
Received 28 March 2023, accepted 9 April 2023, date of publication 12 April 2023, date of current version 15 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266562

Detecting Malware Activities With MalpMiner:
A Dynamic Analysis Approach
MUSTAFA F. ABDELWAHED 1,2, MUSTAFA M. KAMAL2, AND SAMIR G. SAYED 2,3
1Department of Computers and Systems Engineering, Faculty of Engineering, Helwan University, Helwan, Cairo 11792, Egypt
2Egyptian Computer Emergency Readiness Team (EG-CERT), National Telecom Regulatory Authority (NTRA), Cairo 12971, Egypt
3Department of Electronics and Communication Engineering, Faculty of Engineering, Helwan University, Helwan, Cairo 11792, Egypt

Corresponding author: Mustafa F. Abdelwahed (mustafa.faisal@h-eng.helwan.edu.eg)

This work was supported by the National Telecom Regulatory Authority (NTRA).

ABSTRACT Day by day, malware as a service becomes more popular and easy to acquire, thus allowing
anyone to start an attack without any technical background, which in turn introduces challenges for detecting
such attacks. One of those challenges is the detection of malware activities early to prevent harm as much as
possible. This paper presents a trusted dynamic analysis approach based on Answer Set Programming (ASP),
a logic engine inference named Malware-Logic-Miner (MalpMiner). ASP is a nonmonotonic reasoning
engine built on an open-world assumption, which allows MalpMiner to adopt commonsense reasoning
when capturing malware activities of any given binary. Furthermore, MalpMiner requires no prior training;
therefore, it can scale up quickly to include more malware-attack attributes. Moreover, MalpMiner considers
the invoked application programming interfaces’ values, resulting in correct malware behaviour modelling.
The baseline experiments prove the correctness of MalpMiner related to recognizing malware activities.
Moreover, MalpMiner achieved a detection ratio of 99% with a false-positive rate of less than 1% while
maintaining low computational costs and explaining the detection decision.

INDEX TERMS Cybersecurity, artificial intelligence, answer set programming, malware behaviour detec-
tion, logic programming, emulation.

I. INTRODUCTION
Nowdays, the rapid spread of sophisticated malware sam-
ples introduce challenges to anti-malware systems concern-
ing identifying malicious activities in order to mitigate and
reduce damages. Moreover, such hurdles keep getting harder
since malware selling became a business model named
Malware-as-a-Service (MaaS). MaaS allows newbie attack-
ers/individuals to carry out an all-out attack over the inter-
net without any prior knowledge while earning low-risk
money. On the one hand, Kaspersky announced that during
the year 2020, more than 10% of worldwide computers’
users encounter at least one sort of malware attack [1].
On the other hand, some nations’ economics got also
affected by cybersecurity attacks. For instance, an American
oil pipeline system suffered from Darkside’s ransomware

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

which is Ransomware-as-a-Service sample, impacting the
computerized pipeline equipment managing system, which
forced the oil company to pay around $4.4 million worth
in bitcoins [2]. Another attack on the international foreign
exchange firm Travelex, causing it to shut down its online
operations for more than a month leading to undisclosed
damage to its bottom line [3]. According to [4], during the
“COVID-19” pandemic, the number of newly developedmal-
ware samples increased by 15%. Moreover, Interpol stated,
in a report published in 2020, that Palo-Alto company
witnessed an increase of highly risked new domains that
reached more than 40,000 domains slightly, exploiting the
fact that many people were searching for info about “COVID-
19” [5]. For such events, the malware detection problem
receives attention in the research community; through trying
to employ different techniques to mitigate malware activi-
ties effects. Moreover, it is proven that no algorithm would
detect all malware variants according to [6], making the

84772

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-7926-0619
https://orcid.org/0000-0001-7259-3296
https://orcid.org/0000-0001-8691-0141

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

malware problem even more challenging to the researchers.
Therefore, research suggested solving this problem by ana-
lyzing the malware sample using static and dynamic analysis
techniques. The primary difference between those tactics
is that static analysis extracts features from the suspicious
sample without executing it. In contrast, the dynamic anal-
ysis extracts other features when executing this sample in
a controlled environment. One popular static analysis tech-
nique for solving this problem is through Signature-based
methods. Such methods are powerful versus known samples,
but they fail against modified/unknown specimens. There-
fore, malware authors deploy evasion tactics like code obfus-
cation, encryption or packing to existing malware samples
to avoid getting recognized by signature-based systems [7],
[8], [9]. Another approach uses heuristic-based algorithms;
those algorithms use rules to overcome the previously men-
tioned limitation by searching for instructions that sym-
bolize malicious intentions. Moreover, the heuristic-based
approaches introduced false-positive detections since such
rules may match benign applications [10]. Formal meth-
ods are another version of heuristic-based algorithms for
recognizing malware samples; they rendered their way in
malware detection by employing model checking for mali-
cious movements methodologies [11], [12], [13]. Still, some
obfuscation techniques can easily defeat such an approach.
Furthermore, heuristics approaches require redevelopments
and modifications to identify new families. Other researchers
suggested replacing those procedures with machine learning
classifiers [14]. Those classifiers can predicate whether a
sample is malicious or not based on its training which acts as
a knowledge base. Conversely, dynamic analysis approaches
execute the suspicious sample in a controlled environment
and trace the invoked Application Programming Interfaces
(APIs). Next, passes this trace to a machine learning model to
recognize any potential malware activities if they exist [15].
Even though dynamic analyses are resilient to code obfus-
cation, it introduces a potential threat where the samples
could escape this controlled environment and infect the host
machine.

The significant differences between the static and dynamic
analysis methods are computational resources, detection
ratio, and code obfuscation sensitivity. The static analysis
procedures have low time and memory consumptions, with
an average detection ratio and are highly vulnerable to code
obfuscation techniques [16], [17], [18], [19]. On the other
hand, dynamic analysis methods have higher time and mem-
ory exhaustion with a higher detection ratio besides being
better resistant to code obfuscation algorithms [20]. For that
particular reason, researchers employ a hybrid approach by
merging both static and dynamic analysis to solve the mal-
ware problem while maintaining reasonable computational
resources [21], [22], [23].

Although researchers have achieved notated malware
detection ratios using machine learning techniques in static
and dynamic analysis [14]. Still, machine learning model

development inherits problems like feature selection and
extraction, which imposes a challenging responsibility when
developing detection models and influences performance and
detection ratio [24]. Another dilemma, those techniques need
continuous retraining each time new malware or a variant is
released. Such training costs an expensive computational time
tomaintain a robust model precision besides not guaranteeing
what the model has learned in this training phase. Moreover,
it is challenging to decide which machine learning model to
use; besides optimizing its parameters, it can directly affect
the detection ratio and computational resources [25], [26].
Finally, machine learning models assume a closed world sce-
nario, the dataset; therefore, they only learn what the dataset
contains [27], stripping it from incomplete inferences. Fur-
ther, models used to recognize sequences are bound to fixed
input size, making them sensitive to long-term persistence
attacks.

Our motivation in this paper is to present a trusted
framework that inherits the same performance compared to
machine learning while avoiding acquiring their development
challenges. Therefore, we introduce the Malware-Logic-
Miner (MalpMiner) framework, which employs logic pro-
gramming to describe the given executable binary behaviour
based on dynamic analysis. Such leverage provides a robust
methodology for representing correct binary behaviours
through a human-readable representation, which, in turn,
achieves a machine learning similar detection ratio. Besides
the human-readable representation, MalpMiner uses non-
monotonic reasoning to withdraw conclusions upon receiving
new information, thus acquiring commonsense reasoning
abilities. Finally, the suggested proceduremaintains low com-
putational costs concerning time and space complexities.
To the best of our knowledge, no researcher has applied logic
programming similar to the proposed approach.

We organise this paper by presenting a background knowl-
edge in section II, related work is presented in section III,
followed by problem formulation in section IV and the rec-
ommended approach in section V. Section VI describes the
conducted experiments trails’ results, while section VII holds
the discussion of the trails’ results. Finally, section VIII con-
cludes the current work and discusses potential future work.

II. BACKGROUND
A. MITRE ATT&CK—MALWARE BEHAVIORS
MITRE ATT&CK is a knowledge database, founded in Sep
2013, in which it describes cyber adversary behaviour [28].
MITRE ATT&CK defines a set of generic tactics in which
any malicious software exhibits at least one of those tac-
tics. This paper shows that MalpMiner abilities to recognize
behaviours like process injection, evidence removal, service
stop, persistence, and anti-analysis techniques deployed on an
MS Windows machine, adopting a similar selection scheme
as [29]. However, the suggested model can be easily opened
to include more behaviours and is not limited to the stated

VOLUME 11, 2023 84773

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

ones; besides, those behaviours act as a proof of concept for
using logic programming for malware activities detection.

MITRE defines the process injection behaviour as exe-
cuting arbitrary code in the address space of a separate live
process; the malware has to target another process and then
gain access to its memory. To perform such action the mal-
ware may use kernel APIs like OpenProcess API to gain
access to a selected process, as for evidence removal; one
definition fromMITRE is removing left behind artefacts after
the intrusion activity. Moreover, it defines service stop as
disabling or stopping services through killing or suspending
their processes. Concerning persistence, MITRE explains it
as the actions took to keep live access across restarts, changed
credentials, and other interruptions that could cut off their
access. Regarding anti-analysis techniques, MITRE catego-
rizes them into several classes based on their performed
actions. Debugger detection is a well-known anti-analysis
technique where the malware checks if it is being debugged
or not. One implementation may check the return of a kernel
API named IsDebuggerPresent. Based on the return of this
function, the malware learns whether it is being analyzed.

B. SANDBOXES VS EMULATORS
In order to extract a program description dynamically, the
program must be executed in a controlled environment
to avoid harming the victims’ machines. There exist two
methodologies for this task. The first strategy is to imitate a
natural environment with slight changes to control the execu-
tion flow to defeat anti-analysis techniques while extracting
the needed program description values. Such an approach is
a heavyweight approach since it executes complete OS func-
tionalities within a running OS. On the other hand, Emulators
emulate what a binary needs to complete its execution but
with no actual code execution. Therefore, emulation has a
low-cost computation with more flexibility in controlling the
environment (i.e. controlling the return values for a function
call) than performing virtual machines. However, such low-
cost computation is associated with another hidden cost:
developing an enormous number of the OS’s kernel APIs to
prevent the executing binary from crashing.

C. LOGIC PROGRAMMING
A Logic program defines any given problem’s description
by a set of rules and constraints, while facts are a problem
instance. In other words, Logic programming uses symbolic
logic to describe and solve problems. A logic program consid-
ers a problem as a theorem from a different perspective, and
the problem instance is some axioms, and logic programming
solvers are theorem provers. In turn, those solvers try to
prove the problem’s hypothesis (i.e. description) using those
axioms (i.e. facts), and in the case of the solvers, they were
able to provide proof rather than, in turn, finds the problem’s
solution.

This research’s strategy employs logic programming to
represent a given program by a set of detected behaviours

through Answer Set Programming (ASP) programs [30].
ASP is a knowledge representation language with roots in
logic and provides nonmonotonic reasoning capabilities (i.e.
allowing the removal of assumptions or conclusions), making
it ideal for commonsense reasoning. The chief construction
element in an ASP program is an atom/rule, expressed in
the form Head ← Body, stating that the Head holds if the
Body holds. Furthermore, ASP programs are case-sensitive.
Consequently, variables start with uppercase while constants
begin with lower cases.

Regarding solution finding, ASP program implementation
follows a generate-and-test methodology. In the first step,
a grounder algorithm generates all possible variables values;
afterwards, the solver utilizes the available constraints to
generate a set of correct solutions for a given query. It is
encouraged to refer to [31], [32], and [33]; for a deeper
understanding of the ASP workflow.

In order to clarify how ASP works, the graph colouring
problem will be solved using ASP. First, the graph colouring
problem is quoted as “Given n colors, find a coloring distri-
bution for the vertices of a graph such that no two adjacent
vertices are colored using the same color”. Logic program.1
started defining the graph coloring problem with the colors
themselves (line:1) followed by a coloring rule asserting that
a node can only have one color (lines:2-4) and ending with
a constraint stating that no two adjacent nodes can have the
same color (line:5).

Logic program 1 πGraph−Coloring

1: color(green). color(red).
color(blue).

2: coloring(X, green) :- node(X), not
coloring(X, red), not coloring(X,
blue).

3: coloring(X, red) :- node(X), not
coloring(X, green), not coloring(X,
blue).

4: coloring(X, blue) :- node(X), not
coloring(X, green), not coloring(X,
red).

5: :-coloring(X1,C), coloring(X2,C),
edge(X1,X2).

After defining the problem’s domain, ASP solvers can
receive problem instances to solve like a logic program.2
starting with number of nodes (line:1) and the graph structure
(line:2).

Logic program 2 πGraph−Coloring−Instance

1: node (1..4).
2: edge(1, 2). edge(1, 3). edge(3, 2).
edge(3, 4).

Finally, the ASP solver will generate at least one solution
set, if it exists, for the passed problem in the following format:

84774 VOLUME 11, 2023

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

Output: 3 πGraph−Coloring ∪ πGraph−Coloring−Instance

node(1) node(2) node(3) node(4)
edge(1,2) edge(1,3) edge(3,2)
edge(3,4)
color(green) color(red) color(blue)
coloring(1,red) coloring(2,blue)
coloring(3,green) coloring(4,blue)

D. HEURISTIC-BASED SCANNERS
The primary approach for antiviruses to identify malicious
specimens is malware analysts’ signatures; Therefore, several
marks may identify the same sample. VirusTotal presented
YARA, a tool used to recognize malicious samples [34],
leaving the analysts’ leading problem. A rule describes a
sample. Each rule consists of metadata, strings, or binary to
look for and conditions that must be satisfied to trigger a rule
match, making it a perfect tool for capturing samples, not a
defined behaviour. On the other hand, FireEye’s Capa-Rule
tool is another rule-based detector that analyses event logs
then maps them to the MITRE matrix [35].

III. RELATED WORK
References of [36], [37], [38], and [39] presented tremendous
research emerged to detect malicious behaviours, though
according to our best knowledge, logic programming did not
receive much attention when solving the malware problem.
Therefore, this section presents relatively related research
directions covering the malware detection approaches and
logic programming developments.

A. RELATED WORK ON MALWARE DETECTION
Authors in [40] suggested an n-gram approach for detecting
malware samples; even though such an approach is intu-
itive, yet it computational costs are unbearable. Thus, most
researchers utilize machine learning classifiers to detect mali-
cious software by encoding the given sample into a feature
vector and passing it to a trainedmodel. Therefore, the feature
selection and extraction introduces a challenging task since
it directly influences the model’s performance concerning
detection ratio and response time under the assumption that
the optimal machine learning model is selected for the task.

From the static analysis perspective, [41] suggested mod-
elling malware using a graph-based approach through cre-
ating control flow graphs then match them with known
malicious files’ graphs. According to the authors, such an
approach was able to handle some of the basic obfuscation
routines. However, such a technique is defenceless against
zero-day malware samples. On the other hand, [42] proposed
using text-based pattern matching techniques to search for
possible malware actions by generating a subset of signatures
for scanned malicious files. Those signatures are generated
after applying a feed-forward bloom filter on the suspicious
sample, followed by a verification process to reduce false-
positives effects from the filter. Such an approach enabled

handling large-sized databases of malicious files, yet it still
did not provide vital results on false-positive rates [37]. Refer-
ence [43] proposed extracting the executable binary opcodes
and calculated its frequency to grant such an approach higher
resistance to dummy injections and changes. Though, such
an approach blocks direct inference of interactions between
a given binary and the system. Reference [44] listed a vast
number of publications related to image process and malware
detection. All listed approaches share a common represen-
tation: interpreting the executable binary as a raw image
then developing dissimilarly machine learning architectures
to detect malicious samples. Such a trending approach saves
on computation cost, yet it may suffer from packed code.

From the dynamic analysis perspective, [45] proposed
decompiling the given specimen into assembly language then
extract a feature vector encoding information that reflects
API calls and bytes code. Even though such an approach is
intuitive, it is sensitive to obfuscation techniques in addition
to the high computational cost required for decompilation and
feature extraction. Reference [46] suggested usingQ-learning
for feature selection by providing features driven by binary’s
format and byte sequences, then the trained agent searches for
the optimal set of features. According to their flow, the train-
ing algorithm received a 4000 vector size and reduced it to a
vector of 204 elements. Still, the selected features count is sig-
nificant to be used for training machine learning classifiers.
Reference [47] proposed logging the API calls sequence by
encoding eachAPI into a number form, then use this sequence
to teach a two-layer LSTM to capture malicious executions
and by using such a model; the authors reached an accuracy
of around 98%. However, they ignored the APIs arguments
values since considering them will lead to exploring the input
space size and may result in misinterpreting the behaviour.
References of [47] and [48] presented the usage of API
calls in capturing the binaries’ behaviours. Nevertheless, API
call extraction results in massive data collection, introducing
challenges in indexing and querying such data. Moreover,
some submitted to the idea of monitoring the whole system’s
behaviour as proposed by [49]; they claim that capturing
abnormal system behaviours can ease the detection of sev-
eral varieties of malware like zero-day, metamorphic, and
polymorphic. A similar approach was advised by [50]; their
paper presents a real-time anomaly behaviour detector using
directed acyclic graphs. Their framework assumes and uses
a secured data provenance as an information source to build
its graph incrementally; afterwards, it learns about the host’s
execution behaviour and encodes it into a model similar to
Markov Chain Model. Then uses the learned model as a
reference to detect irregular activities; one problem with such
a solution is that it assumes that no infection will occur in the
training period.

B. RELATED WORK ON LOGIC PROGRAMMING
Most research uses logic programming for model checking,
widely used in software engineering requirements checking.

VOLUME 11, 2023 84775

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

However, some researchers utilized logic formulations to
detect malware activities. For instance, [51] suggested using
temporal logic to model spyware behaviours for the Android
platform. Such an approach used mu-calculus to represent a
sequence of actions based on extracted APIs. This technique
extracted the required information smoothly due to the devel-
opment of the language’s nature. Another research utilized
formalmethodswith temporal logic in order to detect banking
malware targeting Android systems [11]. The authors used
a similar approach to [51], which extracted the control-flow
graph statically and compared it with a formalized model.
However, all approaches require decompilation to check for
malware activities; it can still suffer from obfuscation tactics.

Therefore, this paper suggests a trusted logic programming
based framework for detecting malware activities through
modelling any given binary actions into a set of behaviours
that can bematched to theMITREATT&CK database. Hence
our contributions can be summarized as:

• MalpMiner assumes an open-world assumption; such
premise decouples the dependency between the model
and the utilized dataset. Therefore, the behaviour recog-
nition quality will depend only on the fact generator
machine.

• MalpMiner eliminated the model training and validation
process since it does not require any training of any
kind. Therefore, challenges like choosing the machine
learning model and optimizing its parameters are now
dropped.

• MalpMiner welcomes scalability since its knowledge
base can be expanded with a human-readable format to
include new behaviours, making it an up-to-date system
for detecting zero-days.

• MalpMiner considers the invoked APIs argument values
leading to a correct behaviour modelling, unlike other
approaches that ignore the arguments’ values to avoid
input space explosions.

IV. NOTATION, PROBLEM FORMULATION AND
ASSUMPTIONS
A. PRELIMINARIES
This research approach is independent of the engaged com-
puting machine (i.e. sandbox or emulator); therefore, M
symbolize a computing machine.M ∈ {S, E} where S rep-
resents a sandbox environment while E denotes an emulator
environment. Additionally, the machine’s hooking functions
and translations are denoted by H. H is a table defining the
map between a given API call and its equivalent generated
fact(s) while L denotes the logic program solver. Also, the
input binary file is denoted byF while the behavioural model
is expressed as B.

B. MALWARE BEHAVIOUR EXTRACTION PROBLEM
FORMULATION
Given a five tuple ⟨M,L,B,H,F⟩ find a subset of
behaviours s which descibes F correctly, where s ⊂ B.

FIGURE 1. The MalpMiner’s execution workflow.

C. MALWARE DETECTION PROBLEM FORMULATION
Given an extracted binary behaviour set s, find a subset of
behaviours x which descibes a malicious behaviour(s).

D. ASSUMPTIONS
It is assumed that the agent who generates facts can resolve
API arguments like dereferencing address and handlers val-
ues sincemost of theMSWindows kernel’s APIs use handlers
rather than the object’s unique ID.

V. A BEHAVIOURAL EXTRACTION STRATEGY USING
LOGIC-BASED TACTICS
The presented approach shows a novel methodology for
using logic programming to recognize executable binaries
behaviours to empower the detection of malicious software.
Figure.1 shows an abstract for MalpMiner execution work-
flow. After the MalpMiner receives an executable binary,
it executes it in a controlled environment. At the same
moment, a monitoring agent translates the invoked APIs into
facts, then passed them to a decision agent to decide whether
this given binary is malicious or not. Moreover, Algorithm.1
defines the workflow of the suggested approach; it receives
the targeted binary file, a computing machine, a behavioural
model file, and a hooking map file then returns a set of
detected behaviours. First, the machine is loaded into the
memory; then, it initializes its APIs’ hook to generate the
required facts defines in the hooking map (lines:1-2). After
concluding the initialization phase, the machine generates
a problem instance by executing the passed binary file and
creates facts based on the called APIs (line:3). The final phase
is when the logic-agent infuses the logic solver in order to
describe F’s behaviour correctly (lines:4-5).

The following subsections describe the logic modelling
design process for a given behaviour besides the hookingmap
strategy and a decision-making agent illustration followed by
a runtime analysis for the submitted system.

A. BEHAVIOUR MODELLING DESIGN METHODOLOGY
As stated in section II-C, a traditional logic program con-
tains a set of rules, constraints, and facts. In order to model
a given binary’s behaviour, the 6 alphabet captures the
system changes that occurred when executing that binary.
Therefore, 6 is determined as { process, thread, directory,

84776 VOLUME 11, 2023

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

Algorithm 1 Behaviour-Extraction LogicAgent
Require: M::Execution machine,

B::Behavioural model, F::Binary file,
H::Hooks map

Ensure: Returns a set of detected
behaviours describing F

1: KERNEL(Load,M)
2: INITIALISE(M,H)
3: pf ← EXECUTE(M,F)
4: s← {L(B, pf)}
5: return s

file, filemap, registerykey, service, window, socket, module,
driver}. Besides describing the system dynamics, the 3

alphabet arrests the interactions between 6 elements and the
table.1 summarises the meaning of each predicate in 3 for
simplification.

1) T1055—PROCESS INJECTION BEHAVIOUR
One formal definition for a process injection behaviour is
A process injection occurs when a process P in system S
gains write access to process C’s memory within the same
system THEN P allocates memory and write stream of bytes
in C’s memory. Algorithm.2 explains a full injection process
by showing how a process gets access to another process’s
memory. Algorithm.2’s target is searching for a process pt
with a set of properties encoded in the function sf ; this occurs
through asking the OS’s kernel to share a set of all current
processes in the memory (line:1). Afterwards, it searches for
a targeted process by enumerating in all processes available in
P (line:2). Upon finding the necessary process, algorithm.2
asks the kernel for accessing a selected process’s memory and
after obtaining access it copies the to-inject code c into pv’s
memory (lines:4-7).

Algorithm 2 Process-Injection
Require: sf::Selection Function,

c::To-inject code
Ensure: c is injected into process p
1: P ← {KERNEL(EnumProcesses,ALL)}
2: for pinP do
3: if sf (p) then
4: pmem← KERNEL(OpenProcess, p)
5: pacc← KERNEL(AllocMem, pmem, SIZE(c))
6: KERNEL(MemCopy, pacc, c, SIZE(c))
7: returnsuccess
8: end if
9: end for

10: returnsuccess

Based on the provided behaviour description, logic pro-
gram πprocess−injection can model such behaviour.

Logic program 1 πprocess−injection

1: targets(PT, PV) ← process(PT) ∧
process(PV) ∧ allocatedMemory(PT,
PV) ∧ PT ̸= PV.

2: injectedCode(PT, PV) ← process(PT) ∧
process(PV) ∧ wroteBytes(PT, PV).

3: injectedCode(PT, PV) ← process(PT)
∧ process(PV) ∧ thread(T) ∧ has(T,
queue_apc), owns(PV, T).

4: injectedCode(PT, PV) ← process(PT) ∧
process(PV) ∧ createdFileMap(PT, F) ∧
filemap(F) ∧ mappedFile(PT, F, PV).

5: injectedProcess(PT, PV) ←
targets(PT, PV) ∧ injectedCode(PT,
PV).

2) T1070—EVIDENCE REMOVAL
One formal definition for the evidence removal behaviour is
A process P deletes its related artefacts after executing its
intrusion activities. Hence, logic program πself−deletion forms
such a behaviour.

Logic program 2 πself−deletion

1: selfDeletion(PO) ← process(PT) ∧
process(PO) ∧ file(PROC_FILE) ∧
owns(PO, PROC_FILE) ∧ deleted(PT,
PROC_FILE).

2: selfDeletion(PO) ← process(PO) ∧
file(PROC_FILE) ∧ owns(PO, PROC_FILE)
∧ deleted(PO, PROC_FILE).

3) T1489—SERVICE STOP
One formal definition for the service stop behaviour is A pro-
cess P terminates another process V which does not belong
to its subprocesses. Accordingly, logic program πservice−stop
recognize such behaviour.

Logic program 3 πservice−stop

1: related(X,Y) ← owns(X,Y).
2: related(X,Y) ← owns(X,Z) ∧
owns(Z,Y).

3: ServiceStop(PO,PT) ← terminated(PO,
PT) ∧ process(PT) ∧ PO ̸= PT ∧ not
related(PO, PT).

4) TA0003—STARTUP PERSISTENCE
One formal definition for the startup persistence behaviour is
A process P guarantees triggering its execution across system
restarts by scheduling a task or using the infected system’s
startup events.Therefore, logic programπservice−stop captures
such a behaviour.

VOLUME 11, 2023 84777

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

TABLE 1. The 3’s predicates description.

Logic program 4 πservice−start

1: startupExecutionPersistence(PO) ←
process(PO) ∧ scheduledtask(PO).

2: startupExecutionPersistence(PO) ←
process(PO) ∧ startupfolder(PO, F) ∧
directory(F).

5) TA0005 - ANTI-ANALYSIS BEHAVIOUR
One formal definition for anti-analysis behaviour is A process
P can protect itself from analysis techniques if it can check
whether a debugger is engaged or not. Still, this definition
is not complete since there are vast anti-analysis techniques;
algorithm.3 highlights a simplified illustration of the decision
process for evading detection belonging to a given malware.
Advanced malware would execute its malicious behaviour if
it did not detect any analysis tools running like debuggers.
Therefore, it asks the kernel if any debuggers are engaged
or not. The return value decides to execute its malicious
behaviour m or evade detection using behaviours imple-
mented in h.

Algorithm 3 AntiDebug
Require: h::harmless behaviour,

m::malicious behaviour
Ensure: The malware runs its malicious

behaviour if not being debugged.
1: if KERNEL(Execute, IsDebuggerPresent) is TRUE

then
2: KERNEL(Execute, h)
3: else
4: KERNEL(Execute,m)
5: end if

Based on the provided behaviour description, the logic
program πanti−analysis represents such behaviour.

Logic program 4 πanti−analysis

1: debuggerCheck(PT) ← process(PT) ∧
checked(PT, debugging).

One more benefit of logic programming is merging logic
programs which easies further updates/modifications with no

additional cost. Moreover, a set of constraints is applied to
represent a more realistic environment like a thread solely
owned by one process; besides, a process can not be a thread;
logic program.5 defines such constraints.

Logic program 5 πmodel−constraints

1: ← process(P) ∧ thread(P).
2: ← process(P1) ∧ process(P2) ∧
thread(T) ∧ owns(P1, T) ∧ owns(P2,
T), P1 ̸= P2.

B. BEHAVIOUR EXTRACTION DESIGN METHODOLOGY
State-of-the-art Antivirus systems hook the execution
machine’s kernel APIs to intercept and prevent malware
activities in the runtime. Therefore, the offered strategy
followed the same tactic for facts generation by creat-
ing a generic map in the following expression: (API →
FACT (A),FACT (B), . . .) linking each API with a set of
expected facts translation. Table.2 summarises the transfor-
mation of the kernel’s APIs into the required facts.

C. BEHAVIOUR DECISION DESIGN METHODOLOGY
After splitting the malware detection problem into two sub-
problems, it introduced flexibility in designing various detec-
tion agents. Therefore, this subsection introduces an instance
decision-making agent to clarify the malware detection pro-
cedure and provide a path for more detection agents. Another
logic agent receives the extracted facts by algorithm.1 and
tries to infer any malware activity from them. Algorithm.1
formalise the agent’s workflow. First, the logic-agent injects
the logic solver in order to infer any malware activities
described inD (line:1), then the agent replies with amalicious
statement in case it detected any malware activities; other-
wise, reply with a benign declaration.

According to the deploying institute’s security standard,
the mentioned decision agent infers attacks through the logic
program.5.

Logic program.5 classified the anti-analysis attack as a
suspicious activity to reduce false positives due to mislead-
ing information since legitimate applications may deploy
anti-analysis procedures to protect the intellectual property.
Another case is that forming a decision-making agent is

84778 VOLUME 11, 2023

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

TABLE 2. Some MS Windows kernel APIs translations.

Algorithm 4 Behaviour-Decision LogicAgent
Require: s::Extracted behaviours,

D::Decision model
Ensure: Returns a malicious if D detects

at least one malicious behaviour,
otherwise benign

1: s← {L(D, s)}
2: if s ̸⊂{malicious} then
3: return benign
4: end if
5: return malicious

an added complex problem that is out of the scope of this
paper. Nevertheless, it is vital to manifest how the submitted
malware detector scheme utilizes the MalpMiner framework.

D. RUNTIME ANALYSIS
Regarding runtime analysis, it can be empirically expected
that the deployed computing machine’s time complexity will
be bounded accordingly; this suggested approach has several
bottlenecks. The first bottleneck is the used machine model,
and the second bottleneck is the developed logic model.
Furthermore, we can safely state that the engaged machine
bounds the time and space complexity since the developed
logic model avoids variables explosion since B checks the
values generated from given rules like injectedProcess. Nev-
ertheless, the � asymptotic complexity function is utilized
to compute the time and space complexities of the offered
procedure.

Any given emulator E’s goal is to emulate instruction
sets for a selected architecture. Therefore, emulation time
depends directly on the number of instructions for a given
binary executable. Hence, E’s time complexity is bounded by

Logic program 5 πdecision−agent

1: mitre(PT, attack_T1055) ←
injectedProcess(PT, PV).

2: mitre(PT, attack_TA0003) ←
startupExecutionPersistence(PT).

3: mitre(PT, attack_T1070) ←
selfDeletion(PT).

4: mitre(PT, attack_T1489) ←
ServiceStop(PT, PV).

5: mitre(PT, attack_TA0005) ←
debuggerCheck(PT).

6: malicious(PT) ← mitre(PT,
attack_T1055).

7: malicious(PT) ← mitre(PT,
attack_TA0003).

8: malicious(PT) ← mitre(PT,
attack_T1070).

9: malicious(PT) ← mitre(PT,
attack_T1489).

10: suspicious(PT) ← mitre(PT,
attack_TA0005).

�(n), where n is the number of instructions to be executed.
For that particular reason, emulators are implemented using
high-speed languages like C/C++ [52]. Concerning space
complexity, E emulates what the executable binary needs to
execute without physically executing it. Therefore, the pro-
posed algorithm’s space complexity is bounded by O(c+m),
where c is a constant representing E’s memory allocation
cost and m denotes the number of loaded modules. It is
challenging to compute its cyclomatic complexities about the
traditional sandbox environment since it executes complete
OS functionality.

VOLUME 11, 2023 84779

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

TABLE 3. Dike Dataset Statistics.

VI. EXPERIMENTS AND RESULTS
A. DATASET PREPARATION
This section tested MalpMiner correctness to validate the
logic programming utilization using standard libraries that
implement malware activities to cover the mentioned before
(section:V-A). However, due to paper size limitations, we are
showing one correctness test covering process injection tech-
niques through Pinjectra1 and Al-khaser2 libraries. After test-
ing the correctness of MalpMiner, DikeDataset3 was utilized
as a benchmarking dataset for the MalpMiner framework
and another baselining method. However, DikeDataset was
filtered out based on the file type since MalpMiner targets
32-bit portable executable files. Table.3 shows the file type
distributions for this dataset.

Afterwards, a dataset was created by extracting the invoked
APIs sequences and generated-facts using Binee4 emulator.
The idea behind using Binee is the flexibility to resolve the
APIs arguments without maintaining complex data struc-
tures, thus leading to a set of 1399 malicious and 965 benign
samples completed the execution successfully. Then Kasper-
sky sandbox5 generated the MITRE ATT&CK tags for all
of those samples to ground-truth their behaviours and make
sure that those samples share joint operations like startup
persistence, self-deletion behaviours, and process injection.

B. BASELINING
The suggested procedure is baselined against Fireeye’s CAPA
rules [35] to present the fundamental performance differ-
ence between MalpMiner and CAPA. Concerning the ASP
inference, MalpMiner used clingo6 engine to recognize
behaviours.

C. RESULTS
Table.4 shows correctness results; this table contains three
attributes as follow: Detected , Missed , and Crashed .
Detected and Missed attributes imply that a given behaviour
is identified or not, while Crashed signifies that a sample

1https://github.com/SafeBreach-Labs/pinjectra
2https://github.com/LordNoteworthy/al-khaser/tree/master/al-khaser
3https://github.com/iosifache/DikeDataset
4https://github.com/carbonblack/binee
5https://www.kaspersky.com/enterprise-security/malware-sandbox
6https://github.com/potassco/clingo

started execution though did not finish successfully due to
runtime issues.

Moreover, Table.5 shows theMITREATT&CK tags distri-
bution for baselining dataset while table.6 shows the baseline
tags between CAPA and MalpMiner.

Table.7 shows the MalpMiner performance results.

VII. DISCUSSION
A. OUTCOMES
What differentiates the MalpMiner from any other machine
learning approach is the inference scheme. MalpMiner con-
siders the values of the passed arguments for the invoked
APIs, thus modelling the executable binary’s behaviours cor-
rectly. Another ability is that ASP is based on nonmonotonic
reasoning, which means MalpMiner can withdraw conclu-
sions upon receiving new facts, thus enabling commonsense
reasoning, leading to a similar performance for human expert
decisions. Moreover, MalpMiner is not influenced by the uti-
lized datasets since it does not require any training. Besides,
expanding the knowledge base to include more behaviours is
more straightforward than other methods while guaranteeing
no loss in previous behaviours. Such capacities make Malp-
Miner resilient to new malicious families/variants since it
searches for known behaviours, not an API calling sequence.

On the other hand, machine learning models ignore the
values of the arguments passed to APIs, thus making feature
selection a challenging task. Therefore, feature misselec-
tion may result in behaviour recognition misinterpretations,
leading to reducing the detection ratio. The reason behind
ignoring the arguments is to try to limit and encode as much
information without exploding the input space. Another stan-
dard limitation across machine learning-based approaches is
the adopted dataset’s assumption of a closed world scenario.
Therefore, researchers split the dataset into train and test sets
in order to overcome such a limitation. Nevertheless, such an
approachmay result in different learning patterns, resulting in
varying detection ratios. Accordingly, machine learningmod-
els are still vulnerable to new families/variants due to such an
assumption (i.e. the utilized dataset). Moreover, adding new
families/variants to the machine learning model knowledge
will result in a retaining which cannot ensure that there will
be information loss.

Concerning heuristic-based approaches, they have a
remarkable detection rate when it comes to non-obfuscated
samples. Though each rule may cover one or more samples
count, not a given behaviour, making it sensitive to meta-
morphic and polymorphic techniques allowing obfuscation
techniques to evade them smoothly. Moreover, such rules
may generate a false-positive alarm since it may hit with a
legitimate application requiring human intervention to sup-
press such an alarm. However, without any insurance, such
intervention may reduce the detection ratio.

Table.4 proves the correctness of the proposed approach
even though some samples have failed to finish execution suc-
cessfully. As for the missed techniques, the samples crashed

84780 VOLUME 11, 2023

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

TABLE 4. The process injection correctness test, note: techniques are named after the library’s implementation.

TABLE 5. Baseline Dataset Tags Statistics.

TABLE 6. Targeted Tags Baseline.

before executing their process injection procedure, unlike
mode 6 in the Pinjectra library, which injected the code
then crashed. Such a case shows the power behind mod-
elling the behaviour correctly, which considers the invoked
APIs values, thus enabling it to recognize malware activities.
Another correctness proof is provided by table.6; T1055 indi-
cates the behaviour recognition abilities for MalpMiner when
it comes to actual samples by detecting process injection
activities. Moreover, MalpMiner was able to detect persis-
tent startup behaviours (TA0003) while Kaspersky sandbox

ignored them; the reason behind this is that those samples
evaded the sandbox analysis. As for the self deletion tech-
niques (T1070), the difference between Kaspersky andMalp-
Miner is that MalpMiner translated one technique for self
deletion APIs as a proof of concept. However, such a detec-
tion rate proves the correctness of MalpMiner. As for CAPA’s
detections was reduced due to multiple factors like the used
samples; most of themwere packed. Besides that, CAPA tries
to inferMitre tags based on static analysis, unlikeMalpMiner,
which monitors the binary’s execution while considering the
invoked APIs arguments.

Table.7 strengthens the idea of MalpMiner performance
concerning false-positive rates and accuracy. The logic pro-
gram.4 introduced a false-positive detections which appeared
in tag TA0003 (FPR in table.7). The analysis showed that
11 samples were legitimate installers that could be allowed,
concluding that 3 must include signed(uuida) fact indicating
if the organization safelists the inspected file or not. Such a
scenario shows that MalpMiner detection ratio performance
can be improved by expanding its translation table without
losing any behaviour techniques. On the other hand, machine
learning approaches will need to retain including the new
information without guaranteeing that it will not lose any pre-
trained information.

B. LIMITATIONS AND SUGGESTED SOLUTIONS
MalpMiner methodology may suffer from scalability issues
from two primary aspects. One is the need to translate every
kernel API into a fact to capture every change in the system.
Such scalability is common sincemost industrial state-of-the-
art antiviruses use the same procedure by hooking a set of
kernel APIs to monitor system and user changes. However,
targeted OS influences such scalability; the kernel APIs count

VOLUME 11, 2023 84781

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

TABLE 7. KPIs benchmarking scores. Note: F1 denotes the F1 score while
FPR and FNR are acronyms for False Positive/Negative Rates.

is limited for a Linux OS. Besides, each API has no internal
state machine making its behaviour unchanged based on the
inputs, unlike Windows OS since its APIs behaviours depend
directly on the passed arguments. Therefore, model assump-
tions and weak constraints can reduce these scalability issues
by enabling the MalpMiner to assume missing information.
Another solution is extending the kernel itself; the OS’s ker-
nel can enable callback to notify objects like process list data
structure upon changes as new process creation/termination.

The second scalability is the creation of behaviour logic
programs; each time a new behaviour is noticed, experts
need to analyze the possible valid sequences followed by
expanding the 3 alphabet in order to recognize brand-new
behaviours. Since logic programming has decisive learning
criteria due to justifying its inference with a readable for-
mat. Therefore, rather than modelling by hand logic pro-
grams per behaviour, inductive logic programming can teach
MalpMiner using good and bad examples using frameworks
like [53].

VIII. CONCLUSION AND FUTURE WORK
This paper introduced a trusted logic-based framework
named Malware-Logic-Miner (MalpMiner), which utilizes
logic programming as an executable binary’s behaviour rep-
resentation scheme, thus allowing for an explainable human-
readable format with an expert-level malicious behaviour
detection ratio. The motivation behind using another domain
to represent the malware behaviours was driven by [54], who
encoded music notes to colours which enabled AI to gener-
ate human-level music tracks. Consequently, the MalpMiner
can recognize any given binary behaviour by translating its
invoked APIs while resolving their arguments to describe
what changed in the system allowing for human-expert level
detection.

MalpMiner baselined results prove the success of logic
programming as a representation scheme that introduces
an intuitive domain for capturing binaries executables
behaviours. Furthermore, MalpMiner achieved an outstand-
ing performance while avoiding the challenges associated
with machine learning model developments. The idea of
an open-world assumption, nonmonotonic reasoning, and
considering invoked APIs arguments made it possible for
MalpMiner to utilize commonsense reasoning to recognize
any given binary’s activities correctly. Moreover, the no need
for training removed the need and the influence of training
datasets to control the detection ratio and allowed scaling up
the knowledge base to include new behaviours. Nevertheless,
after recognizing any given binary, MalpMiner can be easily
expanded to notice intentions enabling autonomous agents to

devise recovery plans in case of detected outrage activities
like the ransomware infliction.

ACKNOWLEDGMENT
The authors would like to thank the EG-CERT for its support
by providing resources, such as hardware, software, and data
used in this research, and also would like to thank Mohamed
A. Abdelmonim, Ahmed B. Sallam, and Mohammed E.
Mousa from the EG-CERT’s malware analysis team for
implementing the required changes in the Binee emulator to
integrate it with the logic model.

Its contents are solely the authors’ responsibility, and they
do not necessarily represent the official views of the NTRA.

APPENDIX
AUXILIARY ALGORITHMS APPENDIX
See Algorithm 6.

Algorithm 6 INITIALISE
Require: e::Emulator, m::hooks map
Ensure: Updates e::emulator with the

required hooks.
1: for h in m do
2: AddHook(h, e)
3: end for

Output: 7 πPinjectra−mode−3

module(uuid_0× 2118d000).
module(uuid_0× 271f4000).
module(uuid_0× 24444000).
load(uuid_0xfff,uuid_0× 24444000).
load(uuid_0xfff,uuid_0× 25b1c000).
created(uuid_0xfff,uuid_0× 0).
module(uuid_0× 400000).
load(uuid_0xfff,uuid_0× 400000).
load(uuid_0xfff,uuid_0× 271f4000).
createdFileMap(uuid_0xfff,uuid_0× 0).
targets(uuid_0xfff,uuid_0× 0).
mappedFile(uuid_0xfff,uuid_0×0,uuid_0×
0).
has(uuid_0× 0,uuid_0xa000983b).
is(uuid_0× 0,remotely_created).
load(uuid_0xfff,uuid_0× 238d8000).
load(uuid_0xfff,uuid_0× 2118d000).
module(uuid_0× 25b1c000).
mappedFile(uuid_0xfff,uuid_0 ×

0,uuid_0xfff).
module(uuid_0× 238d8000).
owns(uuid_0× 0,uuid_0× 0).
thread(uuid_0xa000983b).
filemap(uuid_0× 0).
process(uuid_0× 0).
process(uuid_0xfff).

84782 VOLUME 11, 2023

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

APPENDIX A
A CASE STUDY
This section presents a complete case study when test-
ing MalpMiner’s correctness with Pinjectra. In this case
study, we selected one process injection technique, mode 3,
to present how MalpMiner operates. In mode 3, Pinjec-
tra injects the payload using MapViewOfFile followed by
NtMapViewOfSection APIs; upon executing the sample with
the desired mode, the API translator agent keeps a trace of
the invoked APIs then generate facts for them based on their
argument values. Output.7 program shows the translation of
the API into a fact; note that % indicates a comment in logic
programs.

Upon facts generation, the decision agent unions both logic
programs.7 and 5 to detect any malware activities as shown
in output.8.

Output: 8 πPinjectra−mode−3 ∪ πdecision−agent

injectedProcess(uuid_0xfff,uuid_0× 0).
mitre(uuid_0xfff, attack_T1055).
malicious(uuid_0xfff).

REFERENCES
[1] (2020). Kaspersky Security Bulletin 2020. statistics. [Online].

Available: https://go.kaspersky.com/rs/802-IJN-240/images/KSB
_statistics_2020_en.pdf

[2] M. Sparkes, ‘‘How do we solve the problem of ransomware?’’
Tech. Rep., 2021.

[3] R. Reynolds, ‘‘The four biggest malware threats to U.K. businesses,’’Netw.
Secur., vol. 2020, no. 3, pp. 6–8, Mar. 2020.

[4] Deloitte. [Online]. Available: https://www2.deloitte.com/ch/en/pages/risk/
articles/impact-covid-cybersecurity.html

[5] Interpol. [Online]. Available: https://www.interpol.int/Crimes/
Cybercrime/COVID-19-cyberthreats

[6] F. Cohen, ‘‘Computer viruses: Theory and experiments,’’ Comput. Secur.,
vol. 6, no. 1, pp. 22–35, 1987.

[7] A. A. Mawgoud, H. M. Rady, and B. S. Tawfik, ‘‘A malware obfuscation
ai technique to evade antivirus detection in counter forensic domain,’’ in
Enabling AI Applications in Data Science. Springer, 2021, pp. 597–615.

[8] T. Alsmadi and N. Alqudah, ‘‘A survey on malware detection techniques,’’
in Proc. Int. Conf. Inf. Technol. (ICIT), Jul. 2021, pp. 371–376.

[9] S. Mahdavifar and A. A. Ghorbani, ‘‘Application of deep learning to cyber-
security: A survey,’’ Neurocomputing, vol. 347, pp. 149–176, Jun. 2019.

[10] M. Brengel and C. Rossow, ‘‘YARIX: Scalable YARA-based malware
intelligence,’’ in USENIX Secur. Symp., 2021, pp. 1–19.

[11] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, ‘‘Formal meth-
ods for Android banking malware analysis and detection,’’ in Proc. 6th
Int. Conf. Internet Things, Syst., Manage. Secur. (IOTSMS), Oct. 2019,
pp. 331–336.

[12] E. A. Emerson and C. S. Jutla, ‘‘Tree automata, Mu-Calculus and determi-
nacy,’’ inProc. 32nd Annu. Symp. Found. Comput. Sci., 1991, pp. 368–377.

[13] E. A. Emerson, ‘‘Model checking and the Mu-Calculus,’’ DIMACS Ser.
Discrete Math., vol. 31, pp. 185–214, Jun. 1997.

[14] Y. Lin and X. Chang, ‘‘Towards interpretingML-based automatedmalware
detection models: A survey,’’ 2021, arXiv:2101.06232.

[15] X. Huang, L. Ma, W. Yang, and Y. Zhong, ‘‘A method for Windows mal-
ware detection based on deep learning,’’ J. Signal Process. Syst., vol. 93,
nos. 2–3, pp. 265–273, Mar. 2021.

[16] I. You and K. Yim, ‘‘Malware obfuscation techniques: A brief survey,’’ in
Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., Nov. 2010,
pp. 297–300.

[17] B. Bashari Rad, M. Masrom, and S. Ibrahim, ‘‘Camouflage in malware:
From encryption to metamorphism,’’ Int. J. Comput. Sci. Netw. Secur.,
vol. 12, pp. 74–83, Jan. 2012.

[18] B. Jung, S. I. Bae, C. Choi, and E. G. Im, ‘‘Packer identification method
based on byte sequences,’’ Concurrency Comput., Pract. Exp., vol. 32,
no. 8, p. e5082, Apr. 2020.

[19] Y. Oyama, ‘‘Trends of anti-analysis operations of malwares observed in
API call logs,’’ J. Comput. Virol. Hacking Techn., vol. 14, no. 1, pp. 69–85,
Feb. 2018.

[20] K. P. Subedi, D. R. Budhathoki, and D. Dasgupta, ‘‘Forensic analysis of
ransomware families using static and dynamic analysis,’’ in Proc. IEEE
Secur. Privacy Workshops (SPW), May 2018, pp. 180–185.

[21] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
‘‘A comparison of static, dynamic, and hybrid analysis for malware detec-
tion,’’ J. Comput. Virology Hacking Techn., vol. 13, no. 1, pp. 1–12, 2017.

[22] M. S. I. Sajid, J. Wei, M. R. Alam, E. Aghaei, and E. Al-Shaer, ‘‘Dod-
geTron: Towards autonomous cyber deception using dynamic hybrid anal-
ysis of malware,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS),
Jun. 2020, pp. 1–9.

[23] Y. K. B. M. Yunus and S. B. Ngah, ‘‘Review of hybrid analysis technique
for malware detection,’’ inProc. IOPConf. Mater. Sci. Eng., vol. 769, no. 1.
Bristol, U.K.: IOP Publishing, 2020, p. 012075.

[24] R. Ashmore, R. Calinescu, and C. Paterson, ‘‘Assuring the machine learn-
ing lifecycle: Desiderata, methods, and challenges,’’ ACM Comput. Sur-
veys, vol. 54, no. 5, pp. 1–39, Jun. 2022.

[25] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong,
‘‘Interpretable machine learning: Fundamental principles and 10 grand
challenges,’’ 2021, arXiv:2103.11251.

[26] C. Esposito, G. A. Landrum, N. Schneider, N. Stiefl, and S. Riniker,
‘‘GHOST: Adjusting the decision threshold to handle imbalanced data in
machine learning,’’ J. Chem. Inf. Model., vol. 61, no. 6, pp. 2623–2640,
Jun. 2021.

[27] G. Fenza, M. Gallo, V. Loia, F. Orciuoli, and E. Herrera-Viedma, ‘‘Data set
quality in machine learning: Consistency measure based on group decision
making,’’ Appl. Soft Comput., vol. 106, Jul. 2021, Art. no. 107366.

[28] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Penning-
ton, and C. B. Thomas, ‘‘MITRE ATT&CK: Design and philosophy,’’
Tech. Rep., 2018.

[29] H. Manocha, A. Srivastava, C. Verma, R. Gupta, and B. Bansal, ‘‘Secu-
rity assessment rating framework for enterprises using MITRE ATT&K
matrix,’’ 2021, arXiv:2108.06559.

[30] C. Baral, Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[31] V. Lifschitz, Answer Set Programming. Springer, 2019.
[32] T. Eiter, G. Ianni, and T. Krennwallner, ‘‘Answer set programming: A

primer,’’ in Reasoning Web International Summer School. Springer, 2009,
pp. 40–110.

[33] E. Erdem, M. Gelfond, and N. Leone, ‘‘Applications of answer set pro-
gramming,’’ AI Mag., vol. 37, no. 3, pp. 53–68, 2016.

[34] V. M. Alvarez, ‘‘YARA documentation,’’ Tech. Rep., 2020.
[35] FireEye. Fireeye’s Capa-Rule. [Online]. Available:

https://github.com/fireeye/capa-rules
[36] D. Dasgupta, Z. Akhtar, and S. Sen, ‘‘Machine learning in cybersecurity:

A comprehensive survey,’’ J. Defense Model. Simul., vol. 19, no. 1, 2020,
Art. no. 1548512920951275.

[37] J. Singh and J. Singh, ‘‘A survey on machine learning-based malware
detection in executable files,’’ J. Syst. Archit., vol. 112, Jan. 2021,
Art. no. 101861.

[38] S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi, ‘‘A survey on malware
analysis and mitigation techniques,’’ Comput. Sci. Rev., vol. 32, pp. 1–23,
May 2019.

[39] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey of machine learning tech-
niques for malware analysis,’’ Comput. Secur., vol. 81, pp. 123–147,
Mar. 2018.

[40] M.-J. Lim and Y.-M. Kwon, ‘‘Efficient algorithm for malware classi-
fication: N-gram MCSC,’’ Int. J. Comput. Digit. Syst., vol. 9, no. 2,
pp. 179–185, Jan. 2020.

[41] D. Bruschi, L. Martignoni, and M. Monga, ‘‘Code normalization for self-
mutating malware,’’ IEEE Security Privacy, vol. 5, no. 2, pp. 46–54,
Mar. 2007.

[42] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G. Andersen,
‘‘SplitScreen: Enabling efficient, distributed malware detection,’’ J. Com-
mun. Netw., vol. 13, no. 2, pp. 187–200, Apr. 2011.

[43] S. Rezaei, A. Afraz, F. Rezaei, and M. R. Shamani, ‘‘Malware detection
using opcodes statistical features,’’ in Proc. 8th Int. Symp. Telecommun.
(IST), Sep. 2016, pp. 151–155.

VOLUME 11, 2023 84783

M. F. Abdelwahed et al.: Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach

[44] R. Komatwar and M. Kokare, ‘‘A survey on malware detection and classi-
fication,’’ J. Appl. Secur. Res., vol. 16, no. 3, pp. 1–31, 2020.

[45] D. Gibert, C. Mateu, and J. Planes, ‘‘HYDRA: A multimodal deep
learning framework for malware classification,’’ Comput. Secur., vol. 95,
Aug. 2020, Art. no. 101873.

[46] Z. Fang, J. Wang, J. Geng, and X. Kan, ‘‘Feature selection for mal-
ware detection based on reinforcement learning,’’ IEEE Access, vol. 7,
pp. 176177–176187, 2019.

[47] F. O. Catak, A. F. Yazı, O. Elezaj, and J. Ahmed, ‘‘Deep learning based
sequential model for malware analysis using windows exe API calls,’’
PeerJ Comput. Sci., vol. 6, p. e285, Jul. 2020, doi: 10.7717/peerj-cs.285.

[48] C.-M. Chen, G.-H. Lai, T.-C. Chang, and B. Lee, ‘‘Detecting pe-infection
based malware,’’ in Proc. Future Inf. Commun. Conf. Cham, Switzerland:
Springer, 2020, pp. 774–781.

[49] M. E. Ahmed, S. Nepal, andH. Kim, ‘‘MEDUSA:Malware detection using
statistical analysis of system’s behavior,’’ in Proc. IEEE 4th Int. Conf.
Collaboration Internet Comput. (CIC), Oct. 2018, pp. 272–278.

[50] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, ‘‘UNICORN:
Runtime provenance-based detector for advanced persistent threats,’’ 2020,
arXiv:2001.01525.

[51] F. Fasano, F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, ‘‘Spy-
ware detection using temporal logic,’’ inProc. 5th Int. Conf. Inf. Syst. Secur.
Privacy, 2019, pp. 690–699.

[52] N. A. Quynh and D. H. Vu, ‘‘Unicorn: Next generation cpu emulator
framework,’’ BlackHat. 2015.

[53] A. Cropper, ‘‘Efficiently learning efficient programs,’’ Ph.D. dissertation,
Imperial College London, London, U.K., 2017.

[54] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
‘‘Jukebox: A generative model for music,’’ 2020, arXiv:2005.00341.

MUSTAFA F. ABDELWAHED is currently a
Teaching Associate in computers and systems
engineering with the Faculty of Engineering,
Helwan University, besides with the EG-CERT.
He started his career working in embedded sys-
tems then switched to artificial intelligence. His
research interests include AI, multi-agents, behav-
ioral modeling, and autonomous agents.

MUSTAFA M. KAMAL is currently pursuing the
degree with the Faculty of Petroleum and Min-
ing Engineering, Suez University. His enthusiasm
drove him to self-learn binary analysis, reverse
engineering, and software engineering, leading
him to join the EG-CERT as a Malware Analyst.

SAMIR G. SAYED received the B.Sc. degree from
the Electronics, Communication, and Computer
Engineering Department, Faculty of Engineering,
Helwan University, in 1996, the M.Sc. degree,
in 2003, and the Ph.D. degree in electronics and
electrical engineering from UCL, U.K., in 2010.
He is currently an Associate Professor in electron-
ics and communication engineering with the Fac-
ulty of Engineering, Helwan University. He is also
the Executive Director of Cyber-Attacks Detec-

tion and Early Warning Systems with the EG-CERT. His research interests
include AI and ML applications related to malware analysis, intrusion detec-
tions, and wireless communication systems security (5G and beyond).

84784 VOLUME 11, 2023

http://dx.doi.org/10.7717/peerj-cs.285

