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ABSTRACT Scheduling a Directed Acyclic Graph (DAG) on voltage frequency islands involves dividing the
available processing units into multiple islands with varying voltage and frequency levels and then mapping
the tasks of the DAG to the islands while minimizing the makespan and overall energy consumption. In this
research work, a novel DAG task scheduling model is introduced with the assistance acquired from the
deep learning paradigm. The proposed model includes four major phases: (a) DAG modelling, (b) Voltage
frequency island partitioning, (c) core temperature prediction and (d) scheduling optimization. Initially, the
DirectedAcyclic Graph (DAG)model is designed. The nodes of DAG represent tasks, and the edges represent
dependencies between tasks. Then, in the Voltage frequency island partitioning, the available processing
units are into multiple voltage frequency islands. This can be done based on the power consumption of each
unit and the task requirements. Subsequently, the Recurrent Neural Network (RERNN) is trained to predict
the core temperature of each voltage frequency island based on the multi-objectives like execution time,
makespan, and overall energy consumption. Then, the scheduling of the DAG on the voltage frequency
islands is optimized using the Self-Improved Pelican Optimization Algorithm (SI-POA). The proposed
SI-POA model is an extended version of the standard POA model. The SI-POA model is inspired by the
behaviour by the natural behaviour of pelicans during hunting. In the scheduling optimization phase, the
SI-POA algorithm optimizes the scheduling of the DAG on the voltage frequency islands while taking into
account the predicted core temperature of each island based on the Recalling-enhanced recurrent neural
network (RERNN) model. The goal is to minimize the makespan and overall energy consumption of the
DAG while keeping the core temperature of each island within safe limits.

INDEX TERMS Scheduling, makespan, voltage frequency island (VFI), reliability, energy consumption,
directed acyclic graph (DAG), temperature.

I. INTRODUCTION
Grid computing is regarded as the foundation of the next
generation of distributed computing, which organizes the
sharing of massive amounts of resources and the resolu-
tion of issues in dynamic multi-institutional virtual groups
[1]. People can collaborate with one another and share all
resources via the Internet without surrendering local auton-
omy across corporate, institutional, and geographic barriers.
Grid workflow is described as the coordination of a col-
lection of discrete actions carried out across a network of
resources in a predetermined sequence in order to achieve
a significant and complex objective [2]. Directed Acyclic
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Graph (DAG) is currently widely utilized in modelling
scientific computational workflows, particularly large-scale
computing-intensive or data-intensive Grid applications,
including high-energy physics, geophysics, astronomical,
medical image processing, and informatics. two well-known
Grid workflow solutions based on DAG [3]. Due to the
importance of task scheduling for the performance of appli-
cations, it is a well-studied problem. A number of methods
have been developed to schedule the nodes of the DAG
onto the heterogeneous machines [4]. Applications are often
depicted by means of a directed acyclic graph (DAG). List
scheduling-based heuristics are among those that offer good
schedules at a fair price.
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The semiconductor industry is now integrating uni-
processors (cores) into a single chip to create multicore
systems that can run computationally intensive applications
within a given deadline due to the growing need for quicker
computations in high-performance computing (HPC) clus-
ters. High consumption of energy becomes detrimental to
the performance and reliability of system components as the
number of chip cores rises with application size [5]. Appli-
cations with different processing demands have been shown
to have lower energy efficiency when running on a device
withDynamicVoltage and Frequency Scaling (DVFS), where
all cores operate at the same V/F level [6]. Researchers have
adopted the use of Voltage/Frequency Islands (VFIs), where
a VFI consists of one or even more cores that run at the same
V/F level and whose V/F levels may be different from other
VFIs, to address multi/manycore energy efficiency trying
to run applications with heterogeneous computational and
energy requirements [7]. The most energy-efficient architec-
ture is a single-core VFI, but as the number of VFIs increases,
so does the complexity of the per-core V/F regulators and the
synchronizations between cores to resolve memory accesses
in multicore systems with shared memory.

The multicore system is divided into many islands so that
each island can operate at a different V/F level in order to
achieve acceptable energy saving with lesser construction
cost and runtime overhead [8]. Whether they are single-core
or multiple-core, VFIs’ V/F levels can be either statically
established at design time or tweaked while the tasks are run-
ning. The static V/F level assignment is suited for applications
whose workloads do not vary noticeably during run-time in
addition to low-cost, low-overhead hardware design. Addi-
tionally, the benefits of the VFI partitions’ energy-saving
capabilities are not compromised by the off-chip or on-chip
high package cost in system architectures with small-scale
cores and VFIs [9]. At the expense of chip area and complex-
ity, as well as potential overhead in execution energy and time
usage caused by complex V/F controllers/regulators used for
dynamically adjusting cores’ V/F levels during the applica-
tion run-time, the dynamically tuned VFIs compensate for
differing application characteristics that are not handled by
the static approach [10]. By figuring out the V/F levels of
the tasks that are given to the cores for execution, the energy
efficiency ofmulti-core systems can be further increased [11].
Task-core mapping and V/F level assignments are essential
for resolving restricted optimization issues, regardless of
whether the system VFIs are created at design time or VFI
partitions are optimized per application.

This paper investigates the multi-core platform scheduling
of a group of irregular DAG tasks with implicit deadlines.
As far as we are aware, this is the first study that solves
the problem of power usage when scheduling many DAG
activities on multi-core [12], [13]. We assume that a DAG
task always uses all of the cores assigned to it, which results
in non-negligible power usage. We enable the removal or
reduction of the number of lightly laden cores in order to

mitigate this effect. Cores that are not needed can be entirely
turned off after merging [14]. The cores won’t be used if the
average case execution times are normally low relative to the
worst-case execution times (WCET).

The major contribution of this research work is:
• To design a new DAG Scheduling model for efficient
scheduling of periodic tasks into multiple voltage fre-
quency islands.

• To Implement the SI-POA algorithm to optimize the
scheduling of the DAG on the voltage frequency islands.

• To Train a Recurrent Neural Network (RERNN) to
predict the core temperature of each voltage frequency
island based on the considered multi-objectives like exe-
cution time, makespan, and overall energy consumption.

• To optimize the scheduling of the DAG on the voltage
frequency islands using SI-POA.

• The proposed Self-Improved Pelican Optimization
Algorithm (SI-POA) is an extended version of the stan-
dard Pelican Optimization Algorithm (POA) model.

The chapters were arranged in themanner described below:
The basic introduction is presented in Chapter I, the theoret-
ical background of the literature review conducted for this
research work is presented in Chapter II, an overview of the
proposed methodology is presented in Chapter III; the pro-
posed algorithm is used in Chapter IV, the same experiment’s
results are summarized in Chapter V, and the research work
conclusions are presented in Chapter VI.

II. LITERATURE REVIEW
In this section, a few relevant works on the Scheduling of
DAG on Voltage frequency islands are examined. Tariq et al.
[15] have experimented using Voltage Frequency Island
(VFI)-based heterogeneous NoC-MPSoCs with re-timing
coupled with DVFS for real-time streaming applications.
This paper develops an energy-aware scheduler in this paper
that takes conditional constraints into account. This paper
presented forward a brand-new task-level re-timing method
called R-CTG and merged it with a voltage scaling method
nameALI-EBAD that was based on non-linear programming.
Without sacrificing energy efficiency, the R-CTG technique
seeks to reduce the latency brought on by re-timing.

Wu et al. [16] have presented a path-relinking-enhanced
estimation of the distribution method (EDA). To benefit from
the understanding of previous research, an effective hybrid
scheme, including list scheduling heuristics, was created.
Additionally, a particular probability model was constructed
to explain the relative position relationships between the
task pairs, and the task processing permutations are created
by sampling such a model. The local search approach was
designed using path-relinking-based knowledge to maximize
the utilization of EDA.

Tariq et al. [17] have experimented with real-time stream-
ing application scheduling on edge devices while taking
energy considerations into account. To begin with, a cutting-
edge re-timing-based technique was created to convert the
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dependent workload into an independent task model in
order to free up resources and the processors’ unused slack
with a potential minimal preamble. A unique population-
based method called ARSH-FATI was also introduced,
which, in contrast to the known population-based optimiza-
tion algorithms, can dynamically switch among exploitative
and explorative search modes at run-time for optimization
technique.

Guo et al. [18] have investigated energy-efficient real-time
scheduling of sporadic parallel activities with bounded dead-
lines, with each task represented as a directed acyclic graph
(DAG). This paper takes into account a clustered multi-
core platform, where each processor in a cluster operates
at the same speed at all times. In order to reduce the
anticipated long-term energy consumption, a novel concept
called speed profile was developed to simulate run-time
fluctuations in energy consumption by task and by clus-
ter. No existing work, as far as we’re aware, takes energy-
sensitive real-time scheduling of DAG activities with tight
deadlines into account, much alone on a clustered multi-core
platform.

Pournazarian et al. [19] have suggested that DGs with
inverter interfaces, with the exception of PHEVs, implement
an intelligent droop control for MGs voltage and frequency
regulation. The proposed droop control can smoothly adjust
the frequency and voltage of MG and be independent of the
MG line’s parameters. The voltage and frequency of MGs
were then controlled by PHEVs using a revolutionary tech-
nique that was then put forth. In the V2G mode, this method
was used on the PHEV parking lots. Compared to the other
prior technique, this one has a stronger ability to maintain the
stability of MG even in dire situations.

Safari et al. [20] has presented a comprehensive overview
of the recent research initiatives that utilize fault-tolerance
methods while taking into account timing, power/energy,
and temperature from the design standpoint of real-time
embedded systems. The job mapping/scheduling policies for
fault-tolerance real-time embedded systems are examined
and categorized in accordance with the aims and limitations
they are thought to have. Additionally, the hardware mod-
els, application models, and fault-tolerance strategies used
are considered additional dimensions of the classification
provided.

Huang et al. [21] have experimented with the dynamic
scheduling of activities described by directed acyclic graphs
(DAGs), an NP-hard issue with only heuristic solutions,
which was the subject of this study. There were two steps to
our contributions: 1) Assuming that the allocation of DAG
nodes to processors was known, this paper suggests optimal
energy allocation (OEA) and search-based OEA (SOEA), the
first optimal approaches that minimize energy usage while
rewarding the reliability demand homogeneous and hetero-
geneous systems, respectively. 2) This paper introduces a
scheduling algorithm, out-degree scheduling (ODS), which
allocates the DAG nodes based on their out-degrees and takes
energy consumption into consideration.

Hajiamini et al. [22] have experimented in order to reduce
the task set (application) execution time (makespan) for a
certain energy budget. A task scheduling andVFI partitioning
problem were developed in this work. To generate per-core,
per-task dynamic V/F levels in a fine-grain VFI-based system
with single-core islands, the restricted optimization problem
was first defined with integer linear programming (ILP).
Next, mixed integer linear programming (MILP) was used
to develop static task scheduling for coarse-grain VFI-based
systems, where an island can contain many cores operating
at the same V/F level while taking into account the energy
budget and task set precedence limitations.

Roeder et al. [23] have experimented with reducing total
energy usage; this paper provides an off-line scheduling
approach based on forward list scheduling for dependent
multi-version tasks. Our heuristic allows apps to dynamically
adjust voltage and frequency while they are running since
it takes into consideration Dynamic Voltage and Frequency
Scaling (DVFS). The given examples of how multi-version
task models and an energy-conscious scheduler might be
advantageous. We note that using the most energy-efficient
version for each activity does not result in the application
using the least amount of energy overall.

Li et al. [24] have presented an energy/thermal aware work
scheduling strategy by taking into account both thermal and
energy considerations. The optimization is carried out from
two angles: first, it balances the energy/thermal loads of
processors by allocating tasks in an energy/thermal aware
heuristic way and the workload of tasks by the deduced task-
level deadlines; second, it reduces the amount of time among
both parallel tasks that share the same successor task.

Guo et al. [18] have investigated energy-efficient real-time
scheduling of sporadic parallel activities with bounded dead-
lines, with each task described as a directed acyclic graph
(DAG). The author takes into account a clustered multi-
core platform, where each processor in a cluster operates at
the same speed at all times. In order to reduce the antici-
pated long-term energy consumption, a novel concept called
speed-profile is developed to simulate run-time fluctuations
in energy consumption by job and by cluster. No existing
work, as far as we are aware, takes into account energy-
conscious real-time scheduling of DAG jobs with tight dead-
lines, nor on a clustered multi-core platform.

A. MOTIVATION FOR RECENT RESEARCH WORK
Dynamic Voltage and Frequency Scaling is possible in most
current systems (DVFS). There is a clock frequency for each
activity, for each type of CPU or GPU, that minimizes energy
consumption. Lower frequency results in longer duration,
which raises static energy usage. While a higher frequency
results in a shorter run time, the required higher voltage
also increases the use of dynamic energy. The code affects
this convex behaviour. With contemporary CPUs, only the
core cluster may change the clock frequency (i.e. voltage
island). Hence, based on the many tasks running on each
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voltage island, we must choose the best frequency for that
island. We utilize DVFS for various voltage islands to lower
the overall energy consumption of an application made up
of several tasks. Common scheduling challenges are now
made more difficult by heterogeneous platforms, numerous
versions, voltage islands, and DVFS. Schedulers must now
choose which processing unit and how frequently to execute
a task (version) in order to limit the amount of energy used
overall.

III. SYSTEM DESCRIPTION
This paper concentrates on the scheduling of DAG tasks in
the VFI model. The workflow for scheduling a DAG on
voltage frequency islands to minimize the makespan, over-
all energy consumption, and reduce core temperature using
the Self-Improved Pelican Optimization Algorithm (SI-POA)
and Recurrent Neural Network (RERNN):

• DAG modelling: Model the Directed Acyclic Graph
(DAG) that represents the workflow to be executed. This
can be done using a graph representation where the
nodes represent tasks, and the edges represent dependen-
cies between tasks.

• Voltage frequency island partitioning: Divide the
available processing units into multiple voltage fre-
quency islands. This can be done based on the power
consumption of each unit and the task requirements.

• Core Temperature prediction using RERNN model:
Train a Recurrent Neural Network (RERNN) to pre-
dict the core temperature of each voltage frequency
island based on the multi-objectives like execution
time, makespan, overall energy consumption and core
temperature.

• DAG scheduling optimization with SI-POA: Schedul-
ing of the DAG on the voltage frequency islands is
optimized using the Self-Improved Pelican Optimiza-
tion Algorithm (SI-POA). The proposed SI-POA model
is an extended version of the standard POA model. The
SI-POA model is inspired by the behaviour by the natu-
ral behaviour of pelicans during hunting. In the schedul-
ing optimization phase, the SI-POA algorithm optimizes
the scheduling of the DAG on the voltage frequency
islands while taking into account the predicted core tem-
perature of each island based on the Recalling-enhanced
recurrent neural network RERNN) model. The goal is to
minimize the makespan and overall energy consumption
of the DAG while keeping the core temperature of each
island within safe limits.

• Simulation and evaluation: Simulate the optimized
scheduling on a representative set of input DAGs and
evaluate the performance of the algorithm in terms of
makespan, energy consumption, and core temperature.

A. TASK DECOMPOSITION
Task decomposition is a well-known method for simplifying
the scheduling analysis of concurrent real-time jobs. In our
method, the first stage is task decomposition, which breaks

FIGURE 1. Scheduling for directed acyclic graph (DAG).

down each DAG task τi node N l
i into a separate sub-task τ li

with a release offset bli , deadline f
l
i , and execution require-

ment cli . All dependencies (expressed by DAG edges) are
honoured when setting release dates and deadlines. Decom-
position assures that the DAG can be scheduled if all of
the subtasks are schedule-able. In order to be thorough,
we provide a brief explanation of job decomposition in this
subsection, along with an illustration. The strategy employed
by Saifullah et al. [25] is changed significantly by us. Ini-
tially, we carried out the assignment decomposition using the
methods outlined below.We create a vertical line at each time
instant when a node starts or ends for every node starting from
the beginning, assuming the work is executed on an infinite
number of cores. The DAG is divided into segments by these
vertical lines, and each segment contains an equal number of
nodes that execute. Now, portions of various nodes within a
segment can be thought of as parallel execution threads and
threads inside a segment can begin only when threads within
the preceding segment have completed their executions. Now,
we’ll claim that the task’s segmented structure has been
transformed into a synchronized form and mark it with the
symbol τ

syn
i . A node’s allocated time is calculated by first

allocating time to each segment and then adding the times
assigned to each segment individually.

There may be a slack in which all processors are idle since
the minimal makespan, Li ≤ Ti, occurs at the end of each
period (which is typically energy inefficient). By increasing
each section by a common link for task Ti

Li
, we distribute such

idle time uniformly. The scheduling window (bli, f
l
i ) on top of

the processor assignment M l
i (i.e., a node-to-processor map-

ping) provided by task decomposition is where each node N l
i

of a task τi resolve be scheduled.
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FIGURE 2. DAG application model.

B. DAG APPLICATION MODEL
When N is a collection of nodes, and E is a collection of
edges, G = (N ,E) is used to represent a DAG task model.
Each directed edge ei,j ∈ E provides an executive order
such that the sub-task τj can only begin once the sub-task
τi is finished. Each node τi ∈ N signifies a sub-task of the
DAG. In accordance with this, it is said that τi is τj’s imme-
diate predecessor and that τj is τi’s, immediate successor.
We refer to the group of τi’s immediate predecessors and
successors, respectively, as pre(τi) and succ(τi). The com-
munication expense between the sub-tasks τi and τj is also
represented by a weight wi,j that is added to each edge ei,j.
It is usual practice to ignore the communication cost between
two sub-tasks when they are assigned to the same processor.

Figure 2 depicts a sample DAG task with five sub-tasks
τ1, τ2, τ3, τ4, τ5, where tasks τ2, τ3, τ4, τ5 can only begin
until task τ1 has finished and are carried out concurrently.
The computationmatrix for this example on a three-processor
system also provides the highest frequency fmax at which
each sub-task was completed on each processor. Different
processors on a hybrid platform offer various processing
capabilities. In the following sections on the efficiency and
reliability model, the processor parameters are explained.
It has been common practice in the literature to employ the
DAG job in Figure 2with the calculationmatrix and processor
parameters. It is also mentioned in the later sections of this
work and used as an example to illustrate a point.

C. ENERGY MODEL
Processor power dissipation is mostly made up of static con-
sumption, frequency-dependent dynamic consumption, and
frequency-independent dynamic consumption. The primary
one of them is frequency-dependent dynamic power con-
sumption, which is expressed by

P = ξCV 2F, (1)

where C is denoted as the loading capacitance, V is denoted
as the supply voltage, and F is denoted as the clock

frequency, ξ is an activity factor. Considering that F ,
we obtain P ∝ CFα , where α is roughly 3. In order
to facilitate discussion, we model a processor’s frequency-
dependent dynamic power consumption is denoted as CFα

and its frequency-independent dynamic and static power con-
sumption is denoted as P∗. Afterwards, a processor’s overall
power use is denoted as uk

P = P∗
+ CFα (2)

We normalize a processor’s frequency so that Fmax = 1 for
ease. When the frequency range is Fi (Fi ≤ Fmax), and Tτi is
the efficient implementation of the sub-task τi on a processor
operating at its maximum frequency Fmax, the implementa-
tion time is calculated as follows:

tτ i = Tτ i ×
Fmax
Fi

= Tτ i ×
1
Fi

. (3)

The sum of the processor’s power consumption and
the execution time gives the amount of energy needed to
accomplish τi.

Eτ i (Fi) = P× tτ i =
(
P∗

+ CFα
i
)
× T τ i F (4)

The sum of all sub-tasks equals the energy consumption of
a DAG task.

EG (F) = Eτ1 (F1) + Eτ2 (F2) + · · · + Eτn (Fn) , (5)

where F = (F1,F2, . . . ,Fn) denoted as a vector.

D. RELIABILITY MODEL
The probability that a task is executed without error is meant
by task reliability. Like many previous studies, ours focuses
on the prevalent transient faults that are related to processing
frequency and may be modelled by the exponential distribu-
tion given below.

λ (F) = λf × 10
D(1−F)
1−Fmin (6)

where D is denoted as a hardware-related constant, Fmin is
denoted as the lowest frequency that can be used, and λf is
denoted as the average number of errors per second at the
highest frequency.

The potential for errors increases as task execution time
increases. The reliability of a sub-task τi that is performed
on a processor with frequency Fi can be computed using
equation

Rτi (Fi) = e−λ(Fi)× T τ i
Fi (7)

The successful, error-free execution of each sub-task is a
need for a dependable DAG task. Consequently, a DAG task’s
reliability R(G) is equal to the sum of all its sub-tasks.

RG (F) = Rτ1 (F1) × Rτ2 (F2) × · · · × Rτn (Fn) . (8)
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E. THERMAL MODEL
A thermal model is a mathematical model that represents the
temperature distribution in a system or component as a func-
tion of time and space. Thermal models are used to predict
the response of a system or component to heat input and to
determine the temperature distribution under various operat-
ing conditions. They can be used to design heat exchangers,
predict the temperature distribution in electronic components,
and optimize the performance of thermal systems. Thermal
models can be based on analytical or numerical methods and
may include assumptions and approximations depending on
the complexity of the system being modelled.

The thermal resistance among two processors, Pk and Pm,
is denoted as Rk,m. Rk,m = ∞ if there is no heat flow between
Pk and Pm. Rk is the portion of Pk ’s thermal resistance that
allows heat to escape to the surrounding air. Let θk (t) and
Pk (t) represent the temperature and power usage of Pk at
time t , respectively. The heat transmission process of Pk can
therefore be explained as follows using Fourier’s law:

dθk (t)
dt

=
Pk (t)
Ck

−
θk (t) − θa

RkCk
−

∑
Pm∈P

θk (t) − θm(t)
RkmCk

(9)

There won’t be any heat transfer between CPUs when their
thermal demands are balanced. Consequently, the thermal
model given by Eq. (9) can be changed into:

dθk (t)
dt

=
Pk (t)
Ck

−
θk (t) − θa

RkCk
(10)

Moreover, the temperature function can be determined as
follows by mathematical translation and deduction:

θk (t) = Ck

(
θk (t) −

Rkβk + θa

1 − Rkαk

)
(11)

θk (t) =

∫ t

0
Pkd (u)e

λk (u−t)du+ θk (0)e−λk t (12)

λk =
1

RkCk
−
ak
Ck

(13)

F. TASK SCHEDULING AND VFI PARTITIONING
The Pareto frontier for the makespan-energy tradeoff is pro-
vided by the VFI partitions, which assign the best V/F lev-
els per core. The hardware and space overhead of voltage
regulators, which increase chip design complexity in light of
current technological scaling, counteract the energy savings
benefit of such VFI partitioning. As a result, this section
offers a method with less design complexity at the expense
of a reasonable makespan-energy budget tradeoff.

The energy and execution times for the subtasks in the
first scheme were determined by completing the ILP. Fur-
thermore, it is believed that all cores with allocated subtasks
share the same V/F level and are clustered in a single VFI
after the task scheduling and VFI partitioning problems have
been solved. As a result, M (M < N )VFIs exist, each with a
different V/F level. The definition of this issue is as follows:
Assign and schedule subtasks to cores so that the makespan

is minimized, keeping in mind the energy consumption deter-
mined by the ILP and the subtasks’ dependencies. Given
the V/F levels, related energy consumptions, and execution
timings of the subtasks. According to the aforementioned
definition, subtasks’ start times and core assignments are
variable; hence this issue is defined usingmixed integer linear
programming (MILP):

Si,j + ti,j ≤ MS ∀τi,j ∈ T (14)

MS is denoted as the makespan, Si,j is denoted as the
sub-task start time. According to Equation (14), the applica-
tion’s makespan is determined by which sub-task completes
execution on which core last.

N∑
c=1

X(i,j),c = 1 ∀τi,j ∈ T (15)

X(i,j), c returns an integer number, and X(i,j), c = 1, if sub-
task τi,j is assigned to core c. Equation (15) makes sure that
each core is given just one sub-task.

X(i,j),c + X(k,l),c ≤ 1 ∀τi,j, τk,l ∈ T ,

∀c ∈ CA(i,j),(k,l) = 0 (16)

Two sub-tasks with differing V/F levels cannot be allocated
to the same core, according to equation (16).

Si,j + ti,j ≤ Sk,l +
(
2 − X (i,j),c − X (k,l),c

)
· M +

(
1 − Y (i,j),(k,l)

)
·M ∀τi,j,

τk,l ∈ T , ∀c ∈ C, M ∈ Z+, A(i,j),(k,l) = 1

(17)

Y(i,j),(k,l) is an integer, and Y(i,j),(k,l)‘ = 1 if sub-task
τi,jruns before subtask τk,l when they are both allocated to
the same core. A(i,j),(k,l) is integer number, A(i,j),(k,l) = 1 if
sub-task τi,j and τk,l have the same V/F level. Two sub-tasks
addressed to a single core cannot overlap, according to Equa-
tion (17). Additionally, this constraint guarantees that the V/F
level of any two sub-tasks issued to the same core is the same.

Y(i,j),(k,l) + Y(k,l),(i,j) = 1 ∀τi,j, ∀k,l ∈ T (18)

According to equation (18), only one sub-task in a pair of
sub-tasks comes before the other. The sub-task precedence
links are held by equation (18).

Si,j + ti,j ≤ S i,l ∀Bτi,j, τi,l ∈ T , B(i,j),(i,l) = 1 (19)

B(i,j),(i,l) is integer number, B(i,j),(i,l) = 1 if sub-task
τk,l is dependent on sub-task τi,j, sub-task execution time is
denoted as t , energy consumption is denoted as E . If they are
scheduled to the same core or VFI, the sub-task pair for the
same task τi in case (19) must maintain dependency.

Si,j, Sk,l,Si,l ∈ R+ ∀τi,j,τk,l,τi,l ∈ T (20)

X(i,j),c,X(k,l),c,Y(i,j),(k,l) = {0, 1} , ∀τi,j,τk,l ∈ T (21)

According to equations (20) and (21), the start time and
allocation variables for the sub-tasks are, respectively, real
values and 0/1 integers.
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G. VFI PARTITIONING
Voltage-frequency Island (VFI) partitioning is the process of
dividing a VFI into multiple smaller sub-islands, each with
its own voltage and frequency settings. This allows for more
fine-grained control over the power consumption and per-
formance of the processors within the VFI. VFI partitioning
can be done in several ways, such as manual partitioning,
where an engineer manually divides the VFI into sub-islands,
or automatic partitioning, where an algorithm is used to
divide the VFI into sub-islands based on certain criteria. One
common approach for automatic VFI partitioning is to use
an algorithm that minimizes the total energy consumption of
the VFI while still meeting performance constraints, such as
deadlines for tasks in a directed acyclic graph (DAG). This
can be done by iteratively generating and evaluating different
partitioning candidates and selecting the best one based on
energy consumption and performance metrics.

Themanycore system is divided into a predetermined num-
ber of VFIs using the nonlinear programming formulation
shown below. This nonlinear problem formulation was ini-
tially an expensive computational integer programming prob-
lem. The values of the core-VFI mappings decision variables
are relaxed to range between zero and one in order to lessen
the complexity of the problem. Using a penalty function in
the problem’s objective, the solutions (core-VFI mappings)
eventually converge to 0/1 integers.

P∑
j=1

N∑
i=1

M∑
k=1

(
τk,j − ti,j

τk,j

)
· Xi,k

+ λ ·

N∑
i=1

M∑
k=1

xi,k ·
(
1 − Xi,k

)
λ ∈ R+ (22)

ti,j · Xi,k ≤ τk,j1 ≤ j ≤ P, ∀ci ∈ C, ∀ik ∈ I (23)
N∑
i=1

Xi,k ≥ θ ∀ik ∈ I (24)

N∑
i=1

Xi,k ≥ θ ∀ik ∈ I (25)

X1,1 = 1 (26)

Xj,k ∈ [0, 1] ∀ci ∈ C, ∀ik ∈ I (27)

where τk,j is the maximum execution time of cores that are
located in a VFI ik during the execution phase j, and ti,jis
the execution time of core ciin execution phase j. The core
ci is placed in the VFI ik is determined by Xi,k .θ is denoted
as the minimum number of cores required for each VFI ik .
λ is denoted as a coefficient that penalizes the goal (Equa-
tion (22)) for giving the variables xi,knon-binary values. The
solutions to the issue (Xi,k ) approach binary for bigger λs,
avoiding the huge values of the second component in (22),
which endangers the goal of our optimization problem.

The optimization objective (22) is to create the VFIs
with cores whose run times are as close to their maximum
execution times over the benchmark’s execution phases as

possible. The optimization seeks to reduce the percentage
of time that a core spends idle after the execution phase
is complete in comparison to the run time of the slowest
core with identical computation time when these cores are
in the same VFI, as demonstrated by the initial term of the
objective. This fraction (the percentage of the core that is
idle) serves as a weight when allocating a core to a VFI that
also has cores with similar percentages of idle time during
the application’s execution phases. The solution to our opti-
mization challenge involves grouping together the cores with
the most comparable weights (idle percentages). However,
because this article examines homogeneous multi-core sys-
tems/VFIs, each core’s definition of the weighting technique
is the same. The maximum execution time of the cores in
the VFI is determined by constraint (23). In order to prevent
exceptionally uneven VFI sizes that raise the benchmark’s
execution time or system energy consumption, constraint (24)
mandates that each VFI have a minimal number of cores.
The core ci is contained in a single VFI ik by constraint (25).
During the optimization process, constraint (26) makes sure
that the order of the VFI numbers remains the same for every
experimented VFI partitioning solution. In constraint (27),
xi,k ranges from 0 to 1. It makes sense that core ci would be
in VFI ik as xi,k gets closer to one.

IV. PROPOSED HYBRID ALGORITHM
A. DAG SCHEDULING USING SI-POA
the scheduling of the DAG on the voltage frequency islands
is optimized using the Self-Improved Pelican Optimization
Algorithm (SI-POA). The proposed SI-POA model is an
extended version of the standard POA model. In the schedul-
ing optimization phase, the SI-POA algorithm optimizes the
scheduling of the DAG on the voltage frequency islands
while taking into account the predicted core temperature of
each island based on the Recalling-enhanced recurrent neural
network (RERNN) model.

B. PELICAN OPTIMIZATION ALGORITHM (POA)
Pelican Optimization Method (POA), a new stochastic algo-
rithm that was organically inspired by the optimization algo-
rithm, is presented. The primary inspiration for the POA’s
design was pelicans’ typical hunting behaviour. This species
thrives in social settings and flocks of several hundred
pelicans [26].
Step 1: InitializationThe first step of POA is the initializa-

tion of parameters; here, the input parameters are execution
time (makespan), energy consumption, reliability and core
temperature.
Step 2: Random Generation In this step of random gen-

eration, the input variables are generated at random.

Y =


(S,T )11 · · · · · · (S,T )1N

(S,T )21 · · · · · · (S,T )2N
...

...
...

...

(S,T )m1 · · · · · · (S,T )MN

 (28)
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Step 3: Fitness evaluation Based on the current best posi-
tion, the parameters are initialized.

F = Min (T +M + E) (29)

Step 4: Moving towards Prey (Exploration Phase)
Equation (30) is a mathematical formulation of the peli-

can’s approach to the location of its prey,

Xp1I ,J =

{
XI ,J + rand ·

(
PJ − i · XI ,J

)
, fP < fI ;

XI ,J + rand ·
(
XI ,J − PJ

)
, Else,

(30)

Here, I denotes a random number which is equal to one
or two, fP denotes objective function value, location of prey
in thejth dimension is indicated as PJ , the new status of ith

pelican in jth dimension based on phase 1 is denoted as Xp1I ,J
and it is resulting in equation (4),

xI =

{
xp1I , f p1I < fI ;
xI , Else,

(31)

Here, f p1I is represented as an objective function value
based on phase 1 and the new status of the ith pelican is rep-
resented as xp1I . The flowchart of POA is shown in Figure 3.

Step 5: Choatic Map Based Water surface with wings
(Exploitation Phase) Equation (32) is produced as a result
of the pelican’s hunting behaviour,

Xp2I ,J = XI ,J + r ·

(
1 −

T
t

)
· (2 · Rand − 1) · XI ,J (32)

Here, r is represented as constant, T is represented as the
maximum number of iterations,Xp1I ,J is represented as the new
status of ith pelican in jth dimension based on phase 2 and
which is modelled in Equation (33).

xI =

{
xp2I , f p 2I < fI ;
xI , Else,

(33)

Here, the new status of the ithpelican is symbolized as
xp 2I and the objective function value based on phase 2 is
symbolized asf p2I .

Step 6: Termination
Verify the termination criteria, and if the desired result is

achieved, the procedure is concluded; otherwise, move on to
step 3. The output of the algorithm is expressed as
ef (t)11 ef (t)12 · · · ef (t)1n

ef (t)21 ef (t)22 · · · ef (t)2n
...

...
...

...

ef (t)m1 ef (t)m2 · · · ef (t)mn



=


(T , S)11 (T , S)12 · · · (T , S)1n

(T , S)21 (T , S)22 · · · (T , S)21
...

...
...

...

(T , S)m1 (T , S)m2 · · · (T , S)mn

 (34)

FIGURE 3. Flowchart of SI-POA.

C. RECALLING ENHANCED RECURRENT NEURAL
NETWORK (RERNN)
RERNN is one of the artificial neural networks that use the
radial function in the area of mathematical modelling. The
Elman recurrent neural network has three layers compared to
the six layers of the RERNN, which has selective memory.
The input layer, state layer, memory layer, sum layer, hidden,
delay, and output layer are the levels of RERNN [27]. The
input node receives the system’s input and also takes in
the output of the hidden layer using a delay function. The
memory layer can accommodate both the most recent state
layer result and the preceding sum layer result. The primary
role of the memory layer is to determine the size of the
previous sum layer information for the following stage. The
sum layer offers the ability to sum the final recurrent hidden
outcome, the memory layer’s result, and the current input.
The hidden layer determines the output layer’s ultimate prob-
abilistic value. The delay layer propagates back the output of
the currently active hidden layer.
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Step 1. Initialization, We have given the output of the
Pelican Search Optimization (PSO) equation (34) to the input
of the Recalling Enhanced Recurrent Neural Network Algo-
rithm (RERNN)

Step 2. Random Generation, The random vector gener-
ates random input parameters.

Step 3: Check the iteration, Procedure the data if the
number of iterations is fewer than the maximum allowed;
otherwise, halt the process.

Step 4. Output calculation, The error value is determined
by,

Ek (n) = yk (n) − ŷk (n) , k = 1.2, . . . . . .L (35)

where, ŷk (n) is denoted as the desired output vector of its
neuron in output, yk (n) is denoted as output vector of ith
neuron in the output layer

Step 5: Find learning rate by generalizedArmijo search
approach, The generalized Armijo search strategy uses the
following criteria, for example, to determine the learning rate,

e
(
mk+LRpk

)
≤e

(
mk

)
+α1LRekw

(
pk

)t
, α1≥0 (36)

Step 6: Calculate the new weight The gradient descent
algorithm is used to determine the new weight and is
explained as,

mk+1
= mk + LRPk (37)

Step 7: Check the maximum iteration, Stop the process
once the iteration is complete. If not, extend the iteration and
move on to step 5.

Step 8: Calculate the direction,The direction of the learn-
ing process is estimated via the conjugate gradient descent
algorithm.

Pk = − Ekw + βPk−1 (38)

β =
αEkw

(
Pk−1

)t
Pk−1

(
Pk−1 − Ekw

) , α ∈ (0, 1) (39)

Step 9: Error calculation, The total error is calculated
using

ET =

t∑
n=1

n∑
k=1

ynk − ŷnk (40)

Step 10: Termination Verify the stopping requirements.
Step 2 should be taken if the stopping requirements have not
been met after the maximum number of iterations.

V. RESULT AND DISCUSSION
The proposed model has been implemented in Python.
Among the collected data, 80% of the data has been for
training purposes, and the rest 20% of the data has been
used for testing purposes. The graphical analysis and stati-
cally analysis are compared with various existing techniques
such as Pelican Optimization Algorithm (POA), Crow Search
Optimization (CSO), and Slap Swarm Optimization (SSO).

FIGURE 4. Assessment of cost employing various methods.

FIGURE 5. Valuation of energy consumption employing various methods.

A. PERFORMANCE ANALYSIS: PROPOSED VS EXISTING
METHOD
Assessment of cost employing various methods is shown in
Figure 4. For task count = 100, the cost value recorded by
the proposed work is 40%, which is better than POA = 54%,
CSO = 78%, SSO = 57% and pap = 43%. For task
count = 200, the cost value recorded by the proposed work
is 45%, which is better than POA = 62%, CSO = 84%,
SSO = 64% and pap = 51%. For task count = 300, the
cost value recorded by the proposed work is 81.5%, which
is better than POA = 80%, CSO = 115, SSO = 82% and
pap = 64% the values are obtained for task 100. Compared
to the existing method, the outcome features of the proposed
are low in cost.

Figure 5 displayed the valuation of energy consumption
employing various methods. For task count = 100, the pro-
posed work’s energy consumption value is 32%, better than
POA’s 41%, CSO’s 50%, SSO’s 48%, and pap’s 48%. For task
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TABLE 1. Statistical analysis of performance metrics for task 100.

TABLE 2. Statistical analysis of performance metrics for task 200.

FIGURE 6. Estimate of execution time using various methods.

count = 200, the proposed work’s energy consumption value
is 39%, better than POA’s 51%, CSO’s 61%, SSO’s 40%, and
pap’s 58%. For task count= 300, the proposed work’s energy
consumption value is 51%, better than POA’s 62%, CSO’s
76%, SSO’s 52%, and pap’s 49%. The outcome feature of
the proposed is low compared to the existing techniques in
energy consumption.

Figure 6 demonstrates the estimate of execution time using
various methods. The proposed work’s execution time value
for a task count of 100 is 1001, which is higher than the
values for POA (1003), CSO (1450) SSO (1470), and pap
(1200). The proposed work’s execution time value for a task
count of 200 is 1300, which is higher than the values for
POA (1320), CSO (1600) SSO (1670), and pap (1490). The
proposed work’s execution time value for a task count of
300 is 1550, which is higher than the values for POA (1600),
CSO (2001) SSO (2020), and pap (1950). Compared to the
proposed technique, the outcome of the existing one is high
in execution time.

Evaluation of makespan using various methods is illus-
trated in figure 7. In comparison to POA’s 1700, CSO’s

FIGURE 7. Evaluation of makespan using various methods.

1800, SSO 1550, and pap’s 2300, the proposed work’s energy
consumption value for task count = 100 is 1560. In com-
parison to POA’s 2010, CSO’s 2030, SSO 2000, and pap’s
2800, the proposed work’s energy consumption value for
task count = 200 is 2000. In comparison to POA’s 2550,
CSO’s 2600, SSO 2500, and pap’s 3500, the proposed work’s
energy consumption value for task count = 300 is 2540. The
outcome of the existingmethod is better in terms of makespan
compared to the proposed method.

Analysis of response time using variousmethods is demon-
strated in Figure 8. It is better than POA= 43%, CSO= 40%,
SSO = 38%, and pap = 52% for task count = 100 since
the proposed work’s response time value is recorded as 45%.
It is better than POA = 53%, CSO = 50%, SSO = 48%,
and pap = 65% for task count = 100 since the proposed
work’s response time value is recorded as 43%. It is better
than POA= 68%, CSO= 62%, SSO= 60%, and pap= 81%
for task count = 300 since the proposed work’s response
time value is recorded as 55%. Compared to the proposed
technique, the outcome of the proposed is low in response
time.
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TABLE 3. Statistical analysis of performance metrics for task 300.

FIGURE 8. Analysis of response time using various methods.

B. OVERALL PERFORMANCE OF PROPOSED MODEL
Tables 1 to 3 demonstrate the Statistical Analysis of perfor-
mance metrics for tasks 100, 200 and 300.

VI. CONCLUSION
This paper proposed the Scheduling of DAG on a Voltage
frequency island based on the POA- RERNN approach. The
proposed SI-POA approach is used to improve the speed of
the convergence and the task scheduling of DAG on the VFI
partitioning problem whose optimization goal is to minimize
execution time (makespan), overall energy consumption, reli-
ability and core temperature for a given energy budget. The
SI-POA-RERNN approach solves the optimization problem.
To achieve this, there are several approaches that can be taken.
One approach is to use a POA algorithm that prioritizes tasks
with higher energy requirements, as these tasks may be more
likely to cause temperature spikes and can therefore benefit
most from being scheduled on a VFI. Another approach is
to use the RERNN algorithm that considers the dependencies
between tasks, as this can help to minimize makespan and
improve overall system efficiency. Additionally, using POA-
RERNN algorithms that take into account the thermal proper-
ties of the system can help to minimize temperature increases
and improve the overall performance of the system. In this
work, we decompose the problem into two stages, as in one
stage, the optimal solution can be computed. It is possible
to solve the problem as a whole, which could lead to better
results on one hand and makes it very challenging to devise

effective approaches that can achieve these better results on
the other hand due to the complexity. This is a promising
future research direction to pursue.
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