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ABSTRACT Semantic communication is considered the future of mobile communication, which aims to
transmit data beyond Shannon’s theorem of communications by transmitting the semantic meaning of the
data rather than the bit-by-bit reconstruction of the data at the receiver’s end. The semantic communication
paradigm aims to bridge the gap of limited bandwidth problems in modern high-volume multimedia
application content transmission. Integrating AI technologies with the 6G communications networks paved
the way to develop semantic communication-based end-to-end communication systems. In this study,
we have implemented a semantic communication-based end-to-end image transmission system, and we
discuss potential design considerations in developing semantic communication systems in conjunction with
physical channel characteristics. A Pre-trained GAN network is used at the receiver as the transmission
task to reconstruct the realistic image based on the Semantic segmented image at the receiver input. The
semantic segmentation task at the transmitter (encoder) and the GAN network at the receiver (decoder) is
trained on a common knowledge base, the COCO-Stuff dataset. The research shows that the resource gain
in the form of bandwidth saving is immense when transmitting the semantic segmentation map through the
physical channel instead of the ground truth image in contrast to conventional communication systems.
Furthermore, the research studies the effect of physical channel distortions and quantization noise on
semantic communication-based multimedia content transmission.

INDEX TERMS End-to-end communication, generative adversarial network (GAN), polar code, semantic
coding, semantic communication.

I. INTRODUCTION
A key emerging challenge with the surge in multimedia traf-
fic and the ever increasing use of wireless sensor networks
(WSN) and Internet of Things (IoT) components are causing
several sustainability problems in managing communication
networks. The increasingly complex nature of media and
communication systems has led to an enormous increase in
its bandwidth and energy demands. Sustainability needs to
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be applied pervasively across such systems in order to bring
a significant overall reduction for the negative impact of the
resource utilisation and environment. A key requirement is
the minimization of the bandwidth and energy footprint of
media transmissions, WSNs and IoTs using different net-
work technologies (such as various IEEE 802 standards,
as well as 5G and 6G systems) together with reduction of
the ever-increasing traffic load due to multimedia traffic.
These services and networks are also supposed to support
smart and adaptive operation using complex control frame-
works, which even increases resource consumption further.
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Semantic communication(SC) is a paradigm which has
renewed academic and industry interest, mainly due to the
promising possibilities it allows to go beyond Shannon’s
capacity limit in bandwidth limited communication chan-
nels. The objective is to deliver the semantic meaning of the
message and not the exact form of the message by sharing
a common, prior knowledge and a semantically encoded
message, which is expected to perform better than state of
the art compression techniques, thereby drastically reducing
the physical bandwidth requirement between the transmitter
and receiver. While the applications and expected benefits
are obvious in high-bandwidth applications such as super
high resolution (16K video at higher frame rates) video trans-
mission, 3D video, AR/VR/MR streaming, the trade off of
such approaches regarding effort versus gains is less clear for
machine-to-machine (M2M) communication, WSN and IoT.
Yet, overall with Semantic communications concepts, it is
expected to reduce the bandwidth, complexity, increase the
range and enable longer operational cycles in battery powered
devices for WSNs and IoTs and M2M communications.

The traditional communications paradigm is focused on
transmitting a minimum number of bits with the smallest pos-
sible errors between two points. This was based on Shannon’s
original paper in 1948 [1] on establishing channel capacity
and proof that all rates below capacity are possible without
incurring an exponentially higher number of errors at the
receiver side. Research continued for over half a century
before capacity-achieving codes at long block lengths were
found. The receiver does not exploit the information about
the source available at the transmitter side explicitly. While
there has been a lot of research on source and channel coding,
as well as unequal error protection (UEP), this was essentially
still a matter on the transmitter side. Further, they suggested
that there are three levels in a communication system, each
with a specific task: the technical problem, the semantic prob-
lem, and the effectiveness problem. The technical problem
pertains to how effectively the symbols of the message are
transmitted; the semantic problem pertains to how effectively
the transmitted symbols convey the meaning of the message
intended to be transmitted, and the effectiveness problem
pertains to how effectively the transmitted symbols are doing
the intended task at the receiver. Traditional communica-
tion systems have mainly focused on addressing the techni-
cal problem. In semantic communications, it is planned to
address the second layer which is the semantic problem.

As at now, there is no unique transmission strategy for
semantic communication yet, forcing us to design a seman-
tic communication system in accordance with the current
communication framework. However, Fig. 1 illustrates a
preliminary system model for semantic communication for
text and speech transmission. The transmitter extracts the
semantic meaning of the message and applies channel coding
to the bit stream, then transmits it over the communication
channel. On the receiver side, first, the channel decoder
decodes the semantic information from the received signal.

Then, the semantic decoder takes the semantic information as
input and produces output with the existing knowledge base
which is shared between the encoder and decoder. Keeping a
well-trained knowledge base at the transmitter and receiver
is one of the influential factors in a semantic communica-
tion system. The challenge is to ensure that the transmitter’s
semantic information is preserved at the receiver while trans-
mitting through the physical channel. Therefore, a significant
amount of research is required for different media types
over conventional communication standards with semantic
communications.

This research aims to develop a semantic communication
system to transmit images over a mobile communication
channel to optimize the bandwidth while maintaining the
quality of the image. A semantic map is extracted from a
given image and it is channel encoded before it is sent over
a noisy channel to the decoder. At the decoder the semantic
bit stream is channel decoded and use it as an input to the
GAN (Generative Adversarial Network) to get the desired
image at the decoder. A common knowledge of the images are
shared between both the encoder and the decoder. To reduce
the amount of data delivered only a semantic map of the
image is sent through the channel. As a result, there will
be a considerable reduction in demanding energy and wire-
less bandwidth, resulting in a more sustainable communi-
cation network. These features served as inspiration for the
construction of a GAN [2] based semantic communication
system for image transmission. We evaluate the influence
of channel coding on semantic communication in the pres-
ence of a noisy channel where polar codes are used as our
channel coding scheme. The codewords are modulated using
binary phase-shift keying (BPSK) [3] over an additive white
gaussian noise (AWGN) channel. At the receiver end, the
noisy log-likelihood ratios (LLRs) are fed to the decoder,
and the decoder computes the estimated codewords. We then
increased induced noise at the channel to evaluate the effect
of white noise on semantic communication and studied three
scenarios. In the first scenario, the impact of the quantiza-
tion noise with zero channel noise is evaluated. The second
scenario considers the impact of the varying channel noise
on the virtual channel, and finally, the third scenario evalu-
ates the impact of combined quantization noise and varying
channel noise levels on the virtual channel. We have derived
the maximum amount of channel noise that can be present
for effective semantic communication and demonstrate that
preserving the edges of semantic maps is crucial in designing
future communication systems that rely on semantics.

The peak-signal-to-noise-ratio (PSNR) [4] is calculated for
the transmitted images at the receiver side for comparison.
Furthermore, JPEG image transmission under similar con-
straints is considered and results indicated that the proposed
system outperform the JPEG compressed system by a sig-
nificant margin. To evaluate how the semantic features are
mapped from transmitter to receiver, we have conducted a
subjective experiment using a sample of 30 users of different
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FIGURE 1. Preliminary semantic communication system.

socioeconomic backgrounds. This has evaluated the human
perceived semantic similarity of the transmitted images in
relation to the ground truth images. These experiments fulfill
the human andmachine perspectives of the developed seman-
tic communication system. In summary, the main contribu-
tions of the paper are summarized as follows:

1) We propose a semantic communication based image
transmission system for limited bandwidth wireless
communication systems that leverage a pre-trained
GAN network generating the intended image at the
receiver that is transmitted as a segmented semantic
map of the ground truth image.

2) We study the effect of the physical channel noise
in designing semantic communication systems with
existing physical communication channels and derive
important insights. The study also evaluates the effect
of channel noise for three scenarios.

a) Semantic communication of the images under
varying channel noise.

b) Quantization effect on semantic communication
with zero channel noise.

c) The joint channel noise and quantization effect on
semantic image transmission.

The rest of the paper is organized as follows. The related
work Section II gives a brief review of the relevant academic
literature in terms of the theoretical aspects, usage of ML
techniques for semantic communications, and the usage of
GAN in image processing tasks and existing semantic com-
munication based architectures and their limitations. Sec-
tion III introduces our proposed semantic communication
based image transmission system, and it is followed by an
analysis of the results in Section IV. Finally, in Section V we
briefly discuss the limitations of the presented work followed
by its conclusions in Section VI, and future work explained
in Section VII.

II. RELATED WORK
Integration of machine learning(ML) methodologies into 6G
communication technology has paved the way for future
research in developing end-to-end communication systems
based on learning-based optimization about image/video
transmission. The 6G wireless communication networks will
be the cornerstone of the future of human and machine

communication. The exponential development of multimedia
content urges the need for wireless communication networks
to stand apart from the traditional design paradigm of first
to fifth-generation wireless networks of high transmission
rates but to have an intelligent link to ML technologies [5].
The paper discusses the application of ML in different lay-
ers of the 6G network, such as the physical layer, medium
access layer, and application layer, to provide reliable and
time-efficient connectivity to modern applications. It also
discusses the security and resource allocation problem in the
6G network.

It is anticipated that semantic communication will become
a key paradigm in the development of end-to-end communi-
cation systems for 6G networks [6], [7], [8], [9].Even though
semantic communication is predicted to go over the standard
Shannon paradigm, there are still several challenges that must
be met before modern applications such as the internet of
things (IoT) or AR/VR can be enabled using semantic com-
munications. As a starting point, the goals and the compelling
justifications for using semantic communications in 6G [10]
are discussed in this research work. An overview of the
fundamental 6G ideas and important enabling technologies
that underpin semantic communications has been discussed.
The paper provides a broad view of the theories of semantic
communication and develops semantic communication that
is directed into three broad categories in theory, namely
semantic-oriented communication, goal-oriented communi-
cation, and semantic-aware communication. Most of the ini-
tial work is based on semantic communication systems for
text or speech transmission [11]. Authors of [12] explore
the benefits of semantic compression to go beyond 5G
and presents a transformer-based Semantic Communication
system.

Joint transceiver optimization is now achievable with the
development of end-to-end (E2E) communication systems
with deep learning capabilities that combine all physical
layer blocks in conventional communication systems. Deep
joint source-channel coding (DeepJSCC) for image trans-
mission is proposed in [13], where the image transmission
does not depend on the separate source and channel coding,
instead the developed convolutional neural network (CNN)
directly maps the bits of the image into the channel input
symbols. The encoder and decoder are employed by a CNN,
which is jointly trained, and the communication channel
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is a non-trainable AWGN channel. The approach involves
transferring a latent representation of the image, rather
than extracting semantic information, for the purpose of
communication.

With the fast advancement of AI technologies, the focus
has been on developing end-to-end image compression sys-
tems with deep neural networks [14], [15], [16]. A convo-
lutional neural network combined with an enhanced JPEG
encoder is presented in [17]. The model identifies and flags
the content of interest, and the visual quality is improved
by using a higher bit rate for the content of interest and
a lower bit rate for the other regions. In this research, the
concept of semantics is being used in terms of image com-
pression. The way forward for image semantics would be
to use the semantic properties of images in communication
tasks.

Natural language processing (NLP), powered by deep
learning, has had remarkable success in analyzing and com-
prehending many linguistic documents. DeepSC, a seman-
tic communication system [18] built on deep learning for
text transmission, was presented in this research. In con-
trast to bit- or symbol errors in conventional communica-
tions, the DeepSC tries to recover the meaning of phrases
to maximize system capacity and reduce semantic errors.
The crucial aspect is speeding up the joint transceiver train-
ing and using the model in different communication set-
tings. To achieve these objectives transfer learning is also
employed. DeepSC-S [19] is a semantic communication
system for speech signals that makes use of an attention
mechanism and a squeeze-and-excitation (SE) network. The
attention mechanism is employed to reduce the distortion
of the received signal. The architecture is the designing
of the semantic encoder/decoder jointly with the channel
encoder/decoder to extract the semantic features, in this con-
text, the important speech signals for the message. Results
show that DeepSC-S is more resistant to channel noise, espe-
cially in the low signal-to-noise ratio(SNR) regime. DeepSC
and DeepSC-S are both semantic communication systems
designed for transmitting language-related messages.

In real-world applications, semantic data is the data that
the receiver requires to do its intended task, and often this
is not known to the transmitter. To address this problem,
a neural network-based semantic communication system [20]
has been created with a semantic coding network and the data
adaptation network (DAN). Semantic coding network learns
how to pull out and send information that makes sense by
using a method called ‘‘receiver-leading training’’. The DA
network learns how to turn the data it has seen into a form
similar to the empirical data that the semantic coding network
was trained on using transfer learning. As mentioned in the
paper, the proposed method does not produce image details
as clear as those obtained with the JPEG2000-based method.
Additionally, some recovered images exhibit more patches
of color contamination at certain SNR levels. The authors
concluded that the system is more resilient only in low SNR
scenarios.

A. ML FOR SC
With the fast advancement of AI technologies, semantic com-
munications systems were enabled with networks, which can
learn to extract and transmit the required data depending
on the task and channel status. Semantic communication
systems for language processing can use three types of neu-
ral networks; recurrent neural networks (RNN), CNN, and
fully-connected neural networks (FCN). Xie et al. [18] state
that RNNs are lacking in identifying the relationship between
the words in long sentences; on the other hand, the CNNs,
because of their small kernel size to achieve computational
efficiency, the performance is low. To overcome this, in order
to achieve correctness and performance, FCS can be used.

B. GAN
ML research uses the generative model in various tasks by
studying a collection of training samples and learning the
probability distribution of the samples and then generating
similar data by using the learned probability distribution.
GANs may be considered one of the most successful genera-
tive models, which were introduced by [2]. Since then, many
versions of GANs have been developed for different pur-
poses, such as image-to-image translation, image/video gen-
eration, high-resolution image synthesis, classification, and
many other computer vision tasks. The rise of GAN-related
research since its introduction has resulted in several ver-
sions of GAN networks. Authors in [21] have discussed four
main architectures of GANs: convolutional GAN, conditional
GAN, infoGAN, and AC-GAN.

As listed in [21], GANs consist of two networks, a gen-
erator, and a discriminator. The term ‘‘generative’’ refers
to generating new data, and the term ‘‘adversarial’’ refers
to the competition between the two networks. In the plain
vanilla form, the two networks could be any combination of
autoencoders, Fully connected networks, CNNs, and RNNs.
The two networks of the GAN are competing in the min-
max game. The generator takes a random noise as input and
produces new data by learning from the real data, and the
discriminator does a classification task by taking the gener-
ated data and the real data as inputs. It classifies the real data
as ‘‘1’’ and the generated (fake) data as ‘‘0’’. As the name
suggests, the discriminator discriminates the fake data sam-
ples over the real data, and this competition continues until
neither network can improve its performance by changing the
learning parameters.

Conditional adversarial networks have been used as a
means to do image-to-image transformation, and an example
of such implementation is pix-to-pix [22], which is a con-
ditional adversarial network that generates images based on
input label maps, reconstructing objects from edge maps, and
colorizing images. Image semantic coding refers to extract-
ing the semantic features of an image. GAN-based photo-
realistic high-resolution image generation using semantic
maps is discussed in [23], and the generated image resolution
is as high as 2048 × 1024. A GAN-based image semantic
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coding system is proposed in [24], and the performance
is compared with conventional image coding techniques of
BPG,WebP, JPEG2000, JPEG, and other deep learning-based
image codecs. The previously mentioned GAN-based sys-
tems are only used for image generation and are not intended
for communication purposes.

The existing body of research suggests that deep
learning-based image compressionmethods are also an exten-
sively researched area in relation to image coding. These
systems use autoencoders to transform an image into a
latent representation. The framework defined in [15] uses
GAN to develop an image compression system to operate at
extremely low bit rates. The system comprises an encoder,
decoder/generator, and multi-scale discriminator, and all
the components were jointly trained to achieve the goal of
learned compression. Semantic generation pyramid [25] is
a hierarchical framework that takes advantage of the full
spectrum of semantic information encoded in such deep
features, from the most basic information in finer features to
the most advanced semantic information in deeper features.
The approach involves utilizing GAN for imagemanipulation
to realize the objective of compressing images, and not for the
purpose of communication.

III. PROPOSED MODEL
The proposed semantic communication-based image trans-
mission system architecture is based on the three-layered the-
oretical semantic communication model that is derived based
on Shannon’s theory and is illustrated in Fig. 2. The semantic
layer consists of semantic feature encoding and decoding.
The semantic encoder does the semantic feature extraction,
where the targeted message is text, image, or video. For this
extraction process, to interpret the meaning of the message,
the encoder utilizes the common knowledge base that is
shared between the transmitter and the receiver. The seman-
tic decoder retrieves the meaning of the received seman-
tic symbols using the knowledge base shared between the
semantic encoder and decoder. The physical layer, which
lies underneath the semantic layer, is concerned with the
bit-level transmission of the extracted semantics and employs
channel-level optimization to data transmission. The applica-
tion layer, which lies above the semantic layer, deals with the
task-specific details of the received message, such as classifi-
cation, object detection, scene prediction, etc. The proposed
semantic communication system for image transmission is
based on the above theoretical model.

The high-level architectural diagram of the system is
shown in Fig. 3, and it consists of different blocks which
belong to different layers of the aforementioned theoretical
framework. The semantic extraction block, common knowl-
edge base, and the GAN belong to the semantic layer. The
physical layer comprises of error concealment block, channel
encoder, channel decoder, and transmission channel. The
error concealment block’s usage is to remove any channel
noise introduced during the transmission through the phys-
ical channel. The channel encoder exerts redundancy on the

FIGURE 2. Theoretical three-layered model of semantic communication.

channel, and the decoder exploits the redundancy to recover
the exact bit sequence by facilitating the detection and cor-
rection of the bit errors during the physical transmission of
the extracted semantic message.

A. COMMON KNOWLEDGE BASE
COCOdataset [26] is the common knowledge base in the con-
text of the developed semantic communication-based image
transmission system. The GAN is pre-trained on COCO-
Stuff [27] dataset, a derivation of the COCO dataset. Com-
mon Objects in Context (COCO) is a dataset defined for
object detection, segmentation, and captioning. As its name
suggests, it is an image repository that comprises day-to-
day objects captured by everyday scenes, which consist of
118, 000 training images and 5000 validation images. It con-
tains 182 semantic object classes defined within, and the
GAN that we have used in this experiment is pre-trained with
respect to these 182 semantic object classes. The segmented
semantic maps used in this research are sourced from the
above data set, which is theoretically to be semantically
extracted in the semantic extraction block. Ten sample images
were selected such that it falls into different categories, such
as human figures, scenery, animals, vehicles, and household.
The intended task at the receiver, which belongs to the appli-
cation layer, is a classification task in which the receiver
classifies the objects according to the objects on which the
GAN was trained.

B. SEMANTIC DECODER
GAN used in this research is based on semantic image syn-
thesis with specially adaptive normalization [28],which is
called the SPADE network. From Fig. 4, the generator G
produces the images G(x) from a random input x. These
produced images are then fed into the discriminator along
with the real images from the training data. The images are
then classified as real or fake by the discriminator model.
The weights of the generator and discriminator must then be
updated when the loss is calculated, and this loss needs to be
back-propagated. As a result, each epoch sees the generator
and the discriminator improving.

The term ‘‘pdata(s)’’ is the probability distribution of real
images, and ‘‘px(x)’’ is the probability distribution of fake

VOLUME 11, 2023 37153



M. U. Lokumarambage et al.: Wireless End-to-End Image Transmission System Using Semantic Communications

FIGURE 3. High-level architecture of the proposed image transmission platform using semantic communications.

FIGURE 4. GAN Architecture.

images. Es∼pdata(s)[logD(s)] is the average log probability
of the discriminator when the real image from the shared
knowledge is input and Ex∼px (x)[log(1 − D(G(x)))] is the
average log probability of the discriminator when the gen-
erated image is input. The discriminator aims to enhance the
V(D,G), whereas the generator aims to reduce the V(D,G).
The discriminator aims to accurately identify the real and fake
images in order to optimize the loss function V(D,G) [21] as
calculated in equation 1.

min
G

max
D

V (D,G) = Es∼pdata(s)[logD(s)]

+Ex∼px (x)[log(1 − D(G(x)))] (1)

The discriminator seeks to accurately categorize real
images as true in order to bring D(s) as near to 1 as feasible by
maximizing the term Es∼pdata(s)[logD(s)] and seeks to maxi-
mize Ex∼px (x)[log(1 − D(G(x)))] by accurately categorizing
false pictures as such and bringing D(G(x)) as close to 0 as
feasible. The generator tries to trick the discriminator by pro-
ducing images that resemble real images in an effort to reduce

the loss function V(D,G). The generator aims to minimize the
term Ex∼px (x)[log(1 − D(G(x)))] by making D(G(x)) as near
to 1 as feasible.
Vanilla GAN cannot control the images being generated,

and hence we have used conditional GAN in our architecture,
where it adds a condition to the GAN, and this condition
is the semantic segmentation map of the ground truth image.
The image generated is matched to the condition provided.
The loss function is modified [29] as shown in equation 2,
where c is the condition:

min
G

max
D

V (D,G) = Es∼pdata(s)[logD(s|c)]

+Ex∼px (x)[log(1 − D(G(xc)))] (2)

C. COMMUNICATION FRAMEWORK
Polar codes [30], [31], [32], [33], [34] are represented as
PC(N ,K ) where N and K stand for the block length and
the number of message bits, respectively. Channel polariza-
tion [30] is proposed as a method to transform the physical
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TABLE 1. Channel (de)coding specifications.

channel into extremely reliable and extremely unreliable
virtual channels as the code length approaches infinity.
In other words, assuming the symmetric channel capacity
of a binary-input discrete memoryless channel (B-DMC)
W as I (W ), the reliability of each individual channel WN

i
(1 ≤ i ≤ N ) approaches to either one (highly reliable
(I (WN

i ) → 1)) or zero (highly unreliable (I (WN
i ) → 0)).

The reliable channels can be computed using Bhattacharya
parameters [30] where the information bits are located. Fig. 5
depicts the error-correction performance of polar codes for
blocklengths in the range of 512 to 8192 with rate R = 1/2.
Obviously, the performance of polar codes improves as the
code length grows.

The specification of the selected channel (de)coding
scheme is detailed in Table 1. We consider polar codes as
our channel coding scheme. To verify the proposed semantic
communication system using practical codes, a polar code
of size N = 4096 carrying K = 2048 information bits is
selected. Similar to [35], the chosen polar code is optimized
for Eb/No = 2.5 dB. The codewords are modulated using
BPSK over an AWGN channel. At the receiver end, the noisy
LLRs are fed to the decoder, which computes the estimated
codewords.

1) CHANNEL AND QUANTIZATION NOISE
The information data that needs to be transferred through
the channel consists of semantic segmentation map images,
as depicted in Fig. 3. Each pixel is represented by 8 bits.
Therefore, K/8 = 256 pixel values can be embedded into
a packet. The set of pixels is selected row-wise, and decoding
follows. The decoder estimates the codewords at the receiver
end, and a software program regenerates the images. Fig. 6
presents a semantic segmentation map image regenerated
after transferring through the channel for Eb/No = 2 dB.
Obviously, there are bursts of errors in a few image rows. This
stems from the fact that polar codes are recursive in nature.
Therefore, noisy bits affect the entire packet.

IV. RESULTS AND DISCUSSION
The following section demonstrates the experimental results
gained with the proposed semantic communication-based
image transmission system.We have used several scenarios to
understand the effect of the different conditions of the phys-
ical channel and the transmission formats on the semantic

communication model. In the first scenario, we tested the
semantic communication of ten images under varying chan-
nel noise, the second being the quantization effect on the
semantic communication with zero channel noise. The third
scenario is the joint channel noise and quantization effect on
semantic image transmission.

We have derived insights into the above mentioned sce-
narios by measuring the PSNR for ten sample images for
different channel noise levels. We evaluated the performance
of the system by comparing it to the JPEG standard. This
was done by encoding the ground truth image using the JPEG
encoder, adding channel noise to the encoded bit stream, and
then decoding the bit stream. Furthermore, it is important to
understand the human perception of the transmitted images in
relation to the original images. Hence, to fulfill this objective,
a subjective experiment is conducted.

A. DEMONSTRATION OF THE CONCEPT
The notable difference between our communication model
with the existing communication model architecture is the
extraction of the semantic meaning of the message. Object
mapping is considered the semantic meaning of the image.
In images, semantic segmentation is associating a label or a
category with every different pixel with the help of a deep
learning algorithm. It is used to identify a collection of pix-
els that makes an object recognizable to a specific object
class. With the developed system, we have used semantic
segmentation maps available with the COCO dataset for our
experiment. Fig. 7 illustrates some of the ground truth images
(x) and the semantic segmentationmap (y) used for the testing
setup. The image intended to be transmitted (x) is semanti-
cally segmented (y) and transmitted through the virtual chan-
nel. As can be seen from the comparison between the ground
truth image and the transmitted image (x̃) to the transmitter,
the object mapping is done as intended, although some fea-
tures, like the light beam, are not exactly reconstructed at the
receiver that can be seen from the first image with the lamp.
This kind of feature may not be necessary for M2M task-
oriented communications when the communication system is
trained toward a specific task.

1) COMPARISON WITH JPEG IMAGE COMPRESSION
To compare traditional image compression and the proposed
communication system, we have considered the JPEG image
and the semantic image at different stages of the communi-
cation process. The typical compression ratio of JPEG [36]
is around 1 : 10 with a small quality degradation. Achieving
higher compression costs the quality loss of the image. Fig. 8
illustrates the image size comparison at different stages of the
communication path for the proposed transmission system.
The JPEG image intended to be transmitted 99.5 Kb in size,
and the semantic segmentation image was only 5.7Kb in size,
which results in a compression ratio of 17.2 (x /y). To further
reduce the data rate, image compression is applied on top of
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FIGURE 5. The error correction performance of polar codes with different block lengths.

FIGURE 6. Effect of channel noise on the semantic segmentation map
image.

the semantic segmentation map to get a further compression
gain of 20.6 (x /ŷ). The segmentation map size at channel
output is 9.51 Kb at a noise level of 2.5 dB. The segmentation
map size after error concealment is 5.52Kb at this noise level,
while the final output image has a size of 96.5 Kb.

The ground truth image was compressed with JPEG com-
pressionwith zero channel noise scenario andwe have plotted

the compression ratio for the selected sample images against
our scheme and Fig.9 illustrates the results. Noise is added
to the compressed JPEG bit stream and tried to decode the
compressed bit stream at the receiver. However, the JPEG
decoder fails to decode any bit stream with added noise.
Fig.10 illustrates the comparison of JPEG compression with
noise. JPEG compression performs well in high Signal-to-
noise ratio (SNR) scenarios at the expense of a higher bit
rate. The purposed scheme outperforms JPEG compressed
image transmission under low bit rate and low SNR scenarios.
Even at high SNR scenarios, the proposed compression beats
JPEG compression in terms of the bit rates though JPEG
compressed images provide better quality for human percep-
tion. Since the intended main application of the proposed
scheme is to consider M2M communications, the proposed
scheme outperforms JPEG compressed transmission for all
SNR values since it only consumes 5% of the bandwidth
JPEG used.

2) EDGE PRESERVATION OF SEMANTIC MAPS
In semantic segmentation, each object is identified by a differ-
ent pixel value, and the difference in pixel values identifies the
edges. Object edge distortion during the transmission through
the physical channel may cause problems reconstructing the
intended image at the receiver. This concept is demonstrated
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FIGURE 7. Illustration of the transmitted images.

FIGURE 8. Transmitted image size comparison.

by increasing the physical channel noise from 2.0 dB to
3.0 dB, wheremost semantic segmentationmap images failed
at the GAN due to severe distortions to the segmentation map.
The reason being GAN interprets the shape of the objects dif-
ferently than the original object based on the identified pixel
values and tries to relatively generate the image based on the
predefined label classes on which the GANwas trained. Then
if the Edges of the objects in the semantic map are distorted
beyond a certain threshold, the image interprets more label
classes than the number of label classes that the GAN was
trained based on the label classes defined in the dataset. With
this set of experiments, we have derived that the preservation
of the edges is of great importance in the semantic commu-
nication of image data. Fig. 11 illustrates the channel output
at 2.3 dB channel noise level before and after the salt and
pepper noise filtering, which depicts the edge distortion and

FIGURE 9. Compression ratio for sample images.

FIGURE 10. Comparison of JPEG compression.

edge preservation after the median filtering. At the receiver
side, the error concealment block is set up to filter out the salt
and pepper noise of the received semantic map. We have used
median filtering [37], a non-linear operation that is very effec-
tive in filtering out salt and pepper noise and preserving the
edges.

B. IMPACT OF QUANTIZATION NOISE
We have employed a lossless compression of the semantic
maps to understand the effect of the quantization noise on
semantic communication. The compressed maps were trans-
ferred under zero noise in the physical channel, and the
effect was measured. The compression ratio and the PSNR
are calculated. Fig. 12 illustrates the compression ratio for
the semantic segmentation map images. The PSNR for all
the compressed semantic maps converged to infinity. GAN
performed as expected with the lossless compression for
the semantic maps considered. To make a fair compari-
son, we have tried to do the same with JPEG-compressed
semantic segmentation map images. However, GAN fails
to generate the images since the label classes fall more
than 182 label classes. Therefore it can be concluded that
with the lossy compression, the semantic maps’ distor-
tion cannot be handled by the GAN, where it was trained
based on the 182 semantic label classes which are defined
in the COCO dataset. We may derive that, for a highly
versatile semantic communication system, the knowledge
base on which the GAN is trained and shared between
the receiver and transmitter shall be a highly diversi-
fied dataset with different label classes. This result can
be more optimized if the GAN’s trained dataset is task
oriented.
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FIGURE 11. Effect of median filter on salt and pepper noise and edge preservation.

FIGURE 12. The Compression Ratio of the Semantic Segmentation Map
Images.

C. IMPACT OF CHANNEL NOISE UNDER VARYING
CONDITIONS
The experimentation on the proposed system is based on
the AWGN channel, where the channel adds white Gaussian
noise to the signal that passes through it. The added noise
has considerably distorted the semantic segmentation map
as the GAN failed with the input map. To overcome this
issue, median filtering is applied to the received image. It is
observed that the PSNR value for a particular segmentation
map is the same, with all the channel noise levels from 2.1 dB
to 3.0 dB after passing through the noise concealment block
as illustrated in Fig. 13. The reference image considered
for this PSNR calculation is the semantic segmentation map
image with zero channel noise level. When the channel noise
level increases, some semantic segmentation map images fail

to generate the image at the GAN output. However, the added
noise is filtered by median filtering because of the severe
object edge distortion. These failed cases are random, and the
GAN needed to be trained on a much larger dataset. Although
some over-cases failed at the GAN level, this designed system
can withstand up to 2.1 dB noise to generate realistic images
at the GAN level. Hence, the system is capable of doing
semantic transmission. Fig. 14 illustrates the PSNR variation
for the generated images.

We have transmitted the semantic segmentation map after
removing the error concealment block at the receiver and
obtained the results. However, GAN fails at all the channel
noise levels except the perfect channel and fails to generate
images based on the semantic maps since the edge distortion
of the objects is severe. Fig. 15 illustrates the PSNR values for
the selected 10 semantic segmentation map images without
error concealment(salt and pepper noise filtering). Obviously,
PSNR decreases as the noise at the receiver increases.

D. IMPACT OF JOINT QUANTIZATION AND CHANNEL
NOISE
In this scenario, we have studied the impact of joint quanti-
zation and channel noise. The transmitted semantic image is
compressed at the transmitter side with the lossless compres-
sion method. The PSNR values computed for the 10 images
are the same for all the noise levels for a particular semantic
label image, as illustrated in Fig. 16. Although the PSNR of
the images being the same after the error concealment with
the median filter, the GAN performs differently when the
noise level of the physical channel is increased. The semantic
communication system described in this paper can withstand
up to 2.2 dB noise level to generate realistic images at the
GAN. Some semantic segmentation map images in this range
fail to generate an image, where the GAN fails with the error
of more label classes than defined. The reason for this is
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FIGURE 13. Image quality after noise concealment at different noise levels for sample semantic segmentation map images.

FIGURE 14. Image quality at different noise levels for generated images.

concluded as the edge distortion, which cannot be concealed
by the median filter. Fig. 17 depicts the PSNR for the GAN-
generated images. The GAN fails to generate the image for
some noise levels because of the edge distortion.

E. QUALITATIVE EVALUATION
We use subjective experiments to evaluate the perceived
semantic fidelity [38] by human users for the generated
images by the GAN, where the images technically are trans-
mitted images with the Semantic communication system. The
test was conducted to compare the semantically transmitted
image with the ground truth image for its semantic similarity.
We used a sample of 30 users for the experiment, and the sam-
ple was selected randomly, representing various educational
and social backgrounds. Users were given instructions to

consider the semantic information of the ground truth image
and the generated image by the GAN and asked to rate the
generated image on a scale from 1 to 5, where 1 represents the
least semantic fidelity and 5 represents the highest semantic
fidelity. The users have explained the task that they would do.
They were given the following explanation on their question-
naire: ‘‘Image B is a Computer-Generated Image based on the
features of Image A. Rate the resemblance between the two
images. For example, in comparison 1, do all the objects in
the original image are represented in the correct position in
the generated image, and the sizes and features of the objects
in the generated image, are they relevant with respect to the
original image?’’

The average rating for images from the experiment is
4.19 out of a maximum rating of 5, and it indicates that
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FIGURE 15. Image quality at different noise levels without noise concealment for semantic segmentation map images.

FIGURE 16. Impact of combined quantization and channel noise for the quality of semantic segmentation map images with
noise concealment.

human users perceive the semantic fidelity of the generated
images as a very high value, where semantic fidelity can be
defined as the replication of semantics from transmitter to
receiver. The experimentation is concerned with transmitting
the images with zero semantic symbol errors in contrast to
the traditional bit-error rate of the received image. In this
experiment, we have measured the human perceived quality
of the images transmitted with the developed semantic com-
munication model.

V. LIMITATIONS OF THE STUDY
The GAN that was used in this setup is with pre-trained
weights for the COCO dataset, and hence it will fail if the
semantic segmentation maps include edge distortions due to

noise introduced in the physical channel. The GAN shall be
trained with a higher number of object classes and with a
much larger task-oriented dataset. Further, the used segmen-
tation maps are the semantic feature extracted maps available
in the coco data set. Future work will include a semantic
extraction algorithm at the transmitter side. The experiment
is only done for the AWGN channel; other channels, such as
fading channels, may also be considered.

VI. CONCLUSION
In this work, we have introduced a semantic communication-
based image transmission system for bandwidth-intensive
mobile communication systems. Compared to the conven-
tional image transmission systems, the designed semantic
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FIGURE 17. Image quality at different noise levels for generated images with joint Quantization and channel noise.

communications model could achieve a compression ratio
of approximately 20, which is a considerable improvement.
The proposed semantic communication system transmits a
semantic segmentation map extracted from the real image
to the receiver over a noisy channel. We have filtered the
salt and pepper noise at the receiver and input the resultant
segmentation map as the condition to generate the desired
image at the GAN.

The study shows the impact of the physical channel noise
on the semantic communication system and derives a thresh-
old level of noise that the developed architecture can with-
hold. The developed architecture is resilient to a noise level of
2.1 dB with bit error rates approximately equivalent to 0.4 %.
We have derived an important finding from experiments
conducted on the semantic communications model, where
edge preservation is an essential function in SC. The channel
coding in the physical channel will introduce edge distor-
tions to the semantic segmentation maps, and it will cause
the GAN to fail with the distorted semantic segmentation
map. The purposed scheme outperforms JPEG compressed
image transmission under low bit rate and low SNR scenar-
ios. Although JPEG compression provided better quality for
human perception in high SNR scenarios at the expense of
a higher bit rate, the intended application of this SC based
communication systems is considered M2M communication.
Hence, the proposed scheme outperforms traditional JPEG
compressed transmission for all SNR values since it only con-
sumes 5% of the bandwidth JPEG used. The proposed seman-
tic communication-based image transmissionmodel opens up
several research avenues in both practical applications, such
as video transmission in AR/VR and video conferencing,
and theoretical aspects. The proposed method enables the
transmission of background information separately within a
video frame. To achieve this, some modifications need to be
made to the semantic extraction network by extracting the
background and speakers separately. This could be viewed as

a potential extension of the proposed architecture for video
applications.

VII. FUTURE WORK
Semantic communication is the next revolution in digital
communication to cater to the ever-increasing need for band-
width in terms of multimedia content. Although the basics
are developed, their practical applications and real-world
implementations are in their infancy. There are many research
avenues to pursue in this direction, such as applying semantic
communication theory to the transmission of video content in
low bandwidth, unreliable mobile communication channels.
The high data rate requirement, which needs huge band-
widths, can be effectively addressed via a suitably designed
semantic communication link, thus paving the way for remote
area access for many applications facilitating the digital rev-
olution, which is currently missing in rural areas.

Measuring the quality of the transmitted content in relation
to human and machine perspectives has to be explored to
develop newmatrices to evaluate the quality of semantic com-
munication. Traditional quality evaluation matrices, which
were developed to bit-by-bit transmitted data are not com-
patible with measuring the semantic integrity of the transmit-
ted data with semantic communication systems. The effects
of physical channel characteristics and different physical
channels on semantic communication is also an area to be
explored.
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