ, respectively, and f is the activation function. For the other
layers ℓ, the equation is defined as equation 11.

δℓ
i =

sℓ+1∑
j=1

W ℓ
ij∂

ℓ+1
j

 f ′(zℓi ) (11)
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TABLE 1. Content of CSE-CICIDS-2018 dataset and CICIDS-2017 dataset.

TABLE 2. CIC-IDS2017 dataset dropped features.

TABLE 3. CSE-CICIDS-2018 dataset dropped features.

FIGURE 4. AE model architecture.

and the update rules of W , b are defined as equation 12 and
equation 13.

W ℓ
i = W ℓ

i − αaℓ
j ∂

ℓ+1
i (12)

bℓ
i = bℓ

i − α∂ℓ+1
i (13)

where α is the iteration step length.
The primary purpose of the AE is to minimize the

data dimensions of inputs while preserving the essential
data structure information. The most often used forms for
encoders and decoders are mathematical transformations that
maintain collinearity (Equation 14) and nonlinearity (Equa-
tion 15):

fθ (xi) = sf (b+W ) (14)

gθ (h(xi)) = sg(c+ W̃ ) (15)

FIGURE 5. LSTM model architecture.

whereas sf and sg are the encoder and the decoder activation
function, such as sigmoid, etc., b and c are the bias vectors in
the encoder and the decoder layers, w and w̃ are the weight
matrices in the encoder and the decoder.

AE is often employed in representation learning to com-
prehend unsupervised feature vector inputs. Figure 6 depicts
the typical technique with an LSTM within AE which we
then term LSTM-AE. Initially, we performed data cleaning
as shown in Algorithm 1, then, We applied sequence-to-
sequence AE, LSTM network in the encoder and decoder
layer as shown in Algorithm 2. The optimum objective is
to forecast both short-term and long-term network attacks.
AE is composed of an encoder and a decoder, with the input
sequence first being encoded and then decoded.

Another prominent deep learning model is the recurrent
neural network (RNN), where connections between units
create a directed graph coupled with sequence information
from the input. The RNN analyses a series of input data by
using their internal state, which results in a vanishing gradient
issue that has a significant severe impact on model accuracy
[44]. LSTM is an improved form of RNN that avoids the
vanishing gradient issue by the use of gates (input, forget, and
output) and memory cells as depicted in Figure 5.

The LSTM sequence is a list of LSTM units to capture the
temporal information. The encoder and decoder consist of the
LSTM sequences. After encoding, the bottleneck features are
fed into the decoder for data reconstruction. The residual
between the recovery and input data for adjusting the net-
work is computed by square error. Bidirectional architecture
has not been taken considered in the proposed model. The
following equations show the LSTM operation.

ft = 8(Ŵf .[ht−1, xt ]+ Bf ) (16)

it = 8(Ŵi.[ht−1, xt ]+ Bi) (17)

C̃t = tanh(ŴC .[ht−1, xt ]+ BC ) (18)
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Ct = ft × Ct−1 = it × Ct (19)

Ot = 8(ŴO.[ht−1, xt ]+ BO) (20)

ht = Ot × tanh(8(Ct )) (21)

As shown in Figure 5, for the equation 16, xt is the network
input, ht is the output from the hidden layer, 8 denotes the
sigmoid function, Ct is the cell state and the state candidate
values are denoted using C̃t , Ŵi, ŴO, Ŵf and Ŵc are the
weight used on the input, drop and output gate and memory
cell, whereas Bf , Bi and BC denote the bias for the input
and output as well as the forget, gate and cell which are
used in equation 16, 17, 18, 19, 20 and 21. The input gate
determines if input data will be retained, the forget gate
determines whether data will be lost, the cell records the
processing status, and the output gate delivers the result. This
architecture was built specifically to overcome the gradient
issue in RNNs.

Algorithm 1 Stage 1: Data Processing
Input: D = [X1,X2, . . .Xn]
Output: Cleaned Dataset

1: Set DLength = Row length from D
2: for i← 1 to i <= DLength do
3: if D(X1,x2,...xn) is of NULL or na type then
4: Remove Row: Di
5: end if
6: end for
7: Update D
8: Apply Data Normalization to D
9: Preprocessed MinMaxScaler (Eqn 7) to D

10: Output D

Algorithm 2 Stage 2: LSTM-AE
Input: Id = [X1,X2, . . .Xn]
Output: Intrusion detection accuracy

1: Split Data into Training and Testing Set:
2: XTrain = X1,X2, . . .X(n− t)
3: XTest = X(n− t + 1), . . .X(n)
4: Train Model:
5: AE ← AutoEncoder (XTrain)
6: EncoderModel (FeedForwardAE(AE)): Eqn 9
7: for each Xj in XTrain do
8: Calculate ft (Eqn 16), C̃t (Eqn 18, it (Eqn 17)
9: Update Cell State ct (Eqn 19)

10: Calculate Ot (Eqn 20), ht (Eqn 21)
11: end for
12: AE → output: Eqn 10
13: Calculate δℓ

i (Eqn 11), W
ℓ
i (Eqn 12), bℓ

i (Eqn 13)
14: Apply MAE (Eqn 23) for the Error Rate

In this study, encoders based on unsupervised training
are employed to reinstate the latent vectors to the input
sequences, driving the encoders to learn how to create more

TABLE 4. LSTM-AE: parameters.

meaningful latent vectors, hence mitigating the issue of fea-
ture loss and local optima in the training process. The two
auxiliary decoders, like the prediction decoder, use the mean
square error loss function. The global loss function may then
be derived byweighted addition of the loss function, as shown
in Equation 22 for MSE and 23 for MAE.

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (22)

MAE =

∑n
i=1 |yi − xi|

n
(23)

Table 4 outlines the key hyperparameters for the proposed
model, including the number of LSTM layers and hidden
units, the activation function and dropout rate for the LSTM
layers, the number of AE layer and units, the learning rate,
loss function, optimizer, batch size, and number of epochs
for training.

V. EXPERIMENTAL AND RESULT DISCUSSION
In order to verify the quality of the LSTM-AE neural net-
work for anomaly detection, two additional models, simple
DNN and CNN, were constructed and compared with the
LSTM-AE. The structures of these models were set up as
follows.

DNN: The neural network was a 4-layer fully connected
one with a softmax layer as the output layer. The numbers
of neurons in input layer and output layer were both 81. The
numbers of neurons in the three hidden layers were 128 and
256 and 128, respectively.

CNN: The convolutional neural network was a 2-layer
fully connected to one hidden layer then one with a softmax
layer as the output layer. The numbers of neurons in input
layer and output layer were both 81. The numbers of neurons
in the one hidden layers was 256.

Two publicly accessible datasets were utilized to analyze
and verify the proposed LSTM-AE model for NIDS, as well
as for DNN and CNNmodel. These are the CICIDS-2017 and
CSE-CICIDS-2018 benchmark datasets.
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FIGURE 6. LSTM-AE model architecture.

A. CICIDS-2017
The CICIDS-2017 dataset was intended to address the lack of
real-time network traffic datasets for intrusion detection eval-
uation. CICIDS-2017 includes the most current and relevant
data for testing security systems. However, the fundamental
reason for using this dataset is because it contains infor-
mation on class imbalances, as mentioned in Panigrahi and
Borah [45] and Injadat et al. [46]. Other IDS datasets, such as
NSL-KDD [47] or UNSW-NB15 [48], have a limited number
of features; for example, NSL-KDD has 42 features [47];
UNSW-NB15 contains 49 features [48]; while CICIDS-2017
contains more than 80 features [49]. As a result, we believe
that the CICIDS-2017 dataset is better in terms of data
dimension.

CICIDS-2017 is composed of eight (8) sessions
of traffic monitoring: Friday-Working Hours-Afternoon-
DDos, Friday-Working Hours-Afternoon-PortScan, Friday-
Working Hours-Morning, Monday-Working Hours,
Thursday-Afternoon-Working Hours-Infiltration, Thursday-
WorkingHours-Morning-WebAttacks, Tuesday, andWednes-
day working hours. Each session is stored in CSV file format.
The files include both regular traffic, denoted by the term
‘‘BENIGN,’’ and abnormal traffic, also termed ‘‘ATTACKS.’’
Apart from regular and benign traffic, this dataset contains
14 other types of attacks. Additionally, the data in the table
demonstrates an unbalanced distribution of data among the
15 classes. The percentage of data distributed against the
primary class and the distribution of data within each class
both illustrate the data’s imbalance. The dataset contains
classes for a limited number of traffic threats, including Web
Attack-SQL Injection, Infiltration, and Heartbleed.

B. CSE-CICIDS-2018
This dataset is the product of a collaborative effort by
the Communications Security Establishment (CSE) and The

Canadian Institute for Cybersecurity (CIC), which used the
concept of profiles to build a comprehensive cybersecurity
dataset. It also includes abstract distribution models for var-
ious network elements such as applications, protocols, and
lower-level components. The dataset contains seven distinct
attack scenarios, including Brute-force, Heartbleed, Botnet,
DoS, DDoS, Web attacks, and network infiltration from
inside. The attacking network consists of 50 computers,
whereas the victim group’s five departments are comprised
of 420 PCs and 30 servers. This dataset contains the network
traffic and logs files of each victim system, as well as 80 net-
work traffic characteristics collected using CICFlowMeter-
V3 from intercepted network traffic [49].

The data set is grouped by day for a total of eight days. Each
day, every computer containing the raw data network traffic
(Packet Captures) and event logs (Windows and Ubuntu event
Logs) were collected. More than 80 traffic characteristics are
extracted from the raw data throughout the features extraction
procedure which is then available in CSV format.

C. SYSTEM SETUP
Experiments are performed using Python 3.7 with develop-
ment libraries for the DL applications Keras3 and Tensor-
Flow,4 on a desktop computer equipped with an Intel Core
i9-10900K CPU, 128 GB of RAM, NVIDIA RTX 3060
Ti GPU with cuDNN installed, and a 64-bit version of
Windows 11 Pro.

To evaluate the proposed system’s performance, we per-
formed experiments in a variety of situations and compared
them to many comparable systems such as DNN, CNN,
and LSTM-AE. During the training phase, the following
parameters were set: dropout rate of 0.2 and 0.1 to avoid

3Keras https://keras.io/
4TensorFlow https://www.tensorflow.org/
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overfitting; loss function with binary cross-entropy for DNN
and categorical cross-entropy for CNN, which is a classic loss
function used in binary classification tasks; learning rate of
0.0001; and Adam optimizer, which is an adaptive learning
rate optimization algorithm for training deep neural networks.

D. EVALUATION METRIC
To assess the performance of the LSTM-AE model, the same
evaluation criteria used in the majority of past research on
NIDSs are utilized. In particular, a study of the relevant lit-
erature reveals that accuracy, precision, recall, F1-Score, and
false alarm rate (FAR) metrics have been frequently utilized
to assess the efficacy of the majority of intrusion detection
systems [50], [51].

The following formulae are used to calculate these metrics:

TPR =
TP

TP+ FN
(24)

FPR =
FP

FP+ TN
(25)

Precision =
TP

TP+ FP
(26)

Recall =
TP

TP+ FN
(27)

F1-Score = 2 ∗
(Precision ∗ Recall)
Precision+ Recall

(28)

Accuracy =
TN + TP

TN + TP+ FN + FP
(29)

TP, TN, FP, and FN are abbreviations for True Positive,
True Negative, False Positive, and False Negative, respec-
tively. Finally, the F1 Score is the harmonicmean of recall and
accuracy, indicating the system’s performance appropriately.
Equation 28 provides the statistical formulation.

E. OPTIMIZATION AND LAYERS
When the learning rate is reduced from 0.001 to 0.0001, the
accuracy of all evaluationmeasures improves. However, if the
learning rate is lowered below 0.0001, all evaluation metrics
become ineffective. The loss and accuracy measurements
indicate that reducing the learning rate negatively affects the
performance of the NIDS model.

For optimization, we use Adam, an adaptive learning rate
method that calculates individual learning rates for different
parameters. Adam adapts the learning rate for each weight
of the neural network by estimating the first and second
momentum of a gradient.

We compare the performance of the proposed LSTM-
AE model with a CNN model with optimal settings and a
DNN model with optimal settings trained on the original
CICIDS2017 and CSE-CICIDS2018 datasets, as shown in
Figure 7. While ensuring that the false alarm rate does
not increase, the LSTM-AE model significantly improves
the ability of the model to detect anomalous instances. The
loss performance is depicted in Figure 7c and 7d, while
Figure 7a and 7b illustrate the accuracy performance for both
training and validation.

TABLE 5. Performance comparison of DNN, CNN and proposed LSTM-AE.

Table 5 shows a performance comparison of three deep
learning models: DNN, CNN, and the proposed LSTM-AE
on two different datasets, CICIDS-2017 and CSE-CICIDS-
2018. The table has two main sections, one for each dataset,
each including the scores of the models in terms of accuracy,
loss, recall, precision, and F-measure, as well as training and
inference times. In each column, the scores of the models
are presented, where the rows represent evaluation metrics,
and the columns represent the three models. Each metric
is evaluated using a percentage or a time value. In each
metric, the value in bold represents the best performance
among the three models. For example, in the CICIDS-2017
section, the LSTM-AE model has the best performance in
terms of accuracy, loss, recall, precision, and F-measure.
However, the CNN and DNNmodels have better training and
inference times. Similarly, in the CSE-CICIDS-2018 section,
the LSTM-AEmodel outperforms the CNN andDNNmodels
in terms of accuracy, recall, precision, and F-measure, but
the CNN and DNNmodels have better training and inference
times.

Additionally, Table 5 demonstrates that the training time
for DL models can vary significantly depending on vari-
ous factors such as the complexity of the model, the size
of the dataset, and the optimization techniques employed.
As shown in Figure 8, for smaller datasets and simpler mod-
els, training can take only a few seconds when our proposed
model is trained on GPU. To optimize training time, various
techniques such as mini-batch training, early stopping, and
transfer learning can be employed. Additionally, pre-trained
models can also be used as a starting point for further training,
reducing the time required for training.

When training the proposed LSTM-AE model, there are
several advantages to training it on a GPU (Graphics Process-
ing Unit) rather than a CPU (Central Processing Unit):

• Speed: One of the main advantages of training an
LSTM-AEmodel on aGPU is that GPUs are specifically
designed to perform the types of calculations required
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for deep learning models. As a result, training the pro-
posed LSTM-AEmodel on a GPUwasmuch faster. This
is because GPUs have a large number of cores that can
perform calculations in parallel, which can significantly
reduce the training time.

• Memory: Another advantage of training the proposed
LSTM-AE model on a GPU was that GPUs have more
memory than CPUs. This can be particularly true when
working with large datasets, as in our study, and as it
allowed the model to process more data at once without
running out of memory.

Here are some reasons why the proposed LSTM-AE may
be better suited for intrusion detection tasks compared to
DNN and CNN:
• Sequential data processing: LSTM-AE is well-suited for
processing sequential data, such as time series or natural
language data, which require a model to remember and
analyze past events or words. LSTM-AE’s memory cells
allow it to retain information for an extended period,
making it useful for tasks that require a model to remem-
ber patterns over time.

• Feature extraction: Autoencoders, including LSTM-AE,
are well-suited for feature extraction tasks, where the
goal is to identify and represent the most important
features of the input data. This makes LSTM-AE useful
for dimensionality reduction tasks, where it can learn a
compressed representation of the input data.

• Anomaly detection: LSTM-AE is useful for anomaly
detection tasks, where the goal is to identify unusual
or unexpected patterns in the data. Because LSTM-AE
is trained to reconstruct the input data, it can identify
anomalies that do not fit the learned patterns.

• Data efficiency: LSTM-AE can be more data-efficient
than DNN and CNN, especially in cases where there
is imbalanced training data available. This is because
LSTM-AE can learn to generalize from a set of examples
by capturing the underlying patterns in the data.

Table 6 compares the performance of different models used
for IDS in terms of their accuracy. The proposed LSTM-
AE model was assessed and compared to that of DNN and
CNN baseline models, which were also employed for the
same dataset. The table lists the year of publication, refer-
ence, algorithm, number of features used, dataset used, and
accuracy achieved by each model. The proposed LSTM-AE
is compared with other models and is found to have a better
accuracy than some models but not all. The accuracy of
different models ranges from 65.1% to 99.90%. The table
highlights the diverse range of algorithms and features used
in IDS research. However, some studies have used datasets
that are a decade or more old for training and validation,
which may not accurately reflect modern attack scenarios.
It is important to acknowledge that each dataset listed in table
6 has its own unique characteristics and limitations, and it
would be inappropriate to criticize all of them in the same
way. Nonetheless, there are some potential criticisms of each
dataset that are worth mentioning:

• KDDCUP99: This dataset is often criticized for being
outdated and not representative of modern network traf-
fic. It also contains a lot of redundant and irrelevant
features, which can make it difficult to build accurate
models.

• DARPA1998: This dataset is also quite old and may
not accurately represent modern network traffic. It is
also relatively small, which can limit the complexity of
models that can be trained on it.

• ISCX2012: This dataset is more recent than the previous
two and contains a wider variety of network traffic, but
it is still relatively small and may not be fully represen-
tative of all types of network traffic.

• UNSW-NB15: This dataset is relatively recent and con-
tains a wide variety of network traffic, but it has been
criticized for containing a lot of noisy data and being
difficult to work with.

• WSN-DS: It is difficult to provide a general criticism of
this dataset without more information about it. However,
wireless sensor network datasets in general can be dif-
ficult to work with due to the complex, heterogeneous
nature of the data they produce.

As shown in Table 6, some studies rely on a single dataset
to validate their proposed model. However, such an approach
is not ideal as it fails to ensure the generalization of themodel.
This is because a single dataset can have unique characteris-
tics that the model might learn and overfit to, leading to a high
accuracy score for that dataset but low performance on other
datasets. To test the generalizability of a model, it is crucial
to evaluate it on multiple datasets that have different charac-
teristics. A model that performs well across various datasets
demonstrates its suitability for different environments, which
is a crucial requirement for an effective IDS. Validating a
proposed model using two or more datasets can have several
advantages:
• Generalizability: Themodel that performs well onmul-
tiple datasets can be considered to be more generaliz-
able, meaning that it can perform well on datasets that
it has not seen before. This can be especially important
when the model is being deployed in a real-world setting
where it will encounter a range of data it has not seen
before.

• Robustness: Testing a model on multiple datasets can
help to identify any weaknesses or flaws in the model.
Amodel that performs well on multiple datasets is likely
to be more robust than one that only performs well on a
single dataset.

• Reduction of overfitting: Overfitting occurs when a
model is too closely fitted to the training data and does
not generalize well to new data. Validating a model on
multiple datasets can help to identify overfitting, and can
help to ensure that the model is not overly specialized to
the training data.

• Increased credibility: Validating a model on multi-
ple datasets can increase the credibility of the results,
as it shows that the performance of the model is not
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FIGURE 7. Model performance comparison.

due to chance or specific characteristics of a particular
dataset.

• Comparison with other models: Validating a proposed
model onmultiple datasets can enable direct comparison
with other existing models. This can help to identify
strengths and weaknesses of the proposed model and
provide insights for further improvement.

The findings for accuracy, loss, recall, precision, and F-
measure were compared, and the overall results are depicted
in Figure 7. The proposed model was trained using MAE
as the error function, which resulted in the lowest loss error
rates. Therefore, the proposed method was able to achieve
the smallest error rate among these models, as shown in
Table 5. We compared our proposed LSTM-AE model with
other studies, as shown in Table 6.

We compared the performance of the model using MSE as
the error function with two different learning rates, 0.001 and

0.0001, as presented in Table 7. While using MSE as the
error function can effectively train the model to minimize
the differences between predicted and actual values up to
5 epochs, it may not always be the optimal choice for all
types of models or datasets. Therefore, we also applied MAE
as the error function with learning rates of 0.001 and 0.0001,
as shown in Table 8. It is important to consider different error
functions and metrics to evaluate the performance of a model
comprehensively.

MAE and MSE are both commonly used error functions
in machine learning, but they differ in the way they measure
the errors between the predicted and actual values. The main
advantage of using MAE over MSE is that MAE is more
robust to outliers, whileMSE penalizes outliers more heavily,
which is clearly visible from comparing Table 7 and Table 8.
One advantage of using MAE (equation 23) over MSE

(equation 22) is that MAE is more resistant to outliers, which
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TABLE 6. Performance comparison of the proposed LSTM-AE with other models.
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TABLE 7. Performance comparison LSTM-AE with MSE error function.

TABLE 8. Performance comparison LSTM-AE with MAE error function.

are data points that are significantly different from the major-
ity of the data. In other words, MAE gives equal weight to
all errors, while MSE heavily penalizes large errors because
of the squaring term. This means that if there are outliers in
the dataset, the model trained with MAE is less likely to be
affected by them and more likely to generalize well to new
data.

However, one disadvantage of usingMAE is that it does not
indicate the direction of the error. In this study, we balanced
the high-bias class by pre-processing the dataset. In such
cases, MAE may be more appropriate, which is why we
selected MAE for our final evaluation.

Using a smaller dataset can reduce the computation
required to train the LSTM-AE, and a lower learning rate can
prevent overfitting and improve training stability. Therefore,
we applied a learning rate of 0.001 for the optimization of our
proposed model. A simpler AE architecture can also decrease
the number of trainable parameters and make the model
easier to train. Thus, our proposed model is both simple and
effective for IDS.

FIGURE 8. Time taken for training models.

VI. CONCLUSION AND FUTURE WORK
We propose a novel two-stage intrusion detection system in
this article that utilizes a highly efficient framework and is
capable of analyzing network activity. The system employs
a distributed deep-learning model for real-time data process-
ing and analysis, which includes the DNN model and CNN
model that were selected for a thorough comparison with the
proposed LSTM-AE model. We trained and tested the model
using two datasets: CICIDS2017 and CSE-CICIDS2018.
To the best of our knowledge, our system is capable of detect-
ing malicious activity in a distributed manner and utilizes the
proposed hybrid model to more precisely identify attacks.
The proposed model has applications in various DL fields,
such as agriculture, medicine, and language translation, and
has shown a highly improved loss rate during training due to
data cleaning. However, the proposed model also has limita-
tions in terms of training time duration and complexity when
training with a large dataset such as CICDDoS20195 as it still
takes longer than typical DNN and CNNmodels, as shown in
Table 5.

To evaluate the performance of the proposed hybrid model,
we compared two error functions, MSE and MAE, with a
training period of 5 epochs. The results showed that the
MAE error function outperformed MSE in terms of accuracy
performance. Therefore, we utilized the MAE error function
for the proposed hybrid model with a longer training period
of 30 epochs. It is worth noting that while MSE is more
sensitive to large errors, it may not always be the best choice
for all models or datasets. In some cases, such as with the
intrusion detection system proposed in this study, MAE is a
more appropriate choice due to its robustness to outliers and
ability to provide a better estimate of the average error. The
longer training period of 30 epochs was selected to ensure
the model had sufficient time to learn and accurately detect

5CICDDoS2019 https://www.unb.ca/cic/datasets/ddos-2019.html
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potential intrusions. The results of the experiments confirmed
that the proposed hybrid model with MAE as the error func-
tion and 30 epochs of training achieved outstanding accuracy
in detecting intrusion attempts in network traffic data, outper-
forming other state-of-the-art models for intrusion detection.

The proposed hybrid model achieved remarkable multi-
class detection accuracy of 99.99% on the CICIDS2017
dataset, compared to 99.10% on the CSE-CICIDS2018
dataset when trained for up to 30 epochs. These experimental
results outperformed those of other state-of-the-art intrusion
detection models in terms of accuracy performance metrics.

The LSTM-AE model for IDS has a promising future with
potential advancements that can further improve its perfor-
mance. For instance, researchers can experiment with alterna-
tive architectures, such as stacked or bidirectional LSTM-AE
models, to evaluate whether they can achieve better out-
comes. Additionally, researchers can explore the application
of attention mechanisms, which can help the model focus on
essential features and ignore irrelevant ones, thereby boosting
performance.

Another potential direction for the LSTM-AE model is to
use transfer learning techniques. This technique involves pre-
training the model on a large dataset and fine-tuning it on a
smaller dataset, which could lead to improved accuracy and
reduced training time.

Furthermore, researchers can consider employing ensem-
ble methods, which involve combining multiple LSTM-AE
models to enhance their overall performance. This approach
can help to mitigate the impact of overfitting and improve the
model’s ability to generalize to new data.

Finally, as new types of attacks emerge in the field of
network security, the LSTM-AE model may require adapta-
tion to remain effective. Researchers can collect new datasets
and retrain the model on them to ensure that it can continue
to detect the latest threats. In summary, the LSTM-AE
model has demonstrated great potential in intrusion detection
and offers many opportunities for future development and
improvement.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

AE AutoEncoder.
AI Artificial Intelligence.
AIDS Anomaly Intrusion Detection System.
BAU-ROA Bypass-Linked Attacker Update-based ROA.
CAE Computer-Aided Engineering.
CNN Convolutional Neural Network.
CIC Canadian Institute for Cybersecurity.
CPU Control Processing Unit.
CSE Communications Security Establishment
CSV Comma-Separated Values.
DBN Deep Belief Network.
DCNN Deep Convolutional Neural Network.
DL Deep Learning.
DNN Deep Neural Network.

DoS Denial of Service.
DDoS Distributed Denial of Service.
FCL Fully-Connected Layer.
FNN Feedforward Neural Network.
GAN Generative Adversarial Network.
GBT Gradient Boosted Tree.
HMLSTM Hierarchical Multi-scale LSTM.
HTTP HyperText Transfer Protocol.
IDS Intrusion Detection System.
KNN k Nearest Neighbour.
LSTM Long-Short Term Memory.
MCTS Monte Carlo Tree Search.
ML Machine Learning.
MLP Multi Layer Perceptron.
NB Naive Bayes.
NDAE Non-symmetric Deep AutoEncoder.
OCNN Optimised Convolutional Neural Network.
OCSVM One Class Support Vector Machine.
PCA Principal Component Analysis.
PL Pooling Layer.
RAM Random Access Memory.
RBM Restricted Boltzmann Machine.
ReLU Rectified Linear Unit.
RF Random Forest.
RNN Recurrent Neural Network.
ROA Rider Optimization Algorithm.
SAE Sparse AutoEncoder.
SMOTE Synthetic Minority Oversampling Technique.
SQL Structure Query Language.
SVM Support Vector Machine.
TAP Terminal Access Point.
VARMAN adVanced multi-plAne secuRity fraMework.

for softwAre defined Networks.
XSS Cross Site Scripting.
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