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ABSTRACT Currently, providing water in developing countries, especially in dry and hot rural areas,
is a significant challenge. However, creating new electric grids is often expensive. Therefore, the use of
low-cost photovoltaic (PV) panels in water pumping systems, without chemical energy storage, based on
high-performance and more efficient power converters with increased time life and lower maintenance
interventions is needed. In this study, a photovoltaic water pumping system with two power converters, the
first is used to extract the maximum power using the maximum power point tracking (MPPT) algorithm, and
the second is a three-cell multicellular power converter used to control the DC motor with a submerged pump.
Meanwhile, the serial connection and redundant topology of multicellular converters render the system more
vulnerable to failure. fault diagnosis-based machine learning approach and fault tolerant control (FTC) are
proposed for multicellular power converters. Simulation results with MATLAB show the effectiveness and
practicability of the proposed structure and control to isolate the faulty capacitor, increase the sustainability
of the system, assure the supply of water under faulty conditions, minimize the mechanical vibrations in
electric DC motors, and avoid PV system shutdown.

INDEX TERMS Photovoltaic water pumping system, multicellular converter, fault diagnosis based machine
learning, fault tolerant control (FTC).

I. INTRODUCTION

A. MOTIVATION

The most important characteristic of isolated sites in deserts
is the dry and hot climate, scarcity of water, unpredictable
rainfall, and plentiful sunshine. As the water is indispensable,
the lives of inhabitants of these desert regions are threatened.
Pumping water from the deep soil layer is considered a
reliable solution for providing water. However, this solution
requires an external power source [1]. Owing to the high cost
of electric grids in isolated desert, rural, and agricultural sites,
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photovoltaic energy has become the optimal solution as it
is environmentally friendly, has fewer maintenance coasts,
and is freely available [2]. Therefore, at isolated sites, photo-
voltaic (PV) panels are used in pumping systems for irrigation
and potable water. Power electronic converters are used in
solar energy conversion as an interface between PV panels
and electric loads, and their efficiency depends on the type
and state of health of the power converter. However, most
power converters require a large number of power switches
and power capacitors, which makes the system more suscep-
tible to the occurrence of faults. Therefore, fault diagnosis
and fault-tolerant control are necessary to ensure high perfor-
mance of the power converter.
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B. RELATED WORKS

In [1], a sizing study to increase the performance of a solar
photovoltaic water pumping system in any season or under
any climatic conditions was conducted, and in [3], a technical,
economic, and social approach for the optimal design of
photovoltaic water pumping systems for rural communities
was proposed. Different topologies of power converters are
used in PV systems to enhance the reliability and efficiency
of solar energy systems based on PV panels. a DC/DC classic
converter is used in water pumping system based on photo-
voltaic panels is used in [4], a classical two-level topology
is used in [5] and [6] for PV water pumping system in rural
areas. However, a considerable voltage stress on switching
devices in the classical two-level topology and high dv/dt
ratio increases the power loss and can cause damage to
switching devices [7], [8]. Therefore, a multilevel converter
topology is proposed in a PV water pumping system [9] that
can operate with low-voltage stress across devices and a wide
voltage range. Among multilevel topologies, a multicellular
converter which has more advantages such as can operate
under high DC voltage, lower rating power switches [10],
[11], [12], [13], increased switching frequency, reduced volt-
age stress, and adjustable output voltage [14], [15]. In [16],
a multicellular converter with a new Maximum Power Point
Tracking (MPPT) algorithm was used in photovoltaic appli-
cations. However, a failure in flying capacitors should elim-
inate all the advantages of multicellular topology, reduce
the power quality, affect the power transmission from the
PV panel to the electric motor, and increase the mechani-
cal and thermal stresses in electric motors. Therefore, the
use of fault diagnosis and fault tolerant control (FTC) is
necessary to isolate faults and maintain the stability of PV
systems and electric motors. In [17], [18], and [19], fault
diagnosis-based machine learning was used to detect the fail-
ure of flying capacitors and power switches in multicellular
converters.

C. CONTRIBUTION

In this study, a photovoltaic water-pumping system based
on two power converters is proposed. The first is used for
the MPPT algorithm, and the second is a three-cell multi-
cellular converter used to control the DC submerged pump.
In order to ensure high performance of the proposed sys-
tem, a fault diagnosis-based machine learning approach is
used. Fault-tolerant control applied to multicellular power
converters allows the isolation of failures and maintain the
operation of the proposed system with minimum mechan-
ical vibration, reduced heating stress, and increased life-
time of the DC motor windings. The effectiveness and
practicability of the proposed structure are verified via
simulation.

This paper is organized as follows: In section II, the
modeling of photovoltaic panels with the MPPT algorithm
is described. Section III describes multicellular converter
modeling and control using the sliding mode approach in
different operating modes (healthy and faulty modes). Fault
diagnosis using a machine-learning approach is considered
in Section 4. Fault-tolerant control is detailed in Section 5.
Finally, Section 6 concludes the paper.
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Figure 1 illustrates the proposed structure.

Photovoltaic
system
DC submerged
pump
MPPT
Three cells
pC/ [— .
Multicellular
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FIGURE 1. Proposed topology of water pumping system.

D. PHOTOVOLTAIC SYSTEM

The equivalent electric circuit and modeling of the PV sys-
tem are illustrated and detailed in references [16] using the
following equation:

e = el1 — Ky (exp(-—2 )] (1)
pv = Lsc 1(eXp i2Voe
With:

Iypp Vmpp
ki =1 - )exp(— )

Isc P k2voc

(V‘/;[PP _ 1) (2)

k oc

2= ———F——
ln(l—]";%)

The MPPT control based on the P&Os algorithm applied to
the DC/DC converter is described in the flowchart in Figure 3.

0 20 40 60
Voltage Vv (L)

FIGURE 2. Power-voltage characteristic curve of a PV panels.

Il. MODELING AND CONTROL OF MULTICELLULAR
CONVERTER AND DC MOTOR
Figure.4 shows a three-cell DC/DC multicellular converter
and DC motor.

The electromagnetic force E;,, of DC motor is:

Ep = K,Q 3)

The currents in flying capacitor C1 = C2 = C can be
expressed as:

ici =C—V,

i =l

Cl1 dt Cl1

ico =C—V, 4)
o = L

C2 it C2
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Measure I, and Vy,

‘ dV,= V(n)- V(n-1) and dI,,= I(n)- I(n-1) ‘

Increase Decrease Increase Decrease
voltage voltage voltage voltage

1 1 1 1

FIGURE 3. P & O algorithm.

Three cells multicellular power converter

En=K,Q

FIGURE 4. Multicellular converter topology.

The voltages of flying capacitors are given by:

dt = C !
It Cc2 C 3 2

According to the Figure.l we can write the output voltage of
multicellular converter Vg

Vs =S81Ver + S2Ver — Vel + 83[Vae — Vel (6)
And the filter current ir can be expressed as:

dip 1
L S1Ver +82[Vez — Verl + 83 [Vae — Vezl)
t Lp

— —ip— —Q @)

V:a 0 0 0 Vel

ng =|0 0 2 |:VC2:|

in 0 0 |l
2 E

= i Si
+| o0 % ’g |:Szi|

Ver Vea—Ver  Vae—Ver S3
Lp Lp Lp
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Y ¢
Lp
The mechanical equation of DC motor is:

7 dQ
da
A. SLIDING MODE CONTROL OF MULTICELLULAR
CONVERTER WITH DC MOTOR
The nonlinear model of multicellular converter in equation 8
can be written as:

pip —fQ—T, ©)

=f(x)+gx)u+H (10)
With
_ 0 O 0
Me 00 0
x=|Ve [, f(x)= —Rp |’
L ip 0 O T
P
- —ip ip 0
C
S ip S1
g(x) = 0 — — ou=|$S;
C C S
Voo Yo -Va o ve-ve .
L Lp Lp Lp
and
0 Vae
3
H= Igga , Xref = | 2Vde
Lp 1Pref
The error vector is expressed as:
A%
5 Ve
€ = Xref —X = 2Vic (11
-V
3 c2
IPref — 1p

This error e is considered to be the sliding surface of the
sliding mode control, with V is the Lyapunov function.

V= %eTe (12)
VvV =cl¢ (13)
V = eT(;‘ — Xref)

V =el(f (x) +g (X) u + H—Xrep) (14)

Control low of sliding mode control is given by:
U =Ueq + Uy (15)

uy, is the sliding surface sign function and ueq is the control
input, which forces the state variables to the origin (zero
error) on the sliding surface.

The equivalent ueq control led to e = 0 and e= 0.

So,

Ueq = — (2 (X))~ (F(X) +H—%ref) (16)
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u=—(g(x) " (fx) +H—%rer) + un (17)

Substituation of equation 16 in equation 13

V=eclgx)u, (18)
. ip  Vci ip ip Vo2 —Va
V= T — — 1S - _ — —= 1S
e|:(C+Lp)l+(C C—i— Lo )2
ip (Vac— Ve2)
— 4+ —=1]S 19
+ (C 4 Qe ) 3} (19)

Toassure the Lyapunov stability the derivative of V must
be negative.

. [ 1(ir Veci
Si=-— T(2 A
1 Slgn _e (C LP )j|
. [ rfir ip Vc2—Vci
Sy, =— T 24 == '~
2 sign _e (C C + Lo )]

. [rfir (Vac—Vc2)
Sy =— T2 e T 20
3 sign _e (C + Lo )i| (20)

the sliding mode control of multicellular converter is repres-
nted in the figure 2

— Ve
LYAPUNOV || I ‘!
function V + Vdes3

J/ VCZ
+ 2*Vde/3

dV/dt<0 — I
N + Tpref.

Sliding surface

il
s
4 E

FIGURE 5. Sliding mode control of shunt active power filter.

N

Parameters simulation are given in table.1

TABLE 1. Simulation parameter.

Parameter Value
Ve 220V
Rpand Lp 0.5Q and 1.2mH
C 40uF
K, 0.9
Qrer 100 rad/S

B. HEALTHY MODE

The simulation results of the healthy mode (Figure 6 to
Figure 9) show that the flying capacitor voltages regulate at
their references, the angular speed is equal to 100 rad/s, and
the electromagnetic torque is equal to the resistant torque.
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FIGURE 6. Flying capacitor voltages and DC side voltage in healthy mode.
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FIGURE 7. Angular speed of DC motor in healthy mode.
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FIGURE 8. Electromagnetic torque and resistant torque in healthy mode.
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FIGURE 9. DC motor current in healthy mode.

C. ONE CAPACITOR FAILURE

In this part, the flying capacitor C, is defected at instant
0.5 S, as presented in Figure 10, the flying capacitor voltages
are not regulated to their references (Figure.11), the angular
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speed diverges from 100 rad/S (AQ2 = 2.5rad/S), and the
electromagnetic torque and DC motor currant show large
variations (AT em= 10 NM, Aip,= 10A).

One capacitor failure

VAR
(T H Tl
' T:: — — -
o | oo
D,_LD'/_‘ N4 N4
T T T
S3' S, S/

FIGURE 10. One capacitor failure.

250

200 -

150 F

100 |

50 f

0 0.2 0.4 0.6 0.8 1
Time (Seconds)

FIGURE 11. Flying capacitor voltages and DC side voltage in one capacitor
failure mode.
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FIGURE 12. Angular speed of DC motor in one capacitor failure mode.

These results demonstrate that the defects of one flying
capacitor in a multicellular converter cause mechanical vibra-
tions and current harmonics in stator windings.

D. CAPACITOR FAULTS
The multicellular converter has two defective flying capaci-
tors, as shown in figure.15

Figure 16 shows the Vg4. and flying capacitor voltages,
which deviate from their references, and the angular speed is

VOLUME 11, 2023
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FIGURE 13. Electromagnetic torque and resistant torque in one capacitor
failure mode.
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FIGURE 14. DC motor current in one capacitor failure mode.

AQ = 80rad /S (Figure 17). The electromagnetic torque and
stator current exhibit a large variation from their references
with (AT em= 7 NM, Aipy= 7A).

Two capacitors failure

VA
N4
I T T
Ss' Sy Sy’

FIGURE 15. Two capacitors failure.

Current harmonics in electric machines create a flux har-
monic in the magnetic core, which induces the circulation of
harmonic currents in rotor and stator windings. The inter-
action between harmonic flux and harmonic current gen-
erates harmonic torque and vibrations [7]. In an electric
rotating machine, the mechanical vibrations have the same
frequency as the current harmonics [20], [21]. Because the
current harmonics are multiples of the fundamental frequency
(high frequency), mechanical vibrations also have a high
frequency. Moreover, according to [22], fatigue problems are
proportional to the frequency of the mechanical vibrations.
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FIGURE 16. Flying capacitor voltages and DC side voltage in two

capacitors failure mode.
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FIGURE 17. Angular speed of DC motor in two capacitors failure mode.
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FIGURE 18. Electromagnetic torque and resistant torque in two

capacitors failure mode.

current (A)

0.4

0.6
Time (Seconds)

0.8

FIGURE 19. DC motor current in two capacitors failure mode.

As mentioned in references [23], [24], [25], current harmon-
ics increase the temperature of the electric machine by 5%.
Therefore, in this study, FTC is applied to solve these issues.
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E. FAULTS DIAGNOSIS BASED MACHINE LEARNING
Machine learning and deep learning approaches are used in
references [26], [27], [28].

In this study, fault diagnosis of multicellular convert-
ers using a machine learning-based semi-supervised fuzzy
pattern matching approach during the failure of flying
capacitors.

Three steps are considered in this section:

F. DATA PROCESSING
It tackles a big challenge, which is the extraction of useful
data from massive amounts of raw simulation data.

In this work, different data can change with the failure of
the flying capacitors, such as

- Vcl and Ve2 (figure 11).

- Angular speed of electric motor (figure 12)

- Electromagnetic torque (figure 13)

- Stator current of electric motor (figure 14)
However, to differentiate between different scenarios of fail-
ure, V.1 and V¢, can be considered useful data.

G. DATA MANIPULATION

To make the selected useful data (Vcl and Vc2) easier to
exploit, the signal-to-noise ratio is improved using a low-pass
filter (figures 20 and 21).

Capacitor C1 voltage before filtering

0.6 0.7 0.8 0.9 1 1.1
Time(seconds)

Capacitor C1 voltage after filtering

0.5 0.6 0.7 0.8 0.9 1 1.1
Time(seconds)

FIGURE 20. Voltages of capacitor C1 during failure.

Capacitor C2 voltage before filtering

100 1

0.8 0.85 0.9
Time(seconds)

Capacitor C2 voltage after filtering

T
165 — 7
160 | \ | \ \ | . \
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
Time(seconds)

FIGURE 21. Voltages of capacitor C2 during failure.

After improving the signal-to-noise ratio of the useful data
Vcl and Vc2, figure 22 shows the feature space with two axes
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(Vel and Vc2), which characterize the different operating
modes (healthy, C1, C2, and C1 C2 failure modes).

According to figure 22, the selected feature space is highly
discriminative for different operating modes to ensure good
diagnostics.

feature space
165

160} Healthy mode
—C1 and C2 failure

Q —C1 failure
S 155 —C2 failure
e
3150
-

1451

140

50 55 60 65 70 75
Vel (Volte)

FIGURE 22. Voltages of capacitor C1 during failure.

H. FAULT CLASSIFICATION

This step aimed to create a classifier capable of assigning
a new pattern representing the current operating conditions
in one of the classes in the feature. These classes depict
the healthy operating conditions and the faulty modes (C1,
C2, C1 and C2), and occupy limited regions in the feature
space (Figure. 22). To generate this classifier, a training set
comprising historical data points for the normal and faulty
operating conditions is used. Each data point is visualized as
a pattern in the feature space and is specified by the voltages
Vc1 and V3. In this study, a dynamic classification method
based on semi-supervised fuzzy pattern matching (SSFPM)
is used [26].

SSFPM is a classification method that can learn decision
boundaries between classes in unsupervised, supervised, and
partially supervised learning settings [26]. The membership
of data point measurements in supervised learning mode,
representing the operating conditions of healthy conditions
or failure states, is known in advance. In unsupervised learn-
ing mode, the membership of data points is missing. In the
partially supervised learning mode, the membership of data
points in known classes and operating modes is known in
advance and can be used to learn the membership of new
incoming data points in new classes, such as the occurrence of
new failure modes. The SSFPM learns the decision function
as follows. )

- 1) Estimation of the probability densities (Probji, i=1,.,

¢, j = 1,.., d) for each class Cj according to each feature
or attribute j.

- 2) The probability densities are converted into possi-
bility densities (Possji, i=1,.,¢c,j=1,., d) using
the Dubois and Prade probabilities for the possibility
transformation.

For a new incoming data point x, SSFPM performs the clas-
sification as follows: ,

- Determine the possibility membership value poss]i of
x according to each class Cj and each attribute j by
projecting it onto the corresponding possibility density,

Poss]i,

VOLUME 11, 2023

- Fusion of different membership values, possil., poss?,

of x, according to each class C; using the fusion operator
min. This fusion provides the membership value poss; of
x according to class C;:
- Assignment of x to the class with the largest possible
membership value.
Further details can be found in reference [26].
The membership function

mlie{l,2,3,...,¢},j{1,2,3......d} (21)

is estimated for each class i according to feature j. These
membership functions allow the assignment of a pattern to a
class, as follows: The membership value n{ (x) of pattern x to
class i according to feature j is calculated by projecting x into
n{ . Then, the membership values nil ), nl.z(x), nl.3(x) ..
nl-d (x) of x to the class i according to all featuresj =1, .. ., d,
are fused using the aggregation operator ““minimum’ in order
to obtain the membership n{ of x to the class i. Membership
values m1(x), ma(x), m3(x), ...., m. (x) of x for all classes
was then calculated. x will Finally, x is assigned to the class
for which it has the highest membership value. More details
regarding the functioning of this method can be found in [26]
and the references therein. This method was used because
it is simple and has a low and constant classification time
according to the database size [26].
Figure 23 show the proposed fault diagnosis method.

IIl. FAULT TOLERANT CONTROL
A. ONE FLYING CAPACITOR FAILURE
If the flying capacitor C2 is broken, we can eliminate one
cell of the multicellular converter and consider a two-cell
multicellular converter instead of three cells, with S, and S3
having the same switching function.

The equation 6 can be expressed in two cells as the
following:

][0 )]

_ = 0
C C S K,
TlYa Va=Va M * [__wg]
Lp Ly Lp
Vei Vae 0 9
:[ l‘P}’ xref: 2 1_ffl: O _RP ’
ip LP
—ir iEP 0
& = é Vae — Veu and H = [_&Q:|
ke ke v (22)
The error vector e is given by
Vae _
e=x —x=(2 VO (23)
LPref — 1P

This error e is considered as sliding surface of sliding mode
control.
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Multicellular converter

— bc — [

— ~ DC |—

On-line data streaming Controllz Historical data base for
initial off-line learning

Measurments V; and Ve,

Features

Measurments V,; and V.,

| Vai Ve
| Calculation of a pattern x ‘ Preprocessing and data analysis
‘ Updating using the collected \
atterns :
Pattern x £ "‘ Learning pattern Fault tolerant control
g No changes in Ig(x), Dr(x)
Clustering step 1

Collect of patterns representing Changes lntlerpr‘etatlon
the detected drift and evaluation

Changes detected and 41

Initialization of classes Cy

Ti(x)., Dr(x)

confirmed
FIGURE 23. Fault diagnosis structure.
The same method is used to determine the switching 250
. . . q. — Ve, (V
functions with sliding mode control based on the Lyapunov — v W)
Stablllty 200 1 — Ve
. ip Vci 150
S| = —sign el =+ <l
C Lp
) v V. 100 [ .
. lp dc — VC1
S» = —sign =+ L= 24
8 [ C Ly 24) sl ]
In this part, flying capacitor C, is considered to be defected. 0 w w w w
As shown in the simulation results, between 0.4S and 0.58S, 0 0.2 0-‘; s (Sewngf) 08 1
the control without the FTC of the DC motor and after 0.5S,
the FTC is introduced by eliminating the third cell with a FIGURE 25. Flying capacitor voltages in one capacitors failure mode and
defective flying capacitor, and the multicellular converter is ~ FTC¢
considered as a two-cell converter with switching functions
S> =S3. Figure 24 shows the sliding mode control of the
multicellular converter during the failure of a capacitor. 120
100 -
2 50 |
LYAPUNOV | = Vi 3
function V 0 g + Vde/2 5 60 .
=] 8
= qg : A 40 .
n «»n — _lP
dVv/dt<0 + 1pref 20 7
0 | ‘ ‘ ‘
0 02 0.4 0.6 038 1
Time(Seconds)
FIGURE 26. Angular speed of DC motor in in one capacitors failure mode

L L L and FTC.

I@LKH

—|; When applying the FTC at instance 0.5S, the fly-
ing capacitor voltage is regulated at its new reference
v (Vc1 =Vcirer =Vac/2=110V) as shown in Figure 25.

} } } After applying the FTC, the multicellular converter gen-

erates the desired currents (Figure 28), and the DC motor

FIGURE 24. Multicellular converter with FTC in one capacitor failure operates at the desired speed and torque (Figure 26 and
mode. Figure 27).
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0 | | | |
0 0.2 0.4 0.6 0.8 1

Time (Seconds)

FIGURE 27. Electromagnetic torque and resistant torque in one
capacitors failure mode and FTC.

Current (A)

0 I I I I
0 0.2 0.4 0.6 0.8 1

Time(Seconds)

FIGURE 28. DC motor current in one capacitors failure mode and FTC.

B. TWO FLYING CAPACITORS FAILURE

If the two flying capacitors of the multicellular converter
are defective, the FTC modifies the sliding mode control to
hysteresis control, and the three cells have the same switching
function (S; =S; =S3).

Hysteresis - I
comparator +

— 1pref

I 1 1
I@——@—

Lo L
8 & &

FIGURE 29. Multicellular converter with FTC and two capacitors failure
mode.

In this part, the flying capacitors C; and C; are defected,
and the multicellular converter is considered as a two-level
converter with S1 =S, =S3 (Figure 29). At 0.5 S, the FTC
is introduced with hysteresis control. The flying capacitor
voltages are regulated at their reference (Vc; =110V) as pre-
sented in Figure 30, and the angular speed, electromagnetic

VOLUME 11, 2023

torque, and current of the DC motor are at their references
during the application of the FTC (Figures 31-33)

250
— V., v
=V, (V]
200 —V,. (V)|
150 7
1001 7
501 1
0 I I I
0 0.2 04 0.6 0.8 1

Time (Seconds)

FIGURE 30. Flying capacitor voltages in one capacitors failure mode
and FTC.

200

%

=
T
I

Speed (rad/S)
2

w
=
I

0 I I I I
0 0.2 0.4 0.6 0.8 1

Time (Seconds)

FIGURE 31. Angular speed of DC motor in two capacitors failure mode
and FTC.

30 7?“’ (N
—T (NM)

40 |

-40

0.2 0.4 0.6 0.8 1
Time (S)

FIGURE 32. Electromagnetic torque and resistant torque in two
capacitors failure mode and FTC.

In this work, during the faulty modes of multicellular con-
verters, the simulation results prove that the fatigue problem
mitigation, mechanical vibrations are reduced, harmonic cur-
rents in the stator windings are rejected, and consequently, the
heat stress in the DC motor of the PV water-pumping system
is minimized.

In [29] and [30], artificial intelligence-based machine
learning algorithms such as support vector machines (SVM),
artificial neural networks (ANN), and deep neural net-
works (DNN) were used to perform fault diagnosis of power
electronic converters. In [26], SSFPM with reduced compu-
tational complexity and low learning and classification times
was proposed.

39021



IEEE Access

B. Rouabah et al.: Fault Diagnosis Based Machine Learning and FTC of Multicellular Converter

(= W
= =3
I

Current (A)
=

(=1
I

n
S
I

\ |
0 0.2 0.4 0.6 0.8 1
Time (seconds)

FIGURE 33. DC motor current in two capacitors failure mode and FTC.

A multicellular converter in a water-pumping system can
present different operating modes over time. In pattern recog-
nition methods, each mode is represented by a set of similar
patterns that form a bounded region in the feature space
(Vc1 and V), called a class. When a new incoming pattern
is present, the membership function can recognize the class.
The precision of this function depends on prior knowledge of
the system functioning (reference voltage of V¢, reference
voltage of V). In SSFPM, new states must be integrated
and detected online in the dataset. When the information
about some states is insufficient, missing information can be
obtained from the new classified patterns, and the member-
ship functions must be adapted online with the classification
of new incoming patterns.

The SSFPM classification time (detection, integration, and
adaptation online) was 3.5e-1S using a computer with an Intel
(R) Core(TM) i5 and 2.50GHz.

IV. CONCLUSION
This paper presented a photovoltaic water pumping system
using a multicellular power converter with fault-diagnosis-
based machine learning and fault-tolerant control. Sliding
mode and hysteresis controls are used in normal and faulty
operations. The failure of one or two flying capacitors
in a multicellular converter affects the operation of the
water-pumping system as follows:

- Increase the current harmonics in the stator winding of

the DC motor, which can increase the thermal stress.
- Increase the harmonics of electromagnetic torque, which
can increase the mechanical vibrations.

The fault diagnosis and fault-tolerant control of multicellular
converters presented in this work assure the supply in water
when a failure occurs in the flying capacitors of multicellular
converters with reduced mechanical vibrations and reduced
thermal stress.

As a further direction, we propose a deep learning approach
to enhance the performance of fault diagnosis and fault-
tolerant control.
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