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ABSTRACT A novel high-isolation dual-polarized in-band full-duplex (IBFD) dielectric resonator antenna
(DRA) for satellite communications using a decoupling structure is proposed. Good isolation between
transmit and receive ports is achieved by placing two identical linearly polarized resonators orthogonal to
each other. Each resonator consists of a main rectangular dielectric resonator of the dielectric constant of
10 and is loaded by a thin dielectric slab of lower permittivity of 5 to broaden the matching bandwidth
further. The isolation is further improved by loading an absorber and etching several slots in the ground
plane. Finally, the proposed DRA is fabricated and measured to validate the concepts. Measurement results
show high isolation of more than 50 dB over the desired operating bandwidth from 23.04 GHz to 24.08 GHz
(ka-band) with a peak gain of about 8.93 dBi and 8.09 dBi for Port 1 and Port 2, respectively. In addition,
the proposed IBFD DRA provides 11.87 GHz and 4.84 GHz isolation bandwidths over 25 dB and 30 dB,

respectively, making it a potential candidate for mm-wave terrestrial applications.

INDEX TERMS Dicelectric resonator antenna, dual-polarization, in-band full-duplex.

I. INTRODUCTION

In recent years, deployable electromagnetic spectra have
been highly demanded by dramatically increasing data traffic
in wireless communication. As an emerging new transmis-
sion technology, in-band full-duplex (IBFD) communication,
which simultaneously transmits (Tx) and receives (Rx) sig-
nals over the same frequency band, has attracted immense
attention as a promising technique to increase spectrum effi-
ciency with the potential to double the channel capacity com-
pared to that of a time/frequency division method [1], [2].
However, practically, in the IBFD system, due to the exis-
tence of high self-interference (SI) in the system, where the
transmitted signal leaks to the Rx side, high isolation (as
much as 110 dB) between Tx and Rx channels is required [3].
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In order to minimize the coupling in a full-duplex system,
including antenna, RF, baseband, and digital domains, mul-
tilayer self-interference cancellation (SIC) approaches are
needed correspoOnding to antenna isolation, active/passive
analogue cancellation circuits, and digital cancellation algo-
rithms. The main bottleneck problems with the current IBFD
system design include bandwidth limitation imposed by the
RF self-interference cancellation circuits and implementation
complexity, and large insertion loss associated with RF SIC
circuits. As such, achieving high isolation in the antenna
domain relieves the burden placed on other layers and helps
mitigate the overall complexity of a simultaneously transmits
and receives (STAR) transceiver [4].

A plethora of full-duplex (FD) antennas with high iso-
lation, including microstrip, cavity, and slot antennas, have
been reported in the literature [5], [6], [7], [8], [9], [10], [11],
(12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
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[23], [24], [25], [26]. Nevertheless, most of these designs
operate at frequency bands below 20 GHz. On the other
hand, there have been increasing full-duplex applications for
millimetre-wave (mm-wave) transmissions for high data rate
communications in the past decade. However, the inherent
problems with mm-wave, such as high path loss, necessitate
high gain antenna design [8]. Various techniques exist to
improve the isolation between the TX and the Rx antennas
(101, [111, [71, [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. Generally, these methods
are divided into several main categories, such as physical
separation between Tx and Rx apertures [9], [10], utilizing
polarization multiplexing [11], [7], [12], [13], employing
near-field cancellation [14], [15], [16], and implementing
circulators [17], [18], [19]. Finally, the decoupling technique
suppresses the self-interference caused by the electromag-
netic coupling between the Tx and Rx antennas [20], [21],
[22], [23], [24], [25]. For example, in [22], aradiating element
is applied between Rx and Tx antennas, coupling power from
the Tx antenna. It is orthogonally polarized and re-radiates
the power to minimize the original field around the Rx
antenna. Furthermore, in [24], a power distributing duplex
network is employed to obtain high isolation of about 45
dB between the two input ports. As for the one presented in
[25], the electromagnetic bandgap (EBG) structure is inserted
between two closely located monopole antennas to improve
isolation. As a result, the achieved isolation is up to 50
dB in 110 MHz bandwidth at around 2.5 GHz. However,
generally speaking, most of the works, as mentioned ear-
lier, suffer from a high cost, a large antenna dimension,
narrow bandwidth, low radiation efficiency, or a complex
structure.

Here, we propose a high isolation dual-polarized IBFD
dielectric resonator antenna (DRA) at mm-wave with high
radiation efficiency for the first time that can be extended
to an IBFD array DRA achieving desirable gain for satellite
communications. DRAs have been extensively studied in
past decades because of their remarkable features, such as
low loss, no surface wave, high radiation efficiency, various
excitation mechanisms, and geometrical flexibility [26], [27].
In addition, the 3-D geometry of DRAs offers a higher degree
of flexibility over microstrip antennas that suffer from narrow
bandwidth and low radiation efficiency [28]. In addition,
we use the feature of low coupling between DRAs of high
order odd index in the z-direction [29]. High isolation better
than 50 dB is realized by loading a thin rectangular dielectric
resonator (DR) attached to two strips at the top and the
bottom, applying a vertical strip connected to both the ground
plane and thin DR, and etching several slots in the ground
plane. The configuration and the design procedure, a numer-
ical study on designing IBFD DRA, the effects of loading
thin DRs, the impact of adding decoupling structure and
etching the slots in the ground plane, and the measurement
results on fabricated prototype are discussed in the following
sections.
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Il. ANTENNA CONFIGURATION AND PHYSICAL
WORKING MECHANISM

A rectangular DR (RDR) offers more design parameters, such
as two different aspect ratios (width/length and height/length)
in a desired resonant frequency compared to the spherical and
cylindrical ones. Parallelly, in IBFD antenna design, although
there are various techniques to achieve 50 dB antenna iso-
lation, the supported bandwidth is narrow and suffers from
the large size, complexity, or dissimilar transmit/receive
radiation.

The evolution of the proposed high-isolation dual-
polarized IBFD DRA is demonstrated in Fig. 1. Fig. 1(a)
shows the initial design of the proposed antenna, includ-
ing two identical RDRs (DR;) with the same dimensions
a1 x by x hy and permittivity of epgr, = 10 supported by a
grounded 23(x —axis)mm x 14.1(y—axis)mm Rogers RT5880
substrate with a permittivity of &, = 2.2 and a thickness of
s = 0.127 mm, where maximum isolation of about 43 dB
is achieved. The RDRs are excited by a microstrip feed line
through a rectangular metal strip I5 x wg. Then, another two
small identical RDRs (DR;) with the exact dimensions of
a3z x bz x h3 and permittivity of epg, = 5 are attached to the
previous RDRs with a reducing length from 4mmt03.5 mm
to improve the impedance matching (please see Fig. 1(c)),
denoted as Antenna 1. To further improve the isolation, two
slots with I3 x wy are etched in the ground plane in the
transverse direction of each microstrip feed line (please see
Fig. 1(d)), denoted as Antenna II. Finally, a new decou-
pling structure, including a vertical and two horizontal strip
patches, a slot in the ground plane, and a thin RDR (DR3)
with a dimension of a4 x b4 x h4 and a dielectric constant of
epr,, = 10, is introduced to enhance the isolation bandwidth
(please see Fig. 1(e)), denoted as Antenna III. All DRs have
a relative loss tangent ran 8 = 1.54 x 1077,

In this work, CST Microwave Studio 2021 is employed to
analyze and optimize the proposed IBFD DRA. The ultimate
aim of this design is to propose a new dual-polarized antenna
with high isolation to realize full-duplex radio transmissions
over satellites considering two crucial parameters; antenna
efficiency and isolation. The main contribution of this work
is to propose a dual-polarized DRA with 50 dB wide isolation
bandwidth between the Tx and Rx ports and efficiency higher
than 93% at the Ka-band, which is the first of its kind. This
section describes the working principle of the proposed IBDF
DRA and the physical mechanisms, which include three steps
as follows:

I Loading a small rectangular dielectric slab with a
dielectric constant of 5 to improve the maximum isola-
tion from 42 dB to 55 dB with an isolation bandwidth
of 170 MHz over 50 dB.

I Adding slots on top of the feed lines improves the
isolation between two ports from 55 to 62 dB and
enhances the bandwidth from 170 MHz to 270 MHz
for the 50 dB threshold.
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FIGURE 1. Evolution of the proposed IBFD DRA: (a) initial structure of IBFD DRA, (b) back view of the proposed antenna(microstrip feed lines), (c) adding
two small RDRs with low permittivity to the initial structure, forming Antenna |, (d) applying narrow slots in the ground plane of Antenna I, denoting
Antenna II, (e) adding an absorber with an opening slot beneath it to the Antenna 11, namely Antenna Ill, and (f) 3D view of the proposed antenna
(Antenna ). (lg = 14.1, wg = 23,1; = 0.185,/, = 0.3, /5 = 0.4, /5 = 1.9, Ig =2.7, wy = 5.8, w; = 1.4, w5 = 3.5, w3 = 0.4, w; = 1.4, w5 = wy = 0.5,

Wg = 1, Ims = 0.7.], Wms = 0.36, a; = 4, b-| = b2 = b3 = 2, hl = h2 = h3 = 4.7, a = 3.5, asz = 0.5, ag = 7, b4 = 3.8, h4 = 0.5, EDRI = sDRm = ]0,

epr, = 5, s = 2.2, s = 0.127. Unit : mm).

IIT Applying a decoupling structure remarkably
improves the isolation bandwidth from 270 MHz
to 1090 MHz over 50 dB with peak isolation
of 70 dB.

1Il. IBFD DRA DESIGN ANALYSIS

As shown in Fig. 1(a), the initial dual-polarized IBFD DRA
is realized by two RDRs with equal dimensions a; x b; x h;
(ay and hy > by) orthogonally excited by vertical metal strips
attached to the DRA side wall and connected to microstrip
feed lines (in the bottom side of a dielectric substrate) through
anarrow rectangular hole to realize the dual-polarized perfor-
mance. The distance between DRs (wall-to-wall) is defined
as wy 0.58)\. The proposed antenna system has two
ports: one supports T j‘,mp mode for Tx and the other one
supports TE,y,mp mode for Rx. Both input and output ports
of the system can operate simultaneously. The dielectric
waveguide model (DWM) equations are used to predict the
resonant frequency f, of TE,;,, modes excited inside the
proposed DRA [30]:

Z; /k2~|—k2+k2
27TA/SDR * Y <

where k¢, ky, = nm/a, and k; = pm/2h are the mode
wave numbers within the RDR. The following characteristic
Equation should be solved for k, for each mode index m for
a variable kg

n(w) = \/(epr — k2 — k2

Ir ey

kyta ()
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The solution for each m determines the other mode indices n
and p in the y- and z-directions.

In order to improve the impedance bandwidth, a small
rectangular dielectric slab with dimension a3 x b3 x h3 and
dielectric constant epg, = 5 is added to each previous RDR
with reduced length to a; x by x hy (ap = 3.5 mm; by =
by, h1 = hy) (please see Fig. 1 (c¢)), namely as Antenna I.
It is noted that the new resonant frequency can be calculated
by substituting epg, with e (effective dielectric constant) in
Equation (2) [27], where

ap +ap
boff = Ta_ = _a_ G
€DR, €DRy

Figure 2 illustrates the simulated s-parameters of the initial
structure of IBFD DRA and Antenna I (please see Fig. 2
(a) and (b)) and E-field distribution inside the DRs (please
see Fig. 2 (c)) for the Antenna I at 23.5 GHz. It is observed
from Fig. 2 (a) that the RDRA provides a wide impedance
bandwidth of about 60% (Port 1) and 58% (Port 2), and excit-
ing resonant modes across the operating frequency resem-
bles TE{11, TE113, and TE|;5 modes. Maximum isolation
of 43 dB at 23.5 GHz is obtained, corresponding to TEj,;
and TEf 13 modes (please see Fig. 2 (¢)). In the next step
(refer to Fig. 1(c)), by loading two thin RDRs (epr, = 95),
the impedance matching and the mutual coupling between
two orthogonal resonators is improved due to decreasing the
Q-factor of the resonators, resulting in better matching with
enhanced isolation to a maximum of about 55 dB, as shown
in Fig. 2 (a) and (b).
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FIGURE 2. Simulated S-parameters of the initial structure of IBFD DRA
and Antenna | and E-field distribution inside the RDRs for Antenna I.
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FIGURE 3. Simulated S-parameters of Antenna | and Antenna Il (added
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ADDING DECOUPLING STRUCTURE TO IMPROVE THE
ISOLATION

As shown in Fig. 1 (d), four identical slots with key param-
eters of /3 x wy are etched in the ground plane on top of the
feed lines to improve the isolation between two ports, namely
Antenna II.

Figure 3 shows the simulated S-parameters of the IBFD
DRA with and without the slots. By etching four equal rect-
angular slots, the isolation between Tx and Rx channels is
enhanced to 62 dB with an isolation bandwidth ranging from
23.41 GHz to 23.68 GHz over 50 dB. In this way, the slots
act as matching stubs. Consequently, the coupling current on
the ground plane is reduced by generating opposite currents
around the slots, resulting in improved isolation.

Finally, for further minimizing the mutual coupling and
enhancing the isolation bandwidth, a decoupling struc-
ture, including a thin RDR (DRm) slab with dimensions
as x by x hy and dielectric constant epg,, = 10, placed
between two parallel metal strips at the top and the bottom, all
connected to a vertical standing strip, is introduced, namely
Antenna III. Fig. 4 shows the exploded view of the proposed
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FIGURE 4. Exploded view of the proposed absorber.
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FIGURE 5. Simulated Tx-to-Rx coupling of the proposed antenna (a) with
and without each element of decoupling structure separately and (b) with
different DRm permittivity.

absorber, shedding light on the proposed absorber design con-
sideration. First, a vertical standing strip is connected to the
ground plane at the bottom and a parasitic strip at the top to
improve the isolation bandwidth from 270 MHz to 475 MHz
over 50 dB. Then, a second parasitic strip, parallel to the
first one by 0.5 mm distance in the z-direction, is applied
to further enhance the isolation bandwidth by 210 MHz
(from 475 MHz to 685 MHz over 50 dB). A 0.4 (x-axis)
mm x 7 (y-axis) mm slot is etched on the ground plane to
increase the isolation by 10 dB, from 63 dB to 73 dB. Finally,
a dielectric slab with a permittivity of 10 and thickness of
0.5 mm is horizontally placed between two parallel strips to
improve the isolation bandwidth further, shown in Fig. 5 (a).
Fig. 5 (b) illustrates the simulated Tx-to-Rx coupling of the
proposed antenna with different values of DR permittivity
epr, = 0,8, 10, and 12. According to the figure, a wider
isolation bandwidth is achieved by using a permittivity of
epr,, = 10 to design the proposed absorber. The effect of the
decoupling structure on the antenna performance is exhibited
in Fig. 6. It is observed from Fig.6 (b) that by implementing
the decoupling structure between two resonators, the isolation
bandwidth is remarkably improved from 240MHz in Antenna
II to 1090 MHz in Antenna III. The simulated electric field
vectors on different surfaces of the DRs and current distribu-
tion for Antenna III at 23.5 GHz are illustrated in Fig. 6 (c),
(d), and (e), respectively. By applying the proposed decou-
pling structure, the EM waves between two resonators are
absorbed by DRm. Consequently, a sharp contrast between
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FIGURE 7. The prototype of the proposed IBFD dual-polarized DRA.
(a) back view and (b) 3D view.

the current distributions on the left and right side of the
decoupling elements leads to significantly enhanced isolation
bandwidth between the Tx and Rx ports.

IV. EXPERIMENTAL RESULTS

As illustrated in Fig. 7, a prototype of the proposed IBDF
dual-polarized DRA is simulated, fabricated, assembled, and
measured to verify the performance of the proposed antenna.
A ROHACELL®. HF Foam (g, = 1.04) is glued beneath the
DRm using RTV silicone adhesive (¢, =~ 3 ) to assemble
the decoupling elements between the Rx and Tx resonators.

S-PARAMETER MEASUREMENT

The simulated and measured S-parameters of the proposed
IBDF dual-polarized DRA are depicted in Fig. 8, represent-
ing a close agreement between the simulated and measured
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FIGURE 9. Simulated and measured far-field radiation patterns of the
proposed IBFD DRA in xz-plane (¢ = 0°) and yz-plane (¢ = 90°) at
23.5 GHz; (a) Port 1 and (b) Port 2.

results except for a slight discrepancy caused by the fabrica-
tion errors and manually assembling imperfection. The pro-
posed IBFD DRA provides a perfectly overlapping ultra-wide
impedance bandwidth for Ports 1 and 2. As shown in Fig. §,
the proposed DRA provides isolation higher than 50 dB in
the desired bands, ranging from 22.93 GHz to 24.02 GHz
and 23.04 GHz to 24.08 GHz for the simulation and the
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TABLE 1. Comparison with IBFD Antennas in the literature.

Ref. fo (GHz) | BW (GHz) | Dimensions( A\3) | Isolation(dB) | Tx/Rx peak gain | G/V | Efficiency
[5] 3.57 3.35-3.8 0.45x0.2x0.04 >43 2.8/2.8 777 >70
[12] 2.45 2.4-2.62 1.17x1.69x%0.05 >359 8.02 81 NA
[18] 2.55 2.4-2.7 0.98%0.98x0.15 40 1.8/3.3 22 NA
[21] 2.4 2.3-2.6 > 3.68x1.63 > 45 3 <05 =90
[22] 6.29 6.24-6.34 0.63x0.63x0.08 > 25 3.87/7.58 236 =175
[23] 2.45 2.42-2.47 0.54x0.18x0.06 30 -1.6 274 < 60
[24] 5.8 5.62-6.11 1.2x1.07x0.578 50 5.3/6 8 NA
This work 23.56 23.04-24.08 | 1.8 x 1.1 x 0.39 > 50 8.93/8.09 12 >93

fe: center frequency, BW: overlapping bandwidth, and GG/V: gain to volume.
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FIGURE 10. Simulated total efficiency and measured gain of the
proposed antenna.

measurement. It is noted that the maximum measured and
simulated isolation within the studied band are up to 65.21 dB
at 23.58 GHz and 76.43 dB at 23.78 GHz, respectively.

A. FAR-FIELD MEASUREMENT

Figure 9 illustrates the simulated and the measured far-field
radiation patterns of the proposed IBFD DRA in the xz-plane
(¢ = 0°) and yz-plane (¢ = 90°) at 23.5 GHz. It is
observed that the simulated and measured radiation patterns
are in good agreement, where the proposed DRA’s radiation
patterns remain stable within the desired operating band,
and the difference between Co- and cross-polarization radi-
ation levels is more than 21 dB confirming the purity of the
radiation. It is worth mentioning that the proposed antenna
provides a total efficiency higher than 93% in the desired
frequency bands (23.04 GHz to 24.08 GHz) with a maximum
gain corresponding to Port 1 and Port 2 of about 9.36 dBi
and 8.57 dBi for simulation, and 8.93 dBi and 8.09 dBi for
measurements, respectively, shown in Fig. 10.

B. COMPARISON WITH THE LITERATURE

The state-of-the-art high isolation antennas are summarized
and listed in Table 1 for comparisons in terms of the critical
performance metrics. It is found that the proposed antenna
offers higher isolation with higher gain and efficiency using
a simple single-substrate design and feeding structure. Wang
et al. [12] proposed a reflective terminal approach to improve
isolation. Compared to [12], where double substrate topology
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is used, the proposed design offers higher isolation with
a simple single substrate design. Moreover, the antennas
in [17], [20], and [22] suffer poor isolation performances. The
antennas in [5] and [21] have high isolation but with a reduced
low gain. In the design in [23], although high isolation of up to
50 dB is achieved, the employed structure cannot be extended
to mm-wave and suffer from low efficiency.

V. CONCLUSION

A dual-polarized in-band full-duplex dielectric resonator
antenna has been presented. Two dielectric resonators with
different dielectric constants were employed to improve the
impedance bandwidth with better isolation. A decoupling
element was incorporated to further isolation improvement,
including three metal strips and a dielectric resonator to pro-
vide a high isolation bandwidth. The proposed antenna was
fabricated, assembled, and measured. The measured results
have demonstrated high isolation, within frequency ranging
from 23.04 to 24.08. The maximum realized gain of 8.93 dBi
and 8.09 dBi for Ports 1 and 2, respectively. The proposed
IBFD dual-polarized DRA offers a high gain antenna with
high isolation, which is a potential candidate for the in-band
full-duplex applications at mm-wave frequencies, especially
for ka-band satellite communications. Furthermore, the pro-
posed antenna provides 11.87 GHz and 4.84 GHz isolation
bandwidths over 25 dB and 30 dB, respectively, which could
be utilized for mm-wave terrestrial applications.
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