
Received 7 March 2023, accepted 5 April 2023, date of publication 12 April 2023, date of current version 17 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266644

How Well Do Reinforcement Learning
Approaches Cope With Disruptions?
The Case of Traffic Signal Control
MARCIN KORECKI 1, DAMIAN DAILISAN1, AND DIRK HELBING 1,2
1Computational Social Science, ETH Zürich, 8092 Zürich, Switzerland
2Complexity Science Hub Vienna, 1080 Vienna, Austria

Corresponding author: Marcin Korecki (marcin.korecki@gess.ethz.ch)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme through the Distributed Intelligence
& Technology for Traffic & Mobility Management (DIT4TraM) Project under Grant 953783.

ABSTRACT Data-driven and machine-learning-based methods are increasingly used in attempts to master
the challenges of the world. But are they really the best approaches to manage complex dynamical
systems? Our aim is to gain more insights into this question by studying various popular reinforcement
learning methods for traffic signal control, namely in disrupted scenarios characterized by significant,
unpredictable variations. The results are expected to be relevant in subject areas ranging from traffic
physics to transportation theory, from dynamics in networks to complex systems, from control theory to
self-organization, and from adaptive heuristics to machine learning.

INDEX TERMS Traffic networks, reinforcement learning, self-organization, signal control, disruptions,
benchmark.

I. INTRODUCTION
Around the world, the digital revolution is reshaping
societies [1]. Data-driven approaches using machine learn-
ing (ML) and artificial intelligence (AI) are increasingly
commonplace. In particular, they are considered to be good
solutions for systems that are too complex to understand.
To fit typical system behaviors and account for the com-
plexity of some tasks, machine learning approaches may
adjust thousands, millions, or even billions of parameters [2].
One popular application area is ‘‘smart cities’’, where such
approaches are used, among others, to optimize and automate
processes [3], [4], [5]. An application to traffic signal control
seems logical but comes with particular challenges, as traffic
flows in urban road networks are largely variable and hard
to predict. Furthermore, traffic light control is an NP-hard
optimization problem [6], [7], [8], which for reasonably
sized cities cannot be solved exactly in real-time. While
optimal solutions for average or ‘‘typical’’ traffic situations
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can be found offline, these will not be strictly optimal
for any actual traffic situation [9], [10], [11], [12]. Hence,
traffic signal optimization often uses heuristic algorithms
for dynamic adaptation [13], [14]. In this connection,
machine learning (ML) approaches, particularly reinforce-
ment learning (RL) methods, have recently gained great
popularity [15], [16], [17], [18].

Reinforcement learning (RL) algorithms operate traffic
controllers in ways that are difficult to attain using tradi-
tional control approaches. When dealing with large traffic
systems, decentralized approaches offer desirable qualities
such as efficiency, adaptability, reduced cost, scalability, and
resilience [19]. However, introducing decentralization also
necessitates the need for coordination among agents [20].

In some algorithms, coordination arises as an emergent
property resulting from self-organization, as demonstrated
in [14], [21], and [18]. In comparison, RL-based methods can
employ several ways to embed coordination into the learning
process, such as passing messages [22], communicating
observations between neighboring intersections [21], sharing
parameters or states [23], or agent actions. In particular,
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studies of RL approaches that leverageDeep Learning present
results with significant improvements of traffic performance
in the specific scenarios they have been trained on [15], [16],
and [17]. However, related to RL’s impressive performance
is a tendency to overfit its training scenarios [24], [25].
While this can be in favor of deployment scenarios, when the
traffic flows vary little compared to the training conditions,
deviations from the normal case can result in sub-optimal
traffic performance.

Despite such issues, one may expect that the use of
machine learning methods is becoming or likely to become
the state-of-the-art. So, how well are such methods per-
forming as compared to other, perhaps considerably simpler
methods? In this paper, given the large range of machine
learning and traffic signal approaches, we cannot give a final
answer. We rather propose some scenarios and techniques,
which allow one to compare the performance of diverse
approaches and to standardize procedures. In this connection,
we study several benchmarks, various reinforcement learning
approaches reported in the scientific literature, and some
extensions of them, based on the approach of ‘‘Pre-Training’’.

Our work attempts to answer the question: how resilient
are various decentralized algorithms for traffic signal control
to disruptions in the traffic network? In contrast to many
previous publications, we investigate scenarios that are
disrupted. This serves to reflect the reality of traffic systems,
the performance of which is affected by accidents and
building sites every day. We simulate these events by
randomly closing down links (i.e., sections) of the road
network studied. So, we are interested in how ‘‘resilient’’
traffic signal control is to random disruptions, i.e., how well
the approaches can handle such scenarios.

We evaluate several traffic control algorithms in multiple
synthetic and real-world simulation scenarios, including RL-
based methods, demand-driven and analytical approaches,
and naive baselines (such as random and cyclical control
schemes). In particular, we measure the steady-state effects
of disruptions on the average travel times of vehicles in the
system. In scenarios where RL-based methods fail to learn
an effective policy, we Pre-Train them on a simple traffic
system and apply the learned method to a more complex one.
We demonstrate that this results in better performance than
direct training.

II. BACKGROUND
In this section, we briefly review the different types of traffic
control algorithms used in this study. We also provide an
overview of the commonly used terms in the traffic control
literature that the reader will encounter in the following
sections.

A traffic network is a collection of roads that cross other
roads at intersections. Roads that are bi-directional are
represented using two links, one for each direction of the
road. At an intersection, links that lead to the intersection are
called incoming, while those that lead away from it are called
outgoing. A link can be further subdivided into lanes. One can

then consider pairs of incoming lane(s) and outgoing lane(s)
as movements. Typically, we are interested in three types of
movements: left turns, right turns, and straight movements.
Traffic lights then regulate traffic flow by determining which
combinations of non-conflicting movements, or phases, can
pass through the intersection at a given time. Traffic lights
assign a green time to an activated phase, which is the
duration of the corresponding phase’s movements, during
which cars are allowed to progress.

Intersections can employ the use of control plan schedules,
wherein the cycle of phase activations are repeated after a
duration called the cycle length. For a given control plan,
splits refer to the portions of the cycle length allocated to
the various phases. The control cycles of intersections are
often operated with a certain time shift, which can benefit
coordination. The corresponding delay is referred to as cycle
offset.

A. CONVENTIONAL CONTROL
The simplest method employed in traffic signal control
uses centrally determined schedules of green times, phase
activation cycles, and cycle lengths [26]. In practice,
these schedules may be pre-optimized for ‘‘typical’’ traffic
patterns, using offline tools [27], [28], [29]. Coordination
across intersections is achieved by introducing a cycle
offset to the time schedule of successive intersections.
A limitation of using pre-timed schedules is that they are
highly inflexible and do not respond to real-time traffic
variations or disruptions in the traffic flow network.

Online implementations of adaptive algorithms such as
SCOOT [13] offer more control over timing parameters such
as split, cycle, and offsets, and can better respond to variations
in traffic conditions in real-time. Another approach would
be to remove the constraint of cycling through the phases
in a pre-set order, and to use instead suitable criteria to
select the next phase and green time duration. A simple
adaptive method that follows the aforementioned approach
is demand-based control, where the activated phase is chosen
by measuring the sum of demands of all vehicles involved in
movements of the given phase.

Actuated and adaptive control provides some flexibility by
only activating traffic phases for movements that have vehi-
cles detected by detectors. Phases are subject tominimum and
maximum green times, and their durations can be extended,
reduced, or even skipped according to the detected demand.
However, demand-responsive actuated control alone cannot
guarantee system-wide optimization.

B. SELF-ORGANIZING CONTROL
Self-organization approaches follow a different traffic control
paradigm. In the traffic control context, an agent refers to the
traffic signal controllers for each intersection in the network.
Here, a set of rules determines how agents interact with each
other, and these interactions result in some emergent dynam-
ics in a decentralized manner [30]. One popular algorithm,
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which is based on self-organization principles combined
with queuing theory can control traffic using just two rules:
an optimization and a stabilization rule [14], [31]. The
interaction of these two rules across multiple intersections in
the network results in the spontaneous emergence of green
waves, which is a result of coordinating the phase activations
of successive intersections along a corridor. This algorithm
has been successfully implemented, for example in Dresden,
Germany [32], and Lucerne, Switzerland [33].

C. REINFORCEMENT LEARNING
In reinforcement learning (RL), an agent learns to per-
form complex tasks through repeated interactions with its
environment. This approach is mathematically formulated
as a Markov Decision Process (MDP) [34], with the tuple
⟨S,A,R,P⟩. Herein, S ⊆ Rn is the set of all possible
states of the environment (partially or fully observable) in
n dimensions. A ⊆ Rm is the m-dimensional action space.
R ∈ (Rn, Rm) → R is the reward function that determines
the ‘‘reward’’ for the state s′ obtained by the agent after taking
action a in state s. P is the transition probability function. The
goal of maximizing the cumulative reward function allows an
agent to learn the appropriate action a to take, given a certain
state s [35].
One approach to solving the MDP is called Q-

learning [36]. It uses a function Q : s× a → R to map state
and action pairs to the reward space. This equation estimates
the quality of the current state from the perspective of the
expected rewards for possible future states. The Q-values are
then iteratively updated using the equation

Qnew(s, a) = (1 − l)Q(s, a) + l
[
r + γ max

a′
Q

(
s′, a′

)]
,

(1)

where l is a learning rate. The discount factor γ controls
the importance of immediate compared to future rewards.
Learning such a function can become computationally
demanding when large state and action spaces are consid-
ered. Thus, the development of Deep RL employs deep
neural networks (DNN) to approximate the function Q(s, a)
[37], [38]. This has shown the ability to exceed human
performance in complex tasks [39], [40], [41] and in traffic
control [15], [16], [17], [18]. Unlike supervised learning,
deep RL does not rely on labeled datasets. Training data
are rather generated from interactions of the agents with
their environment, where the agent may take random actions
(exploration) or choose the action a = maxa′ Q

(
s′, a′

)
that

maximizes the Q-function (exploitation).
In the following, we use the double deep Q-network

(DDQN) [42], which employs two Q-networks that are
updated with different frequencies via soft updates. We use
a multi-agent RL paradigm with a single shared DDQN
network for all of the agents. We also use the memory replay
introduced in [39], but collect samples from all agents into a
single memory replay buffer, following [17].

D. RESILIENCE
Resilience can be defined as a system’s ability to withstand,
respond to, and recover from disruptions [43]. Typically,
this involves evaluating the evolution of a performance
metric over time [44] in the form of a resilience curve.
More formally, a resilience curve shows the evolution of
a performance metric that maps system states to a scalar
value throughout a scenario [45]. Such a curve provides
multiple insights into how a system responds to disruptions,
for example, the rate at which system performance degrades
or recovers, the depth of impact, whether or not a system can
restore its performance once the disruption is removed, and
how quickly.

For transportation systems, disruptions can come in two
flavors: a sudden change in traffic volume (demand side)
or a change in network topology (supply side). In urban
traffic systems, these two aspects of disruptions are strongly
interlinked [46]. The transportation systems are prone to
many types of disruptions such as natural disasters (earth-
quakes, floods [47]) or road works or accidents. An explicit
quantification of resilience in the context of urban road
networks can be found in [48]. In this work, we focus on
the longer-term modifications to the network and look at
the steady state resulting from various control algorithms in
different traffic scenarios after disruptions, and comparing
them to the undisrupted performance.

III. METHODS
In this section, we report the details of our conducted
simulation experiments. We specify the flows and road
networks used in the simulated scenarios and explain the
logic behind the simulated disruptions and the Pre-Training
procedure. Lastly, we present the methods compared in the
experiments.

A. EXPERIMENTS
Two series of experiments have been run for this study. The
first series is referred to as the Benchmark Experiments,
where we showcase the performance of different traffic signal
control methods in the proposed benchmark scenarios. In this
connection, our study aims to introduce a set of diverse
scenarios along with a method of disrupting them.

The second series of experiments are referred to as Pre-
Training Experiments. They focus on the Reinforcement
Learning approach to traffic signal control and showcase
the benefit of using simple scenarios for Pre-Training these
learning methods. All the experiments are conducted in
the CityFlow simulator [50], using open boundaries and
stochastic Poisson-process for vehicle arrivals. Each scenario
is run for 3600 steps, corresponding to an hour of real time.
The clearing all-red phase is set to 5 seconds for all simulation
models, and is only activated when the phase signal changes
(there is no yellow/orange phase).
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TABLE 1. Details of the scenarios used in the experiments. The number of vehicles refers to the total number of vehicles that have their starting time
within the scenario’s run time.

FIGURE 1. Maps of the cities used for the real-world data-based scenarios: Hangzhou and NY48 [49]. Red lines indicate the roads considered
in the simulated scenarios.

B. SCENARIOS
The proposed scenarios represent a diverse set of road
network topologies and traffic flows on which one can
comprehensively test different traffic signal control methods.
The idea is that some methods might perform better under
particular conditions (e.g., low traffic vs. high traffic). Thus,
to test a given method and its robustness, one should
compare its performance across various flow and topological
conditions.

Table 1 presents the details of the flows for the six proposed
scenarios. The number of vehicles and their arrival rate varies
from low (Hangzhou scenario) to high (2×2 andNY48 quad).
In the 2 × 2 scenario, only straight movements occur (in its
disrupted version the turning movements are also added to
reroute around the affected link). The Hangzhou scenario is
(for most methods) easy and uncongested due to low arrival
rates and long roads. In the NY48 scenario, even though the
arrival rates are not extremely high, there is significant local
congestion occurring (due to the short length of some roads).
As an additional stress test of all control algorithms, we took
the NY48 scenario and generated two additional synthetic
scenarios with double and quadruple (‘quad’) arrival rates.

Fig. 1 illustrates the areas of the cities upon which the two
real-world data scenarios are based (Hangzhou and NY48).
Considering both, realistic and synthetic scenarios, we are
able to represent a greater variety of flows and topologies.
Fig. 2 represents the idealized road networks underlying
our simulation scenarios. As can be seen from Fig. 2, the
scenarios have either homogeneous road lengths (2 × 2,
Hangzhou) or heterogeneous road lengths (4 × 4, NY48).

C. DISRUPTIONS
The simulated disruptions are a key concept of this paper.
We propose a simple and intuitive method of generating
disruptions by removing links from the road network. The
underlying logic is that accidents, construction sites, or any
other disruptive events will likely affect the entire link and
result in either partial or complete blockage. For the sake
of simplicity, we assume that any disruption makes the
link completely useless for traffic. Thus, a single disruption
affects all lanes of the link (where we consider a link to
be unidirectional). These disruptions necessarily affect the
flow dynamics in the scenario. Fig. 3 exemplifies how this
is implemented in our experiments. Every car with a path
that traverses the disrupted link is rerouted via the shortest
alternative path. If multiple alternative paths are available,
one of them gets assigned at random assuming a uniform
distribution. A disrupted link with only one alternative path
will congest that single alternative path more than a link with
two alternative paths, where the traffic will be distributed
across the two alternative (assuming the same flows for
both links). Therefore, for the sake of consistency, we only
allow for the disruption of links that allow two alternative
paths (otherwise in some samplings where more links with
one alternative path are selected there would be larger
congestion).

We quantify the disruptions as a ratio z of disrupted
links to the number of agents (controlling traffic signals at
intersections) in a given scenario. We choose this manner
of quantification as we want to investigate the disruptions’
effects on the agents and their ability to control traffic in the
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FIGURE 2. Road networks of the scenarios used in the simulation experiments. Black lines represent links, blue dots
represent intersections. The generation of the heterogeneous street networks in (b) is adapted from [21].

TABLE 2. Average path length for various scenarios, reported in terms of the number of links passed (a link is a unidirectional connection between two
nodes representing intersections). The average path length is the average length of the route of each vehicle in a given scenario in terms of links. The
index z in Disz refers to the number of disrupted links in a given scenario. Specifically, z is the ratio of disrupted links compared to the total number of
agents in a scenario. In parentheses, we present the standard deviations of the path lengths.

system. Thus, we link the disruption to the number of agents
explicitly. Moreover, a single disruption directly affects one
agent’s downstream link and another agent’s upstream link.
Hence, when our ratio z is equal to 1, all agents in the
system are directly affected by disruptions, but not all links
(meaning that each agent has at least one of its links affected
by disruption).

We performed simulations for varying disruption levels
for each of the scenarios and generate 100 replications for
each scenario (i.e., each disruption level–scenario pair). The
disrupted links were chosen uniformly at random from the
set of all the links that allow for two alternative paths around
them. All methods were trained and evaluated on each of the
disrupted scenarios.

Table 2 presents the quantified effects of the disruptions
on the flows of the studied scenarios. In the experiments,

we study six levels of disruptions, which we represent in
terms of the ratio of disrupted links to the number of
intersections in a given scenario. As can be seen inmost cases,
the more disruptions occur, the longer the average path length
of vehicles in the system (due to the required detours) and the
higher the standard deviation of the path lengths.

It is worth noting that the disruptions were always local.
Hence, their effects were initially also local, but they could
eventually spread and affect the entire system.

D. PRE-TRAINING
Pre-Training is a well-known method in Machine Learning
that allows one to train a method on some data and then
apply the method successfully to different data. It might be
employed if the data are hard to acquire or training on the full
dataset is expensive. This approach can also avoid overfitting
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FIGURE 3. Representation of the effects of a disruption in the
2 × 2 scenario. Here, link 2 becomes disrupted. As a result, any vehicle
with a path going through link 2 (e.g., 1 – 2 – 3) uses a modified path
leading around the disrupted link 2 (e.g., 1 – 4 – 5 – 6 – 3).

by training a method on more general data before applying
the method learned to more specific cases.

Pre-Training has recently been employed for traffic signal
control with promising results [21]. In our particular setting,
the Pre-Training is motivated by the weak performance of
the Deep RL methods in the NY48 scenario. Accordingly,
the better-performing Deep Learning method (GuidedLight)
is trained on the smaller scenarios—4 × 4 Hom and 4 × 4
Het —and then applied to all disrupted scenarios. The 4 × 4
Hom scenario has the same arrival rates as 4 × 4 Het but has
homogeneous and smaller road links. We select it for here
as it has achieved good results as a Pre-Training scenario in
previous research [21]. Themethod only learns on the smaller
scenarios, and there is no learning in deployment.

E. COMPARED METHODS
We implement several control methods within the simulation
framework of the CityFlow simulator. To simplify the imple-
mentation of some of the algorithms, we define an action
interval of 10 seconds as a hyperparameter, which constrains
the green time of each selected phase to 10 seconds. This
still allows agents to give more than 10 seconds of green
time in total to a single phase (without triggering the all-red
clearing phase), as they can choose to select the given phase
again in the following action interval. The constraint is that
the green time will be in increments of 10. Two algorithms
are excluded from this constraint, as their implementation
explicitly prescribes the exact duration of green times of the
activated phase. In our Benchmark Experiment, we compare
the following methods:

• Random: Each agent chooses its actions at random.
• Cyclical: Each agent chooses its actions based on a
fixed cycle. The green time is varied and depends on the
number of vehicles awaiting service. Each agent starts
with a phase chosen at random.

• Demand: A simple adaptive method, where the agent
selects the phase, which has the highest demand.

• Analytic+: An adaptive, self-organizing method relying
on optimization and stabilization rules [14]. Green times
are varied.

• PressLight: A Deep Reinforcement Learning method
relying on Q-learning [17].

• GuidedLight: A Deep Reinforcement Learning method
relying on Q-learning and heuristic exploration [18].

• Pre-Trained GuidedLight:
– 4 × 4 Het: The GuidedLight method Pre-Trained

on the heterogeneous 4 × 4 scenario (with variable
lengths of street sections).

– 4 × 4 Hom: Same, but Pre-Trained on the homo-
geneous 4 × 4 scenario (where the road network is
a square grid and the road lengths are of uniform
lengths (300m) and therefore on average shorter
than 4 × 4 Hom (447.23 ± 115.82m)). This shares
the flows with 4× 4 Het, whereas the road sections
are homogeneous and shorter than in 4×4 Het. The
scenario has been used for Pre-Training with good
results in [21].

These methods were chosen for our simulation experi-
ments as they represent a diverse set of approaches to traffic
signal control. The Random method is presented as a low-
performance bound, as no well-working method should,
on average, performworse than random control. TheCyclical
approach represents the still widely used cyclic (periodic)
approach to traffic signal control, where the demand deter-
mines the (fixed) green time splits. Demand and Analytic+
are two methods, whose actions are algorithmically driven
by the variable demand in an adaptive way. Lastly, the
GuidedLight and PressLight represent the recently more
and more popular RL approaches.

For the RL methods, we implement the agents follow-
ing [17], [18], [21]. States observed by the agents at the
intersections are vehicle occupancies of the incoming and
outgoing lanes and the one-hot encoded vector representing
the previous action. We define the reward received by the
agent at intersection i as the negative pressure −Pi:

ri = −Pi (2)

= −

∣∣∣∣∣∣
∑
(l,o)∈i

x(l)
xmax(l)

−
x(o)

xmax(o)

∣∣∣∣∣∣ . (3)

The pressure is the difference between the number of vehicles
x on the incoming l and outgoing o lanes at the intersection,
weighted by the capacities xmax of the lanes. We choose
negative pressure as the reward since it has been confirmed
to work well in prior work [17], [18]. Furthermore, it can
function well in a decentralised setting, where the agent
only has access to local information. The non-pretrained RL
methods are trained on a given scenario with no disruptions
and tested on all the levels of disruption (and all the samples
for each level) for the given scenario.

IV. RESULTS
In this section we present our results of the two series of
experiments. The Benchmark Experiments highlight the
various traffic networks and demand flow configurations
that we use in order to demonstrate the ability of a control
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FIGURE 4. Results for the average travel times in our benchmark simulation experiments. Error bars indicate the
standard deviations of the 100 disrupted scenarios simulated for each disruption level. Lower values are better.

algorithm to manage traffic flows. This is followed by
the Pre-Training Experiments that are addressing some
limitations of Deep RL algorithms, which prevent them from
learning effective control policies in some traffic scenarios.

A. BENCHMARK RESULTS
The results of the Benchmark Experiments are presented
in Fig. 4. In all scenarios, the Analytic+ method performs
better than all other methods. In some scenarios (Hangzhou,
NY48, NY48 double), some methods perform similarly well,
while in other scenarios (4 × 4 Het, NY48 quad), it is
clearly superior to all other methods. We also note that the
Randommethod is the worst-performing approach in almost
all scenarios, as expected.

Furthermore, in all scenarios, Analytic+ performs better
than all other methods. In some scenarios (Hangzhou, NY48,
NY48 double), a couple of methods perform similarly well,
while in other scenarios (4 × 4 Het, NY48 quad), Analytic+
is clearly superior to all other methods. We also note that
the Random method is the worst-performing approach in
almost all scenarios, as expected. Modulating the green times
in cyclic scheduling leads to better performance, such that
Cyclical outperforms Random. Interestingly and unexpect-
edly, in the three NY48 scenarios the two Reinforcement
Learning methods perform poorly, at a level comparable
to random. We will discuss the weak performance of the

learning methods and how to overcome it with Pre-Training
in Section V.

The low performance is especially striking since Guided-
Light reaches a level comparable to Analytic+ in the 2 × 2,
4 × 4, and Hangzhou scenarios. Moreover, GuidedLight
typically outperforms PressLight.

For the scenarios themselves, we note that increases in
the disruption level decrease the performance of all control
methods. This trend is particularly pronounced in theD0.5 and
D1 NY48 scenarios.

B. PRE-TRAINING RESULTS
The results of the Pre-Training Experiments are reported in
Fig. 5. As we can see, the best-performing learning method
across all scenarios except Hangzhou is GuidedLight 4 × 4
Hom, which performs at a comparable level as Analytic+ in
the 4 × 4, Hangzhou and NY48 scenarios. The performance
in NY48 quad, for smaller disruptions, is not as good as
Analytic+, but significantly better than the results of the non-
Pre-Trained version. The question of why the Pre-Trained
GuidedLight 4 × 4 is successful will be addressed in the
next section.

V. DISCUSSION
In this work, we study traffic scenarios that can test the
performance of an algorithm under various traffic conditions.
The 2 × 2 scenario only has through movements, which is
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FIGURE 5. Results for the average travel times in the Pre-Training experiments on all scenarios except
2 × 2 (2 × 2 is omitted due to having only one disruption level). Lower values are better. Analytic+ results
are shown for comparison. The error bars indicate the standard deviations over the 100 disrupted
scenarios for each disruption level.

FIGURE 6. Convergence in the training of the machine learning algorithm behind the GuidedLight approach for
each scenario. The drop in reward for the NY48 training, around epoch 40, corresponds to the exploration rate
dropping to its minimum value.

quite easy to handle by adaptivemethods that can skip phases,
but a problem for cyclic algorithms. The 4 × 4 Het scenario
is more challenging to learn, as the algorithm must be able to
handle a variety of topologies, while still maintaining control
across a larger network. The Hangzhou and NY48 (and its

variants) serve as tests of real-world traffic scenarios with
inhomogeneous traffic flows in the road network.

Our study extends the benchmark scenarios to settings
involving disruptions, which are relevant for the resilience of
traffic signal control. The results indicate a significant dif-

VOLUME 11, 2023 36511



M. Korecki et al.: How Well Do RL Approaches Cope With Disruptions? The Case of Traffic Signal Control

FIGURE 7. Average vehicle density on the links of the NY48 scenario. Most traffic flows are running in North- and South-bound directions on the
right-most and center roads, respectively. The Analytic+ method is able to prevent traffic buildup on the horizontal roads (left). However, without
Pre-Training the GuidedLight approach (center) causes congestion, which is represented by red, orange, and yellow colors. Pre-Training on the
homogeneous 4 × 4 network allows for GuidedLight to mitigate congestion, but still not at the level of performance of Analytic+ (right).

FIGURE 8. Projection of the states that the GuidedLight method encountered during the training of each scenario. The states are projected into a 2D
plane using Principal Component Analysis (PCA) [52]. The ratio of variance explained by the two Principal Components (PC) is 0.30 for PC1 and 0.13 for
PC2. The PCs were computed for the combined state data from all scenarios to allow for comparison across different scenarios. Then the states from
each scenario were separately projected into the shared PC space.

ference in how various algorithms can deal with unexpected,
local changes in the flow dynamics.

The behavior of the two RL methods, PressLight and
GuidedLight, is of particular interest, especially in the NY48
scenario. Both methods can learn (converge during training)
at a comparable level in the 2 × 2, 4 × 4, and Hangzhou
scenarios. However, in all three NY48 scenarios, both RL

methods perform at a level similar to Random control.
Learning curves for GuidedLight show that, whereas
heuristic exploration allows the agents to learn a good policy
during the early stages of training, these are eventually
‘‘forgotten’’ at the later stages (learning epochs) (see Fig. 6).
This effect occurs due to the NY48 scenarios being highly
congested locally (see Fig. 7).
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One reason could be that, in congested scenarios, the
training signal provided to the RL method is not meaningful.
In fact, in many congested situations, congestion persists,
no matter what action is taken. Hence, little can be learned
from such scenarios. This finding is in accordance with
the known inability of some Deep RL methods to learn in
congested situations [51].

Our Pre-Training Experiments investigate the performance
of RL methods, which are Pre-Trained in a certain scenario
before being deployed (without further training) to a dif-
ferent scenario. Interestingly, we find that the GuidedLight
4× 4Hom, Pre-Trained on the 4× 4 homogeneous scenario,
performs better than the same method Pre-Trained on the
4 × 4 heterogeneous scenario. The good performance of
the GuidedLight 4 × 4 Hom and GuidedLight 4 × 4
Het is especially apparent in the NY48 scenarios. While
the reinforcement learning methods trained on the NY48
scenario had trouble converging, the same method when Pre-
Trained on either of both 4×4 scenarios, performed at a level
closer to the best-performing method, Analytic+ (and in the
case of GuidedLight 4 × 4 Hom on practically the same
level). We also note that GuidedLight 4 × 4 Het performs
worse than GuidedLight 4 × 4 Hom in all scenarios except
Hangzhou. This is likely because the 4×4 Hom scenario has
shorter links but the same flows. Thus, the 4×4Hom scenario
is more difficult to learn, but also more relevant. This shows
that a good Pre-Training scenario needs to be challenging
enough for the learnings generated by the RL method to be
informative, but not so difficult as to make the learning signal
meaningless due to congestion.

We further analyze the states encountered byGuidedLight
during the training phase (Fig. 8) using Principal Component
Analysis (PCA) [52]. We note that in the scenarios, where
GuidedLight is able to converge (2 × 2, 4 × 4 Het and
Hangzhou), the states form blob-like clusters, while in the
NY48 scenarios, the states are spread out in a v-shape (see
Fig. 8). From this, it follows that the states encountered in
training are significantly different across the traffic scenarios.
However, if one looks at the states encountered in the 4 × 4
Het scenario, we see that these states are also observed in the
2 × 2 and Hangzhou scenarios, which can explain why Pre-
Training on the 4 × 4 scenario yields good performance on
the other two scenarios. Moreover, learnings from the 4 × 4
Het network (where traffic demands are almost the same on
all links) seem to be more relevant to complex signal control
than the states learned by the agent directly trained on the
NY48 scenarios.

A further finding from our Pre-Training Experiments is
that some Deep Q-Learning algorithms (such as Guid-
edLight) are actually surprisingly good at meta-learning,
even without any explicit meta-learning techniques being
implemented. In fact, in our study, we show that a rather
simple DDQN-based method, Pre-Trained on one scenario,
can perform very well in different scenarios across varying
disruption levels. Thus, a Pre-Trained DDQN is clearly able
to adapt in some way, even to situations that were not

explicitly included in the training environment. This confirms
the recent findings reported in [53] for the TD3 Q-Learning
algorithm.

We would also like to highlight the environmental benefits
of Pre-Training (which have been studied in [21]. This is
because training on smaller scenarios takes less computa-
tional resources (time and energy) than training on large,
complex traffic scenarios. At the same time, in many cases,
it can be expected to lead to comparable or even better
results. Overall, this allows one to save time and energy, while
reaching better performance.

VI. CONCLUSION
A. A NEW BASELINE
Last but not least, we point to the superiority of the self-
organizing Analytic+ method, which does not need any
training and can be deployed to any scenario with ease.
This method is performing best in all the scenarios studied
here. Only GuidedLight 4 × 4 and Demand reach similar
performance in some, but not all scenarios.

The great performance of the Analytic+ approach is
perhaps a bit unexpected. However, it can be explained as
follows:
(1) The method uses short-term predictions based on the

inflows into the neighboring road sections, specifically
the incoming links. This assumes technology that does
not only measure outflows, but also inflows.

(2) The method exploits exact mathematical relationships
from traffic physics or queuing theory, which a machine
learning approach may only approximate if it manages
to figure out the relationship at all. The consideration
of inflows allows for perfectly tailored green times,
which avoid stops for arriving cars. In such a way, local
coordination is enabled, which promotes the emergence
of green waves.

(3) By clearing long queues before returning to travel time
minimization, the stabilization rule prevents spill-over
effects. In such a way, it is avoided that congestion
extends into upstream intersections and beyond. There-
fore, the formation of congestion patterns, which expand
over large areas, is largely prevented. This keeps traffic
fluid as long as possible.

The above also explains the great performance of the
Analytic+ method in adapting to disruptions in our simula-
tion experiments. Thus, we believe theAnalytic+method can
serve as a good baseline, which machine learning and other
methods can and should be compared against. It is clearly
a more difficult baseline to beat than random, fixed time,
or cyclical approaches and, thus, offers better insights into
how well a given method really performs.

B. GENERAL IMPLICATIONS
Machine learning and AI have become approaches that are
increasingly applied to solve problems of all kinds. They
are also being proposed to solve security, sustainability,
resilience, and health issues, tomention just a few of the grand
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challenges humanity is trying to address. All those problems,
however, concern complex dynamical systems, for which
traffic flows in urban street networks are a good example.
Like many other complex dynamical systems, traffic flows
suffer from

• limited resources (space and flow capacity, for exam-
ple);

• non-linear network interactions;
• heterogeneous/diverse behavior;
• feedback and delay effects;
• great variability;
• randomness;
• largely unpredictable dynamics;
• disruptions;
• limits to control;
• an exact real-time optimization not feasible due to
computational complexity.

As mentioned before, such kinds of features are also
typical for many other systems making up our world. It is,
therefore, expected that many of our findings will extend
to other complex dynamical systems as well, including
material flow and supply networks as well as our economy
[54], [55], [56], [57]. Accordingly, machine learning
approaches, even though comfortable and powerful, may not
always be the best methods to solve such problems. Suitable
adaptive approaches, which flexibly respond to short-time
predictions of local needs, may often perform better, based
on feedback rather than control, and coordination rather than
optimization. In other words, certain analytical approaches,
which are based on understanding the underlying system
logic and dynamics (i.e., based on disciplinary knowledge,
not just data-driven methods), may outperform machine
learning approaches for at least two reasons:
(1) machine learning comes up with approximate solutions

(and only, if it converges well),
(2) machine learning takes time, while the world may

change in the meantime, for example, due to frequent
disruptions.

We should, therefore, not ‘‘put all eggs in one basket’’,
i.e., not rely on generic machine learning approaches alone.
Overall, it is expected that hybrid approaches, which com-
bine analytical and machine learning approaches, perform
best [18]. Therefore, future work might explore new ways
to integrate elements of the Analytic+ method into machine
learning approaches, which are specially tailored to the
challenges of traffic signal control.
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