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ABSTRACT In the process of recycled aluminum smelting, timely measurement of the temperature of the
smelting furnace is very important for the aluminum yield and quality. However, it is sometimes difficult or
costly to measure the temperature in a timely manner due to the high temperature and pressure environment
in the furnace. To tackle this problem, a soft sensor modeling framework which combines an operating
condition classification and a prediction model based on locally sample-weighted long short-term memory
(LSTM) neural network is proposed. In the operating condition classification, a hybrid of dynamic time
warping (DTW) based fuzzy c-means and convolutional neural network is used to cluster the training
samples and to classify the query samples. In the prediction model, the dynamic time warping and locally
sample-weighted technique are introduced to LSTM to solve time-varying and strong nonlinear problems
of the process. By adopting the method of classifying the operating conditions of the query samples before
temperature prediction, the prediction time can be effectively reduced and the prediction accuracy can be
maintained. The results of the experiment show that the proposed method can meet the prediction accuracy
and time efficiency requirements of the regenerative aluminum smelting furnace.

INDEX TERMS Temperature prediction, just-in-time learning, dynamic time warping, fuzzy c-means, long
short-term memory neural network.

I. INTRODUCTION
Aluminum and aluminum alloys are among the world’s most
widely used and economical metals due to their excellent
mechanical properties, superior casting performance and high
reserves. Nowadays, aluminum and its alloys play an irre-
placeable role in aerospace, automotive manufacturing, and
our everyday life.

Currently, aluminum can be obtained in two main ways,
one by way of processing and smelting bauxite ore (primary
aluminum), and the other by way of smelting sorted recycled
aluminum (recycled aluminum). Compared to the production
of primary aluminum, the production process of recycled
aluminum is advantageous in terms of low energy consump-
tion and low pollution. The production process of recycled
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aluminum includes the pretreatment of aluminum scrap, raw
material sorting, recycled aluminum smelting, and refining,
casting and so on. Among the above processes, aluminum
smelting process is the most important part of recycled alu-
minum production, which determines the yield and quality
of aluminum production and the energy consumption in the
production process. The regenerative aluminum smelting fur-
nace is being used on a large scale in the production of
recycled aluminum because of its additional heat recovery
device compared to the traditional recuperative aluminum
smelting furnace, which can significantly improve the energy
utilization and reduce the cost of the aluminum smelting
process as well as the emission of exhaust [1].

The complex structure of the smelting furnace and the com-
plicated smelting process make the aluminum smelting pro-
cess a complex industrial process with typical features such as
multi-variable, nonlinear, time-varying and large hysteresis.
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To establish the model of the complex industrial processes,
numerous relevant studies have been made by many scholars
in academia and industry. According to the principles of mod-
eling, there are two modeling approaches: the mechanism
modeling and the data-driven modeling [2]. The traditional
process of mathematical modeling by mechanisms based on
physical and chemical is called mechanism modeling. The
mechanism modeling method requires a detailed analysis
and simulation of the structure and production processes of
industrial production machines [3], [4], [5], [6]. Therefore,
it is very computationally intensive and time-consuming to
model complex industrial processes using mechanism mod-
eling methods. In addition, when performing mechanism
modeling methods, some ideal situations are assumed for the
modeled object, which can introduce unavoidable errors [7].
Data-driven modeling does not require much understanding
of the internal structure and the operating principles of the
modeled object, but only needs to understand the basic prin-
ciples and identify its inputs and outputs. In recent years,
data-driven soft sensors have increasingly been used to pre-
dict difficult-to-measure variables in complex industrial pro-
cesses. Typical methods for building data-driven soft sensors
include partial least squares (PLS) [8], [9], [10] and principal
component regression (PCR) [11], [12], etc. However, the
aforementioned soft sensor modeling methods are built by
using a global, offline approach, and the models are difficult
to update once they are built, which is detrimental to the
prediction accuracy of soft sensors for time-varying complex
industrial processes. To address these problems and achieve
online modeling and updating, strategies of moving window
(MV) [13] and just-in-time learning (JITL) [14] have been
proposed. The strategy used by JITL builds models related
to the entered query samples. In the JITL strategy, when a
query sample is an input, a local model corresponding to the
query sample is built by finding a certain number of samples
with the highest similarity in the historical dataset according
to a certain similarity measure. When a new query sample
arrives, the old model is discarded and the new local model
will be built based on the new query sample. Owing to its
capability for online local modeling, JITL is well suited for
dealingwith nonlinear and time-varying problems in complex
industrial processes [15]. For example, Dai et al. [7] proposed
a data-driven soft sensor model based on a combination of
the moving window technique and the JITL strategy, and val-
idated the effectiveness of the hybridmodel by combining this
data-driven model with the mechanistic model on the kiln.
Zhang et al. [16] used a moving window strategy to update
the historical database and a soft sensor based on a JITL
strategy and a regularized limit learning machine (RELM)
to predict the burning zone temperature of the rotary kiln
sintering process, and achieved a more accurate prediction
result.

Artificial intelligence neural networks (ANNs) have been
proven to be one of the most promising methods for soft
sensor modeling of complex industrial processes due to their

powerful ability of handling nonlinear processes [17], [18].
However, the general ANN is a static structure, which makes
it difficult to extract the time dynamic information of complex
industrial processes. For recurrent neural network (RNN)
in ANNs, each of their hidden layer nodes forms a loop,
allowing the output of hidden layer nodes to influence the
subsequent inputs of the same nodes, which gives RNN the
ability to remember historical information [19]. The recurrent
structure allows RNN to exhibit temporal dynamics, which is
a significant advantage in processing industrial process data
with significant temporal characteristics [20]. However, since
standard RNNmay suffer from gradient explosion or gradient
disappearance when dealing with long time series [21], long
short-term memory neural network (LSTM) was proposed
by Hochreiter and Schmidhuber to solve the aforementioned
problems that are present in RNN [22]. The three-gate struc-
ture of the memory gate, forgetting gate, and output gate
adopted by LSTM, especially the forgetting gate which can
selectively forget and discard some past information, allows
LSTM to effectively control the convergence of the gradi-
ent during training. Meanwhile, the problem of unaccepted
gradient disappearance and gradient explosion are greatly
alleviated by the structure of LSTM, which allows LSTM
to be more effectively applied to data-driven modeling in
complex industrial processes than RNN.

For the JITL strategy, the accuracy of the model depends
on the association between the selected training samples to
be modeled locally and the query samples. For the standard
JITL strategy, the training samples are fed directly into the
model for training, which causes the model to lose accu-
racy in predicting the output values of the query samples.
Therefore, it is necessary to consider the similarity between
the selected training samples and the query sample before
training the JITL model. The JITL strategy based on locally
sample-weighted considers the degree of similarity between
the query sample and each training sample and uses this
degree of similarity as the weight of the corresponding train-
ing sample, which greatly improves the JITL model’s ability
to handle nonlinearities. The traditional approach of JITL
uses the Euclidean distance as the similarity measure between
the historical and query samples, and the samples usually
contain only one sampling point [11], [14], [23], which is
unfavorable for complex industrial processes with time-series
characteristics. When the sliding window method is used to
obtain samples with a certain time length, the original tempo-
ral characteristics of the data are effectively retained. As an
algorithm that can measure the similarity between temporal
segments, dynamic time warping (DTW) [24], [25] is better
when applied to measure the similarity between samples after
the sliding window. Based on the above problems, a DTW-
based locally sample-weighted LSTM model (DLWLSTM)
is proposed in this paper, which uses the DTW distance as an
index of the distance between historical and query samples in
sample weighting and can better extract the nonlinear features
related to the output variables.
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While the JITL strategy improves the prediction accuracy
by coping with the nonlinearity and time-varying of the mod-
eled objects by building an corresponding model for each
query sample when performing local modeling, which also
increases the time consumption on predicting query sam-
ples. Strategies for the selective updating of models have
been proposed to reduce the time consumption on model-
ing. Chen et al. [11] proposed a local modeling model update
strategy based on approximate linearity dependence (ALD),
which determines whether to update the local model by cal-
culating the ALD value between the query sample and the
training sample of the previous local model, and this local
model selective update strategy maintains the accuracy of the
prediction while reducing the time used for prediction. In this
study, an operating condition classification and prediction
model consisting of a DTW-based fuzzy c-means (FCM)
algorithm [26] and convolutional neural network (CNN),
which is denoted as DFC, is proposed. The idea of classifying
data before modeling can be realized by combining DFC
and DLWLSTM models (DFC-DLWLSTM). In the DFC-
DLWLSTM model, each query sample only needs to find
local modeling samples in the historical sample database
of the category to which the query sample belongs, which
significantly reduces the time required to find local modeling
samples for query samples. At the same time, the relationship
between the mean clustering center of the category after clus-
tering and the query sample is used as an index for training
sample selection in local modeling, which ensures that the
modeling time is significantly reduced while the prediction
accuracy is maintained.

The main structure of this paper is as follows: The next
section shows the process of aluminum smelting in regenera-
tive aluminum smelting furnaces, and analyzes the problems
and modeling difficulties in the aluminum smelting process.
In the third part, the DFC-DLWLSTM-based soft sensor
model proposed in this paper is introduced. In the fourth
part, the proposed model is applied to the data collected
from a regenerative aluminum smelting plant to validate its
effectiveness. Finally, the conclusions of the full paper will
be made.

II. PROBLEM ANALYSIS OF ALUMINUM SMELTING
PROCESS
Aluminum smelting process is a complex thermodynamic
process, and the procedure for the recycled aluminum smelt-
ing process is shown in Figure 1. Throughout the aluminum
smelting process, there is a dynamic change in the temper-
ature of the furnace chamber and liquid aluminum as heat
flows in and out. The temperature of the aluminum smelt-
ing furnace chamber (furnace temperature) is an important
control parameter for the aluminum smelting process. The
furnace temperature controls the temperature of the liquid
aluminum in the smelting furnace, and the accuracy of the
furnace temperature control determines the yield and quality
of the aluminum. Therefore, it is extremely important to

FIGURE 1. Flow chart of aluminum smelting process.

FIGURE 2. Structure and working principle of regenerative aluminum
smelting furnace.

accurately and quickly sense the dynamic changes in the
furnace temperature during the aluminum smelting process.

The regenerative smelting furnace system is a typical com-
plex industrial process control system. Figure 2 shows the
structure and working principles of a regenerative aluminum
smelting furnace. The regenerative aluminum smelting fur-
nace is mainly composed of a furnace chamber, regenerative
burner (including regenerative chamber and burner), air/fume
duct, reversing device, and fume exhaust device. As shown in
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FIGURE 3. Pictures of furnace door and liquid aluminum temperature
thermocouple.

Figure 2, the heat-regenerative burners of a heat-regenerative
aluminum smelting furnace are arranged in pairs and sym-
metrically in the furnace structure, and a heat-regenerative
aluminum smelting furnace generally has one or more pairs
of heat-regenerative burners. For a pair of heat regenerative
burners called Burner 1 andBurner 2, they are not in operation
simultaneously. When the regenerative burner Burner 1 is
in operating condition, the fuel path of Burner 1 is opened
and the reversing valve is in such a state that the air/fume
duct of Burner 1 is fed with air, which is blown in by the
blower, flowed through the reversing valve and then heated
rapidly to 80%-90% of the furnace chamber temperature by
the regenerative chamber of Burner 1 before entering the
furnace chamber through the burner of Burner 1. The heated
high temperature air will be mixed with the fumes in the
furnace chamber after entering the furnace chamber, forming
a high temperature oxygen-poor air flowwhich is much lower
than the normal air oxygen content of 21%; fuel is then
injected into the oxygen-poor high temperature air, and the
fuel will be combusted in the oxygen-poor state. The other
heat regenerative burner Burner 2 is now in the exhaust and
heat storage state, and the fuel path of Burner 2 is closed.
The high temperature flue gas from the furnace chamber
will pass through the thermal chamber of Burner 2 and heat
the regenerator, which prepares the Burner 2 to heat the air
entering the furnace chamber when Burner 2 is in operation.
After passing through the heat storage chamber, the fume
will be directly exhausted into the atmosphere through the
reversing valve, and the temperature of the fume exhausted
into the atmosphere is generally less than 150 ◦C. When
the reversing valve changes state, the state of Burner 1 and
Burner 2 will switch correspondingly.

The temperature of the liquid aluminum is measured using
a thermocouple on the smelting furnace. When the furnace
door is closed, the thermocouple is inserted into the liquid
aluminum for measurement as required. When the furnace
door is opened, generally because of slagging, the thermo-
couple is automatically withdrawn to prevent damages from
the slagging equipment. Figure 3 shows the door and the
thermocouple of smelting furnace.

Since the measurement of furnace temperature is simpler
and less expensive than the measurement of aluminum liquid

FIGURE 4. Sliding window working schematic.

temperature, the measurement of furnace temperature is gen-
erally used to guide the production process in the aluminum
smelting industry. However, the furnace temperature has a lag
in the control of the liquid aluminum temperature, so it is
necessary to predict the change of the furnace temperature in
advance according to the relevant variables of the aluminum
smelting furnace.

III. THE PROPOSED DFC-DLWLSTM
A. DATA PRE-PROCESSING WITH SLIDING WINDOW
When collecting raw industrial data, the data collected at
each sampling point are the values of each variable at a
certain moment. However, for complex industrial processes,
the value of a certain output variable at a given moment does
not depend on the input at that moment alone, but also on the
changes in the input at several previous moments. Therefore,
it is necessary to use the input at several moments before the
sampling moment to map the output at the sampling moment
together.

In order to eliminate the influence of magnitude between
variables, data standardization is required to address the com-
parability between data. After the raw data are processed by
data standardization, the variables have the same order of
magnitude and are suitable for comparison and evaluation.
The most typical data standardization method is data normal-
ization. In this study, z-score standardization is used, which
is more applicable to the method proposed in this paper, the
formula of z-score is shown in Equation (1):

x∗
=
x − µ

σz
, (1)

where µ and σz denote the mean and variance of the raw
data, respectively, and x∗ is the normalized value. Supposing
we have the normalized raw data sample set (X ,Y ), where
X = {[x1h, x2h, . . . . . . , xnh]}Hh=1 is the input sample set, Y =

{yh}Hh=1 is the output sample set, and n is the number of input
variables, H is the number of raw data sampling points. Now
using a sliding window with window size l and stride s to
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slide the raw data, and we will get:

XL = {XLw }
W
w=1, (2)

Y L = {Y Lw }
W
w=1, (3)

in which

XLw = {XLwh}
ws+l−1
h=ws = {[x1h, x2h, . . . . . . , xnh]}

ws+l−1
h=ws (4)

is the input sample,

Y Lw = {Y Lwh}
ws+l−1
h=ws = {yh}

ws+l−1
h=ws (5)

is the output sample, andW = ⌊(H − l)/s⌋+1 is the number
of samples after the slidingwindow. For thew-th input sample
XLw and output sample Y Lw after the sliding window, let

[x(w)1u, x(w)2u, . . . . . . , x(w)nu] = [x1h, x2h, . . . . . . , xnh], (6)

y(w)u = yh, (7)

where (u, h) = (1,ws), (2,ws + 1), . . . . . . , (l,ws + l − 1),
then we will have

XLw = {XLwu}
l
u=1 = {[x(w)1u, x(w)2u, . . . . . . , x(w)nu]}

l
u=1, (8)

Y Lw = {Y Lwu}
l
u=1 = {y(w)u}lu=1. (9)

The value Y Lw of the last s sampling points of Y−s
w is taken as

the label of the input variable after the sliding window, that is

Y−S
w = {y(w)u}lu=l−s = {yh}

ws+l−1
h=ws+l−s. (10)

The sample set obtained after the sliding window is
(XL ,Y−S ).

B. METHOD OF OPERATING CONDITION CLASSIFICATION
AND PREDICTION BASED ON DFC
For the aluminum smelting process, the temperature trend
varies depending on the smelting stage. When building soft
sensors, if the data collected from the aluminum smelting
process can be clustered according to the operating conditions
in advance, the total time required for soft sensor modeling
and prediction can be effectively reduced while maintaining
the prediction accuracy of the soft sensor.

There are several input variables of the aluminum smelting
process, and it is complicated to cluster multivariate time
series directly. Therefore, this paper explores a classification
method combining the unsupervised clustering method and
supervised classification method to achieve the classification
of multivariate time series. First, the unsupervised clustering
algorithm DTW-FCM is applied to cluster the output variable
samples of training samples and then the clustered output
variable samples will be labeled with categories. Subse-
quently, the input variable samples corresponding to the out-
put variable samples and the corresponding category labels
will be formed as a training sample set to train the CNN to
obtain a classification model. Finally, a classification method
that can predict the operating conditions of the query samples,
i.e., supervised classification method, will be obtained.

FIGURE 5. One-to-one correspondence of time series points to points.

FIGURE 6. Example of point-to-point correspondence after DTW
processing.

1) LABELING OUTPUT VARIABLE SAMPLES WITH
CATEGORIES BY METHOD OF DTW-FCM CLUSTERING
The FCM algorithm is an algorithm based on fuzzy par-
titioning, whose basic idea of partitioning categories is to
maximize the differences between clusters and minimize the
differences within clusters. Supposing x = {xj}

g
j=1 is the

data set to be clustered into c clusters by FCM, where xj =

{x1j, x2j, . . . , xnj}, and n is the number of variables of that
data set. For the i-th cluster, the degree of membership of
the j-th point to that cluster is given by the membership uij,
which takes values in the range [0, 1] and meet the constraint∑c

i=1 uij = 1. The closer uij is to 1, the more similar the
sample point is to the cluster it is clustered in, i.e., the higher
the degree of membership to that cluster. And on the contrary,
the lower the degree of membership.

The objective function of the FCM algorithm is

Jm(U ,C) =

c∑
i=1

g∑
j=1

umij d
2
ij(xj, ci). (11)

In the above objective function, dij(xj, ci) denotes the clus-
tering index, and the clustering index in the traditional FCM
algorithm is the Euclidean distance between the sample point
xj and the clustering center ci. m (m > 1) is the fuzzy weight
index, which portrays the fuzziness of the classification. If m
is too large, the clustering effect will be poor because of
the great fuzziness in clustering, while if m is too small the
algorithm will be close to the k-means clustering algorithm.
The fuzzy partition matrixU called the membership matrix is
an matrix of size g ∗ c, which is consisted of the membership
degree between each sample and each cluster. C is the matrix
composed of the clustering centers ci of each cluster.

When the traditional FCM algorithm uses the Euclidean
distance to compare the similarity of two time series of the
same length, it compares the points of the time series in a
fixed order and cannot consider the existing time shift, that
is, a one-to-one correspondence, as shown in Figure 5.

The DTW algorithm automatically warps the time series
to make the shape of the two series as identical as possible
and to obtain the maximum possible similarity, as shown in
Figure 6.
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DTW can better portray the similarity between two time
series based on their shapes, so using the DTW distance as
the clustering index when clustering the time series with the
FCM algorithm will have better results.

Assuming that x = {xi}
lx
i=1 and y = {yj}

ly
j=1 are time

series, and lx and ly denote the length of the two time series
respectively. An lx ∗ ly matrix D is developed by a defining
distance of each point between the series, called distance
matrix. Denoting a possible correspondence between x and
y by φ, then φ(q) = (i, j)q (q = 1, 2, . . . , Q) denotes the q-th
correspondence corresponding to the i-th element of x and the
j-th element of y, where Q is the product of the length of time
series x and y. The DTW algorithm is to find an optimal path
from the upper right corner element to the lower left corner
element in the distance matrix D, which corresponds to an
optimal corresponding series φ′. The sum of the elements on
the φ′ path is the smallest among the elements of any path
from the upper right corner to the lower left corner of the D
matrix, and this minimum value is the minimum accumulated
distortion value. Suppose the number of elements on the
diagonal of the distance matrix D is K , then the minimum
accumulated distortion value can be calculated as:

Distφ′ (x, y) =

K∑
k=1

E((i, j)k ), (12)

where E((i, j)k ) represents the distance of the k-th correspon-
dence, i.e., the distance of element xi and yj, and the Euclidean
distance is usually used to calculate that distance.

When the DTW distance is used as the clustering index of
FCM, the corresponding objective function of FCM is

Jm(U ,C) =

c∑
i=1

g∑
j=1

umijDist
2
φ′.ij(x

L
j , cLi ), (13)

where Distφ′.ij(xLj , cLi ) is the DTW distance between the time
series xLj and the i-th cluster center cLi , and x

L
j is the time

series of length l corresponding to the j-th sample point xj.
When the objective function Jm takes the minimum value, the
calculation formula of the cluster center is

cLi =

g∑
j=1

umij x
L
j

g∑
j=1

umij

, (14)

and the membership degree of the j-th time series to the i-th
category is

uij =
1

c∑
k=1

(
Dist

φ′ .ij
(xLj ,cLi )

Dist
φ′ .kj

(xLj ,cLk )
)

2
m−1

. (15)

The DTW-FCM algorithm operates as follows:
Step 1: Initialize the membership matrix U by random

numbers.
Step 2: Calculate the clustering center of each cluster by

Equation (14).

Step 3: Calculate the DTW distance between each sample
and each the cluster center.

Step 4: Update each element of the membership matrix uij
by Equation (15).

Step 5: Calculate the value of the objective function by
Equation (13) and return to Step 2 if the value of the objective
function is greater than the set threshold. If the value of the
objective function is less than the threshold or the number of
iterations reaches the set value, the algorithm ends its run and
outputs the final membership matrix U .

The category to which each clustered sample belongs can
be determined by the membership matrix U . By clustering
the output variable samples after the data sliding window,
the category to which each output variable sample belongs
can be determined, which also corresponds to the category of
the input variables as well, i.e., the clustering of the training
sample set is completed. The categories of input variable sam-
ples are used as labels for the corresponding input variable
samples to form a training set (CL ,V ), which will be used to
train the CNN. In the training set (CL ,V ),

CL
= {CL

i }
c
i=1 = {{CL

ik}
Ki
k=1}

c
i=1

= {{{[x1h, x2h, . . . . . . , xnh]}
ws+l
h=ws}

Ki
k=1}

c
i=1

= {{{[x(k)1u, x(k)2u, . . . . . . , x(k)nu]}
l
u=1}

Ki
k=1}

c
i=1 (16)

denotes the k-th sample in cluster i, where Ki denotes the
number of samples in cluster i, andw denotes thew-th sample
in the sample set obtained from the raw data processed by the
sliding window. And

V = {V c
i }i=1 = {{onehot(i)j}

Ki
k=1}

c
i=1, (17)

where onehot(i)j is the one-hot encoding with label i for the
j-th sample in cluster i (for a certain cluster of samples, the
labels are all the same), and the length of the one-hot encoding
eigenvector is c.

For each cluster of input samples

CL
i = {{[x(k)1u, x(k)2u, . . . . . . , x(k)nu]}

l
u=1}

Ki
k=1, (18)

the mean center of the cluster can be found by Equation (18):

3L
i = {[x3i

1u , x3i
2u , . . . . . . , x3i

nu ]}
l
u=1

=


Ki∑
i=1

[x(k)1u, x(k)2u, . . . , x(k)nu]

Ki


l

u=1

. (19)

2) THE PROPOSED DFC OPERATING CONDITION
CLASSIFICATION METHOD
After clustering the training samples for operating conditions
using the DTW-FCM algorithm, a sample set with labels that
can be used for supervised learning is obtained. CNN uses the
sliding of convolutional kernels to achieve a good extraction
of local hidden features of the data, and CNNs are generally
divided into 1D-CNN and 2D-CNN. The sliding direction of
the convolution kernel of the 2D-CNN has two dimensions,
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FIGURE 7. The flow chart of the DFC algorithm.

FIGURE 8. The basic cell unit of LSTM neural network.

which is advantageous for processing data that are associated
in both dimensional directions, such as image data. However,
for time-series data such as industrial production data, the
advantage of 1D-CNN comes into play to better obtain the
time-series information of the samples. The sliding direction
of the convolution kernel in the 1D-CNN is only one dimen-
sion, which can be good for sliding from the time dimension
to obtain the features of the temporal data.

The 1D-CNN used in this paper contains three Convolu-
tional layers, two Max Pooling layers, an intermediate Full
Connected Layer with a sigmoid activation function, and an
output Fully Connected Layer with an activation function of
softmax.

After training the 1D-CNN with category-labeled training
sample set (CL ,V ), the 1D-CNN can be used to predict
the category of query samples. The flow chart of the DFC
algorithm is shown in Figure 7.

C. SAMPLE-WEIGHTED LSTM BASED ON DTW DISTANCE
LSTM is a type of network improved from RNN, which have
the capability to process long time series.Figure 8 shows the
basic cell unit of LSTM neural network.

The three-gate structure of LSTM can more effectively
solve the gradient disappearance and gradient explosion prob-
lems compared to RNN, so that LSTMhave a great advantage
in processing long time series [13]. The key to the LSTM is

the state of its basic unit, mt , as shown in Figure 8. mt runs
through the entire chain of LSTM transmission and that is the
reason why LSTM networks can solve the problems in the
processing of long time series data. The three stages within
the LSTM are as follows.

1) FORGETTING STAGE (FORGETTING GATE)
This stage focuses on the selective forgetting of the input
passed in from the previous node. Specifically, the calculated
ft is used as a forgetting gating to control what needs to be
forgotten and left behind in the previous cell state mt−1. ft is
calculated as

ft = sigma(Wfxxt +Wfhht−1 + bf ), (20)

where sigma(x) = 1/(1 + e−x).

2) SELECTIVE MEMORY STAGE (INPUT GATE)
This stage receives the input from this stage and remembers
it selectively, i.e., it decides which new information will be
stored in the next cell statemt . In this stage, the sigmoid layer
decides which values will be updated to obtain it , while the
tanh layer creates a new vector c′t of candidate values. The
information obtained from the above two layers together with
the cell state mt−1 from the previous node will determine the
update of the cell state of that node. And it , c′t and the cell
state mt can be calculated separately by following equations:

it = sigma(Wixxt +Wihht−1 + bi), (21)

c′t = tanh(Wcxxt +Wchht−1 + bc), (22)

mt = ft ⊙ mt−1 + it ⊙ c′t , (23)

where ⊙ indicates a point-by-point operation, i.e., the corre-
sponding elements are multiplied.

3) OUTPUT STAGE (OUTPUT GATE)
This stage will determine the output of the current hidden
state ht . First, a sigmoid layer is used to decide which parts
of the input and the hidden state of the previous node will be
output, i.e., to get ot , then the cell state is processed by the
tanh function to obtain a result, and finally the output, i.e.,
the current hidden state ht is obtained by multiplying ot with
the result of the tanh function. ot and the hidden state ht are
calculated as follows:

ot = sigma(Woxxt +Wohht−1 + bo), (24)

ht = ot ⊙ tanh(mt ), (25)

By combining the advantages of LSTM, locally sample-
weighted based JITL and the superiority of DTW dis-
tance in similarity measurement, a DTW-based locally
sample-weighted LSTM soft sensor model is proposed in
this paper. First, the sum of the DTW distance between each
segment of the query sample and the corresponding segment
of each historical sample is calculated as the DTW distance
between the query sample and each historical sample. Then
the N historical samples with the smallest DTW distance are
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selected as the local modeling sample set, and the samples
are assigned certain weights according to the corresponding
DTW distance values. Finally, each sample is multiplied by
the corresponding weights to form a new local modeling
sample set.

Assuming that the query sample XLq belongs to cluster i,
then the local modeling samples of XLq will be found from the
historical sample set of cluster i. However, if the query sample
is misclassified, the local model corresponding to the query
sample will suffer a significant error. To improve the error
tolerance when modeling query samples, using the DTW
distance between the query sample and the mean cluster
center 3L

i of each cluster of historical samples as a reference
for the selection of query sample’s local modeling sample is
proposed. The DTW distance between the query sample and
the mean cluster center of each cluster can be calculated as
follows:

D3i =

l∑
u=1

Distφ′ (3L
iu,X

L
qu)

=

l∑
u=1

Distφ′ ([x3i
1u , x3i

2u , . . . , x3i
nu ],

[x(q)1u, x(q)2u, . . . , x(q)nu]),

i = 1, 2, . . . , c (26)

where c is the number of clusters in the classification of
operating conditions, and i, q represent the i-th mean cluster
center and the q-th query sample respectively.

For a given query sample XLq , there are two possible cases
for D3i :

Case 1: The category i corresponding to the smallest value
of D3i is as the same as the category corresponding to XLq
when it is classified.

Case 2: The category i corresponding to the smallest value
of D3i is different from the category corresponding to XLq
when it is classified.

For Case 1, the two methods are cross-validated to ensure
that the classification of the query sample is correct. The
historical sample set of the cluster to which XLq belongs at the
time of classification can be used as the historical sample set
for the local modeling of XLq . For Case 2, that situation means
that the query sample XLq may be incorrectly classified by the
DFC algorithm, and the historical sample set of XLq ’s local
modeling needs not only the sample set of the category cor-
responding to the classified category, but also the sample set
of the category corresponding to D3i with the smallest value
at this time as a supplement. This is the strategy proposed in
this paper for the selection of the historical sample set when
local modeling.

The local modeling samples are selected by evaluating the
distance and similarity between the query samples and each
historical input sample, and different weights are assigned
to each local modeling sample according to the similarity
between the query samples and the selected local model-
ing samples. Supposing that after using the strategy for the

selection of the historical sample set when local modeling,
the input and output samples of the local modeling historical
sample set for the query sample XLq are XLH = {XLw }

WH
w=1 and

Y−S
H = {Y−S

w }
WQ
w=1 respectively, where WQ is the number

of the determined historical sample set. In this paper, the
DTW distance is used to calculate the similarity between
the q-th query sample XLw and each historical sample, and
the similarity is defined as follows:

Dw =

l∑
u=1

Distφ′ (XLiu,X
L
qu)

=

l∑
u=1

Distφ′ ([x(w)1u, x(w)2u, . . . , x(w)nu],

[x(q)1u, x(q)2u, . . . , x(q)nu]),

w = 1, 2, . . . ,W . (27)

where i, q represent the i-th historical sample and the q-th
query sample respectively.

The designated weight of the sample XLw is calculated as

�w = exp(−D2
w/σ 2),w = 1, 2, . . . ,W (28)

where σ is a parameter that adjusts the rate of change of
sample weights at different similarity distances.

From Equation (28), it can be observed that the higher
the similarity degree between the historical sample and the
query sample is (i.e., the smaller the DTW distance between
the historical sample and the query sample), the higher the
weight of the historical sample under that query sample will
be. After the weights {�w}

W
w=1 between all historical samples

and query samples is obtained, arranging them in order from
highest to the lowest and taking the firstN value of the weight
from the arranged weight set as the local modeling sam-
ple’s weight set {�n}

N
n=1. The samples corresponding to the

weights {�n}
N
n=1 will be the samples for local modeling, and

the input and output samples of the local modeling training set
can be obtained as XLlocal = {XLn }

N
n=1 and Y

−S
local = {Y−S

n }
N
n=1

respectively. Then the input sample weighted by the sample
weights can be expressed as

X̃Llocal = {�nXLn }
N
n=1 = {{�nXLnu}

l
u=1}

N
n=1

= {{[�nx(n)1u, �nx(n)2u, . . . . . . , �nx(n)nu]}
l
u=1}

N
n=1,

(29)

where n, u denote the u-th sample point of the n-th sample in
the local modeling sample set respectively.

After obtaining the locally sample-weighted samples
X̃Llocal , the LSTM is trained with X̃Llocal . For the u-th sample
point of the n-th local modeling sample, the hidden layer state
of the LSTM can be obtained by forward propagation as:

fu = sigma(Wfx(�nXLnu) +Wfhhu−1 + bf ) (30)

iu = sigma(Wix(�nXLnu) +Wihhu−1 + bi) (31)

c′u = tanh(Wcx(�nXLnu) +Wchhu−1 + bc) (32)

mu = fu ⊙ mu−1 + iu ⊙ c′t (33)
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FIGURE 9. The flow chart of the proposed DFC-DLWLSTM method.

FIGURE 10. Name of each variable and its Pearson coefficient with
furnace temperature.

ou = sigma(Wox(�nXLnu),Wohhu−1 + bo) (34)

hu = ou ⊙ tanh(mu) (35)

The overall flow chart of the proposed DFC-DLWLSTM
method is shown in the Figure 9.

IV. INDUSTRIAL APPLICATION
To verify the prediction accuracy of the soft sensor based on
the proposed DFC-DLWLSTM model, the model is applied
to the furnace temperature prediction of a regenerative alu-
minum smelting furnace. The data used in the model val-
idation are a raw data set of 2021 sampling points, which
were collected from the aluminum smelting process of a
regenerative aluminum smelting plant from November 1st
to 8th, 2017, with a sampling interval of 5 minutes. The
number of variables in the raw data set is 30, and due to the
sampling errors caused by the damaged sensors, three of them
are removed. Among the remaining 27 variables, the furnace
temperature is used as the output variable, and the other
26 variables are selected based on the magnitude of the Pear-
son coefficient between them and the furnace temperature,

FIGURE 11. The structure of CNN model and LSTM model used in this
paper.

excluding those with an absolute value of Pearson coefficient
less than 0.1 with the furnace temperature, and taking those
with an absolute value of Pearson coefficient greater than
0.1 and significance level less than 0.05 with the furnace
temperature as the input variable to the soft sensor model.
The names of the input variables and the Pearson coefficients
between them and the furnace temperature are shown in the
Figure 10, and 21 variables were finally selected as the input
variables. In this paper, the raw data set is processed by the
method of sliding window to obtain W post-sliding window
samples, and the first 80% of the post-sliding window sam-
ples will be used as historical samples and the last 20% as
the testing set. The size of W is finally determined to 2000.
Due to the large amount of data, for a better presentation, this
paper divides the testing set into G1 and G2, which account
for 50% of the testing set respectively.

The configurations of the simulation computer are as fol-
lows: the operating system is Windows 11; the CPU is an
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TABLE 1. Comparison of modeling accuracy and efficiency with different
window size.

Intel i5-10440 (2.90 GHz); the RAM is 16 GB; and the code
software is Python 3.9.0.

To evaluate the prediction performance of the proposed
modeling framework, the root-mean-squared error (RMSE),
mean absolute error (MAE), maximum absolute value error
(MAX), and the decision coefficient (R2) are used as the
performance indices, which are defined as follows:

RMSE =

√
n∑
i=1

(ŷi − yi)2
/
Ntest

MAE =

n∑
i=1

∣∣ŷi − yi
∣∣/Ntest

MAX = max
∣∣ŷi − yi

∣∣ , i = 1, 2, . . . ,Ntest

R2
= 1 − MSE(ŷi, yi)

/
Var(yi)

(36)

where Ntest is the number of samples in the testing data
set; ŷ represents the prediction value of the furnace temper-
ature; y represents the actual value of the furnace tempera-
ture; Var(y) represents the variance of y, and MSE(ŷ, y) =

RMSE2(ŷ, y).
To perform the DFC-DLWLSTM algorithm, the window

size and stride of the sliding window are the first parameters
to be determined. In order to fully extract the time series
information within each sample, the stride of the sliding
window is set to 1. The window size of the sliding window
determines the number of points in per sample and is also an
important parameter of the LSTMnetwork, which determines
the maximum number of historical correlation points of the
LSTM. Table 1 presents themodeling accuracy and efficiency
of the DFC-DLWLSTMmodel in the first 100 samples in the
testing set G1 when the window size is selected among the
candidate length set {19, 20, 21, 22, 23, 24}. The average
time for querying samples in modeling and prediction is used
as efficiency indices. The window size is determined to be 20.

After determining the window size and stride of the sliding
window, the number of clusters of the DFC algorithm will
be determined. Table 2 shows the prediction error of the
DFC-DLWLSTMmodel in the first 100 samples in the testing
set G1 when the number of clusters is chosen among the
candidate length set {3, 4, 5, 6, 7, 8}. As can be seen from
Table 2, when the number of clusters increases from 3 to 5,
the total time used for modeling and prediction decreases
significantly by 47.26%, i.e., by 24.7456 s. Meanwhile, the

TABLE 2. Comparison of modeling accuracy and efficiency with different
cluster number.

TABLE 3. Comparison of modeling accuracy and efficiency with different
number of local modeling samples.

modeling error indices increase slowly and modestly: MAE
increases by 0.0693Â◦C (6.78%) and RMSE increases by
0.0883Â◦C (5.49%). The final number of clusters is deter-
mined to be 5. The structure of the 1D-CNN used in the
DFC operating condition classification algorithm is shown in
Figure 11.

After determining the number of clusters and the parame-
ters related to the sliding window and dividing the training
and testing sets, the DFC algorithm is ready to run. Since
the data to be classified do not have real categories, the
effectiveness of the DFC algorithm cannot be determined
by comparing the predicted values with the real values. The
effectiveness of the DFC algorithm can only be determined
by analyzing the cluster results of the training set and the
deviation of the final furnace temperature prediction between
DLWLSTM and DFC-DLWLSTM. Figure 12 shows the time
series of each category after the training set is clustered into
five categories. To show the shape of the time series more
visually, not all time series are shown, but 20 consecutive
time series of furnace temperature randomly selected from
each of the five training set categories after clustering. As the
figure illustrates, the similarity of time series shapes within
each category is high, while the similarity of time series
between categories is small. The training set for each category
represents the trend of the furnace temperature at each of the
20 sampling points: Cluster 1 represents an increasing and
then decreasing furnace temperature, while Cluster 2 repre-
sents a decreasing and then increasing furnace temperature,
both of which mean that the working condition of the furnace
is changing. Cluster 3 is a condition that the furnace working
with temperature fluctuations; Cluster 4 is a furnace working
condition where the furnace temperature is increasing, and
Cluster 5 is a furnace working condition where the furnace
temperature is decreasing. Then the CNN trained from the
clustered and category-labeled training set will have the
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TABLE 4. Comparison of modeling accuracy and efficiency with different methods.

FIGURE 12. 5 categories clustered from the training set.

ability to predict the working condition of the query samples.
The final validation of the DFC will be reflected in the
comparison of the furnace temperature prediction accuracy
of DLWLSTM and DFC-DLWLSTM in the later section.

The number of local modeling samples is an important
index in the local modeling process, and different numbers of
local modeling samples have a great impact on the accuracy
of the local model. Table 3 presents the model accuracy in
the first 100 samples in the testing set G1 when the number
of local modeling samples N is selected among the candidate
length set {5, 10, 15, 20, 25, 30}. The final number of
local modeling samples N is set to 25. In this paper, the
sample weight adjustment parameter σ is an adaptive param-
eter whose value is 48 times the maximum similarity value
with the query sample among the selected N local modeling
samples. The LSTM structure used is shown in Figure 11(b).

FIGURE 13. The detailed prediction error of different methods.

For performance comparison, the BP neural net-
work, RNN, LSTM, proposed DLWLSTM, and proposed
DFC-DLWLSTM are developed for soft sensors of qual-
ity prediction on two different groups of data set G1 and
G2, and Table 4 presents the performance of the methods
mentioned above on G1, G2. As can be seen from Table 4,
the BP neural networks has the worst performance, because
althoughBP neural network has the ability tomodel nonlinear
relationships in process data, this static modeling approach
does considers the temporal dynamic information of the data.
RNN performs much better than BP neural network because
of their ability to acquire dynamic features of data temporal
series. But there are limitations for RNN when dealing with
long time series. For LSTM, the nonlinear activation function
of its units gives it a strong ability to handle nonlinearities,
while its selective memory feature gives it the ability to
acquire features of long time series; thus, the performance
of LSTM is better than that of RNN. However, the pre-
diction results of the offline LSTM are not satisfactory in
the face of the time-varying aluminum smelting process.
The proposed DLWLSTM method uses the DTW distance
as a measure of the similarity between query samples and
historical samples, builds a corresponding soft sensor model
for each query sample, and uses the similarity between
local modeling samples and query samples as the weight
of the local modeling samples. The aforementioned strategy
adopted by DLWLSTM effectively enhances the ability of
the soft sensor to deal with the time-varying process of
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FIGURE 14. The detailed prediction results of different methods on G1:
(a) BP; (b) RNN; (c) LSTM; (d) DLWLSTM; (e) DFC-DLWLSTM.

aluminum smelting. The proposed DFC-DLWLSTM adopts
the strategy of classifying first and then modeling, so that
each query sample has a corresponding category of historical
sample set, which effectively reduces the number of samples
in the historical sample set of each query sample, thereby

greatly reducing the time consumption in the query sample’s
modeling and prediction.

Figure 13 shows the detailed prediction errors of the five
methods mentioned above. To better demonstrate the perfor-
mance of the five methods, the detailed prediction results
are shown in Figure 14, and the dataset used is the test-
ing set G1. It can be seen in Figure 14 that the prediction
curve of DFC-DLWLSTM are able to follow the curve of
the true value better than those of the BP neural network,
RNN and LSTM. From a comprehensive comparison of the
DLWLSTM model and DFC-DLWLSTM in Table 4 and
Figure 14, we can see that the DFC-DLWLSTM model can
significantly increase the modeling efficiency while retaining
the prediction accuracy.

V. CONCLUSION
To deal with the problems in predicting the furnace tempera-
ture of a regenerative aluminum smelting furnace, a soft sen-
sormodelingmethod based onDFC-DLWLSTM is proposed.
This modeling method fully extracts the temporal charac-
teristics of the data by employing LSTM neural networks.
By themethod of locally sample-weightedmodeling based on
DTW distance, the local model for the query samples is built
while considering the weights of different historical input
samples, which not only solves the time-varying problem, but
also effectively extracts the nonlinear features of the input
samples. In addition, the historical sample categories are clas-
sified by the DFC operating condition clustering algorithm,
which reduces the time used in local modeling while the
prediction accuracy can be maintained. The effectiveness of
the proposed method is verified by the aluminum smelting
process data from an industrial plant.
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