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ABSTRACT Weighted Petri nets are common tools for modeling and validating discrete event systems
involving resource allocation, such as flexible manufacturing systems (FMSs). A subclass of weighted Petri
nets called a system of sequential systems with shared resources (S4R) has the power for modeling complex
FMSs where the execution of an operation may require multiple resource types and multiple units of some
resource types. Deadlock resolution is a crucial issue for the operation of an FMS. A direct and efficient
policy is developed in this paper for detecting deadlock markings by extracting a weighted resource flow
graph (WRFG) from an S4R and recovering them by synthesizing a recovery-transition-based controller.
This study contributes to the field with five folds: 1) with S4R, an efficient integrated policy is put forward
for robust supervisor synthesis; 2) it enhances an algorithm for extracting the WRFG from an S4R to reveal
the shared resource competitions by different processes; 3) to detect partial deadlock markings, a technique
for finding weighted circular wait graphs (WCWGs) in WRFG is presented; 4) with WCWGs, an algorithm
is designed for the design of recovery-transition-based controller such that the resulting controlled system
becomes deadlock-free; and 5) it presents a comprehensive analysis to demonstrate the proposed method
by using the Integrated Net Analyzer (INA). With the proposed policy, it is not necessary to generate a
reachability graph, making the method efficient. Finally, the performance of the proposed policy is illustrated
by some commonly used examples.

INDEX TERMS Multi-unit resource system, flexible manufacturing system, deadlock detection and
recovery, liveness, weighted Petri nets, graph theory.

I. INTRODUCTION
Multi-unit resource systems (MURSs) are made up of multi-
ple processes and resources. Flexible manufacturing systems
(FMSs) [1], [2], [3], [4], [5], automated manufacturing
systems (AMSs) [6], [7], [8], [9], [10], [11], [12], various
resource allocation systems (RASs) [14], [15], and multi-
processor system-on-chips (MPSoCs) [16] are examples of
such systems, which fall into the category of discrete event
systems (DESs) [13]. The resources in an FMS include
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robots, machines, fixtures, and buffers. As a kind of MURSs,
an FMS is capable of processing multiple types of parts
in accordance with a predefined sequence of operations
by sharing resources. Circular wait [17] caused by shared-
resource competition is the indication of deadlock occurrence
that lowers the throughput rates and resource utiliza-
tion [18], [19], [20], and even leads to catastrophic outcomes.
Thus, it is crucial to resolve the deadlock problem in FMSs.

Deadlock resolution issues for MURSs have been
extensively investigated by researchers and practition-
ers [21], [22], [23], [24], which is also important for
production scheduling [89]. Depending on the number of
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instances (or units) of each resource type, an FMS is
categorized as a single- or multi-unit resource system. If there
is one instance only for every resource type in an FMS, it is
a single-unit resource system; otherwise, it is an MURS.
In FMSs, the resource allocation states can be described by
a graph. For a single-unit resource system, a circuit in such
a graph necessarily implies the occurrence of a deadlock.
The deadlock issue in an MURS is more complicated due
to the fact that a circuit in such a graph may not result in a
deadlock since a node on the circuit may represent an instance
of a multi-capacity resource. It is worth noting that, as a
special kind of graphs for modeling, Petri nets (PNs) have
found widespread use as a general model of many real-world
systems [25], [26], [27], [28], [29], [30], [31], [32]. This paper
extends the policy developed in [33] for deadlock detection
and recovery in FMSs.

Different from the work in [33], to make it possible to
describe the requirements that multiple units of a resource
type should be used to perform an operation, a generalized
class of Petri nets (S4R) [34] is adopted in this paper. As a
result, more complex real-world FMSs can be modeled well
such that the well-known PN classes S3PR [35], [36] and
WS3PR [11] are proper subclasses of S4Rs.
For deadlock resolution in FMSs, several tools are

available for system modeling, including Petri nets [42],
[43], [44], [45], [46], automata [39], [40], [41], and graph
theory [37], [38]. Because of their inherent characteristics,
among them, PNs are popularly adopted [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56]. Based on PNs, three
types of methods exist for deadlock control, and they are
deadlock detection and recovery (DDR) [57], [58], deadlock
avoidance [22], [59], and deadlock prevention [60], [61].

It is straightforward to apply the first one. By this type of
method, it does not make efforts to avoid the occurrence of
deadlocks; instead, it manages to detect a deadlock when it
occurs. Once detected, some recovery policies are activated
to bring the deadlocked state back to a normal state by
reallocating the resources. In this way, it makes a net live.
This paper develops a PN-based method.

Generally, with PNs, there are mainly two types of
techniques for deadlock resolution in FMSs: reachabil-
ity graph analysis [66], [67], [68] and structural analy-
sis [62], [63], [64], [65]. With the latter, often it leads to
deadlock prevention strategies.

Based on structural analysis techniques, typically as a
structure in PNs, siphons are controlled to develop deadlock
prevention policies for generalized PNs [69], [70], [71],
[72], [73]. This is done by using monitors (control places)
to prevent siphons from being insufficiently marked in
generalized PNs. Nevertheless, when there are a large number
of siphons in the PN model for a system one would face the
high structural complexity issue for designing monitor-based
supervisors using siphons. There are many research reports
on deadlock resolution using deadlock prevention policies,
while few works are done for that using deadlock detection
and recovery (DDR) policies.

Usually, by reachability graph analysis, one can get a most
behaviorally permissive (or optimal) supervisor, since such
an analysis can discover the entire state space of a PN model.
As various markings are clearly identified by a reachability
graph for a PNmodel, such a graph is also useful for recovery
policy development. However, it is always plagued by the
infamous state explosion problem.

Although many methods are developed in the literature to
synthesize controllers for preventing deadlocks, almost all of
them design a controller that is formed by using additional
control places and transitions. Nevertheless, a new method is
put forward by Huang et al. [74]. Instead of adding control
places, it introduces control transitions to the original PN
model to make dead markings live. It is shown that the
resulting controlled system is more permissive than the one
obtained by using the place-adding-based ones. However, for
this type of controller synthesis, no formalized algorithm is
developed for designing control transitions and minimizing
the number of such transitions.

To deal with this issue, a new recovery policy is proposed
by Chen et al. [75] and two ways for realizing the policy are
derived. One of the ways is to design the control transitions by
an iterative strategy such that a control transition is obtained
at each iteration. To do so, at each iteration, it formulates an
integer linear programming problem (ILPP) and solves it. The
other way is to develop an integrated ILPP and solve it to get
all the control transitions at once. Although both methods are
applicable to all classes of PN models for FMSs, the number
of variables and constraints in the obtained ILPPs is very large
such that the computational costs are enormous.

In [76], an iterative procedure is proposed to design
controllers formed by control transitions. With iteration,
it aims to avoid the state explosion problem. However,
it needs to check the termination conditions at each iteration,
slowing the computational speed down.

Based on the transitions that can access the entire reachable
space by firing the recovery transitions, Row and Pan [77]
propose a deadlock recovery policy. However, it can neither
avoid generating the reachability graph for the PN model.
They also propose an iterative technique to compute control
transitions by following the crucial dead marking concept
in [78].

An iterative vector intersection technique is developed
in [79] to decide a recovery transition at each iteration. The
obtained recovery transition can recover as many deadlock
markings as possible. Although this approach does not need
to solve ILPPs and can result in a live controlled system with
all reachable markings, a reachability graph for enumerating
all deadlock markings is still inevitable. Pan [80] describes an
iterative policy for determining control transitions. Although
his policy results in fewer control transitions than the previous
methods, it is necessary to generate a reachability graph at
every iteration. As a result, it cannot be used in large systems.

Latterly, Lu et al. [33] propose a novel DDR policy and
develop an algorithm for the construction of a resource
flow graph (RFG) of the PN model without generating a
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reachability graph for the model. The obtained RFG can
then be used to generate a set of loop graphs. With the
relationships between partial deadlocks and loop graphs,
it then synthesizes recovery transitions for the loop graphs
to form a controller such that the resulting controlled
system is deadlock-free. Indeed, this method can make
the controlled system deadlock-free without generating a
reachability graph. Nevertheless, it is applicable to ordinary
PNs that cannot model complex real-world systems, which is
a serious limitation.

This paper focuses on the DDR policy for those FMSs
presented by Lu et al. in [33]. Different from [33], this
paper adopts S4R, a weighted class of PNs, to model more
complex real-world systems, where an operation needs to be
performed by multiple units from multiple resource types.
Such systems are multi-unit resource ones that contain con-
currently cyclic sequential processes, and disassembly and
assembly operations. First, with S4R, we design an algorithm
to construct the weighted RFG (WRFG), revealing the shared
resource competition by various processes. Then, from the
WRFG, a set of weighted circular wait graphs (WCWGs)
can be constructed. With the relationship between partial
deadlocks and WCWGs, we can detect partial deadlocks.
An algorithm is presented for designing recovery transitions
for deadlocked markings in a set of WCWGs. A complete
analysis of the resulting controlled system is performed to
demonstrate deadlock-freeness of the controlled S4R for all
reachable markings. Based on the Integrated Net Analyzer
(INA), S4R is validated and tested via simulation. With the
proposed DDR policy, the computation of a reachability
graph for an S4R model is avoided, which reduces the risk
of state explosion.

The remainder of this work is constructed as follows.
The next section presents the transition-based DDR policy
within S4R and an algorithm for the construction of aWRFG.
This algorithm and the concept of WCWG are demonstrated
via a simple example. Then, it shows how to detect
partial deadlocks by using the relationship between WCWGs
and partial deadlock markings. Section III introduces an
algorithm for creating recovery transitions such that when
there is a partial deadlock, these transitions are enabled.
The resulting net is deadlock-free for all the reachable
markings when the decided recovery transitions are added
into the model. The proposed policy is demonstrated by using
some commonly used examples in Section IV. Section V
summarizes the work with conclusions and future research
directions. The necessary background, such as the definitions
and properties of a system of sequential systems with shared
resources (S4R), the fundamentals of PNs, and the deadlock
resolution issue in multi-unit resource systems are clarified
in the Appendix.

II. THE PROPOSED TRANSITION-BASED
RECOVERY POLICY
This section presents a transition-based recovery policy for
deadlock control for systems modeled by an S4R PN. This

policy consists of three stages. At the first stage, it shows
how to construct a WRFG from an S4R. At the second
stage, it gives how to find WCWGs from WRFG. The
WCWGs represent a straightforward approach for detecting
the competition among the processes and shared resources.
By analyzing the relationship between WCWGs and partial
deadlocks, one can detect all the partial deadlocks. The
last stage explains how to construct the transitions that are
enabled at the deadlocked markings and make the system
back to live.

A. WEIGHTED RESOURCE FLOW GRAPH (WRFG)
No preemption, hold and wait, mutual exclusion, and circular
wait are necessary conditions for a deadlock to occur in a
resource allocation system [17]. By the features of FMSs,
the first three conditions are always held, and only the last
one can be broken by properly allocating the resources in a
system. To avoid the occurrence of a deadlock, one needs to
make sure that there will be no circular wait.
Definition 1: Given an S4R PN (N ,M0) = (PA ∪ P0 ∪

PR,T ,F,W ,M0), a WRFG in N is a digraph WRFG =
(V ,A,W ), where

1) V = PA ∪ PR.
2) A ⊆ V ×V with A = A1∪A2, satisfying the following

statements:
a) A1 = {(pa, pr )|pa ∈ PA, pr ∈ PR, p·r ∩

· pa ̸= ∅}.
b) A2 = {(pr , pa)|pr ∈ PR, pa ∈ PA, p·a ∩ p

·
r ̸= ∅}.

c) W = WA1∪WA2, whereWA1 : (pr×pa)→ Nn =

{1, 2, . . . , n} gives the weight of an arc (pr , pa),
indicating the number of tokens granted from pr
to pa, andWA2 : (pa × pr )→ Nn = {1, 2, . . . , n}
gives the weight of an arc (pa, pr ), indicating the
number of tokens requested from pa to pr

Definition 2: Given an S4R PN (N ,M0) = (PA ∪
P0 ∪ PR,T ,F,W ,M0), its WRFG is defined as (V ,A,W ).
A marking of WRFG is denoted by MG : V → N =
{0, 1, 2, . . .}, where MG(V ) =

∑
p∈V M (p) is the number

of tokens in V, its initial marking is denoted by MG0 =∑
p∈V M0(p), and the initial number of tokens in p at marking

MG0 is given byMG0(p).
It is clear from Definition 1 that the WRFG illustrates the

relationship between operation and resource places, where
W (pa, pr ) represents the number of tokens that pa should
need from pr for starting or completing a process, and
W (pr , pa) represents the number of tokens that pr should
grant to pa for starting or completing a process. By analyzing
the WRFGs of an S4R Petri net, the token flows can be
observed directly.

The procedure for computing a WRFG in an S4R is given
in Algorithm 1.

To illustrate this algorithm, we use the S4R given in Fig. 1
to find the WRFG. In this net, PR = {p12, p13, p14, p15} and
PA = {p1, p2, p3, p4, p5, p6, p8, p9, p10}.
Due to Algorithm 1, the WRFG for the S4R in Fig. 1

is shown in Fig. 2, where A1 = {(p12, p1), (p12, p10),
(p13, p2), (p13, p5), (p13, p9), (p14, p3), (p14, p6), (p14, p8),

VOLUME 11, 2023 51725



M. S. Elsayed et al.: Optimal Transition-Based Recovery Policy for Controlling Deadlock

Algorithm 1 Construction of the WRFG in an S4R

Input: An S4R (N ,M0) = (PA ∪ P0 ∪ PR,T ,F , W ,M0) for
an FMS.
Output: A WRFG (V ,A,W ) from N.
1: V ← ∅,A2← ∅,A1← ∅,WA1← ∅,WA2← ∅.
2: for all pr ∈ PR do
3: for all t ∈ p·r do
4: if there is a pa ∈ t · ∩ PA then
5: A1← {(pr , pa)} ∪ A1.
6: V ← {pr , pa} ∪ V .
7: WA1 ← ({pr } × T ) ∪ (T × {pr }) ← Nn =

{1, 2, . . . , n}.
8: end if
9: end for

10: end for
11: for all pa ∈ PA do
12: for all t ∈ p·a do
13: if there exists a pr ∈ PR ∩· t then
14: A2← {(pa, pr )} ∪ A2.
15: V ← {pr , pa} ∪ V .
16: WA2 ← ({pa} × T ) ∪ (T × {pa}) ← Nn =

{1, 2, . . . , n}.
17: end if
18: end for
19: end for
20: A← A1 ∪ A2.
21: W ← WA1 ∪WA2.
22: output: WRFG = (V ,A,W ).
23: End.

FIGURE 1. An S4R (N, M0).

(p15, p4)}, and A2 = {(p1, p13), (p2, p14), (p3, p15),
(p5, p14), (p6, p15), (p8, p13), (p9, p12)}.

FIGURE 2. Weighted resource flow graph (WRFG) of an S4R (N, M0) in
Fig. 1.

B. WEIGHTED CIRCULAR WAIT GRAPH (WCWG)
Definition 3: A WCWG is a circuit digraph CW =

(V ′,C,W ) derived from a WRFG = (V ,A,W ) of an S4R
(N ,M0) = (PA ∪ P0 ∪ PR,T ,F,W ,M0), where

1) V ′ ⊆ V is a set of vertices such that V ′ =
{pr1, pa1, pr2, pa2, . . . , prn, pan} with pai ∈ PA and
pri ∈ PR

2) C ⊆ V ′×V ′ is a set of directed arcs and the following
conditions hold.

a) ∀i ∈ {1, 2, . . . , n}, there is a place pair
(pri, pai) ∈ C .

b) ∀i ∈ {1, 2, . . . , n − 1}, there is a place pair
(pai, pri+1) ∈ C .

c) there is a place pair (pan, pr1) ∈ C .
3) W = WV ′1 ∪WV ′2, where

a) WV ′1 : (pr × pa)→ Nn = {1, 2, . . . , n} gives the
weight of arcs (pr × pa), indicating the number
of tokens granted from a resource place pr to an
operation place pa.

b) WV ′2 : (pa × pr )→ Nn = {1, 2, . . . , n} gives the
weight of arcs (pa×pr ), indicating the number of
tokens requested from an operation place pa to a
resource place pr .

4) For V ′ = {pri, pai, prj, paj, pri} with pai ∈ PA and
pri ∈ PR, i ∈ {1, 2, 3, . . . , n}, pri ̸= prj(pai ̸= paj) if
i ̸= j, (pri, pai) ∈ C is called an in-arc from pri to pai,
and WV ′1(pri, pai) = M0(pri) presents the number of
tokens granted from pri to pai; (pai, prj) ∈ C is called
the out-arc from pai to prj, andWV ′2(pai, prj) = M0(pri)
presents the number of tokens requested from pai to prj.
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FIGURE 3. Weighted circular wait graph (WCWG) of (WRFG) in Fig. 2.

Let C1 = {(pr , pa)} and C2 = {(pa, pr )} be The
sets of in-arcs and out-arcs of operation places in V ′,
respectively. The set of WCWGs derived from a WRFG
is denoted as Ncw = {Cw1,Cw2, . . . ,Cwi}, where Cwi =
(V ′i ,Ci,Wi), i ∈ {1, 2, . . . , n}. According to Definition 3,
there are three weighted circular wait graphs in Fig. 2,
Cw1 = (V ′1,C1,W1),Cw2 = (V ′2,C2,W2), and Cw3 =
(V ′3,C3,W3), where Cw1 = {p12, p1, p13, p9},Cw2 =

{p13, p2, p14, p8} , and Cw3 = {p13, p5, p14, p8}. Hence,
Ncw = {Cw1,Cw2,Cw3}, and the three weighted circular wait
graphs are shown in Fig. 3.

C. RELATIONSHIP BETWEEN WCWG AND PARTIAL
DEADLOCKS
Definition 4: Given an S4R (N ,M0) = (PA ∪ P0 ∪

PR,T ,F,W ,M0), a marking M is defined as a partial
deadlock if the following conditions hold:

1) ∄t ∈ T ′ such thatM [t⟩,
2) ∃T ′ ̸= ∅ ∧ T ′ ⊆ T , and
3) ∀M ′ ∈ R(N ,M ), ∄t ∈ T ′ | M ′[t⟩.
Proposition 1: Any deadlock is also a partial deadlock.
Proof: From Definition 4, it is certain thatM is a partial

deadlock if any transition T ′ ⊆ T is dead atM and those that
can be reached fromM . That is to say, no transition t ∈ T ′ can
be enabled atmarkingM and themarkings that can be reached
from M , i.e., it is at a deadlock state. Thus, with T ′ = T ,
a deadlock is a special partial deadlock. ■

In (N ,M0), when a partial deadlock markingM is reached,
without external intervention, any transition in T ′ can never
be enabled. To make a net live (deadlock-free), one needs to
detect all partial deadlock markings and recover them.

Note that a WCWG CW = (V ′,C,W ) contains two
different types of arcs: in-arcs {(pr , pa)} and out-arcs
{(pa, pr )}. It follows from the evolution rules of S4Rs,
a transition t ∈·pa should be enabled by tokens in pr , i.e.,
there should be tokens in pr for starting the operationmodeled

by pa. Furthermore, to make such a transition t enabled, the
number of tokens in pr should be greater than or equal to the
weight of the c. Thus, the relationship between pr and pa is
presented by arc (pr , pa).

By an out-arc (pa, pr ), the enabling of t ∈ p·a needs tokens
in its input place pr , i.e., there should be tokens in pr for
finishing the operation modeled by pa. Furthermore, firing
such a transition t , the number of tokens released from pa to
pr is equal to the weight of (pa, pr ). Thus, the relationship
between pa and pr is described by arc (pa, pr ).
Let Ncw = {Cw1,Cw2, . . . ,Cwn} be the set of WCWGs in

a WRFG for an S4R (N ,M0), where Cwi = (V ′i ,Ci,Wi), and
Ci = C1

i ∪ C
2
i with C1

i and C2
i being the sets of in-arcs and

out-arcs of operation places, respectively. Consider the place
set in WCWGs denoted as V ′∗ =

⋃n
i V
′
i , and the set of in-arcs

(out-arcs) denoted as C1
∗ =

⋃n
i C

1
i (C

2
∗ =

⋃n
i C

2
i ). Given a

resource place pr ∈ V ′∗, we define the output operation place
set of pr as Pr→a = {pa|(pr , pa) ∈ C1

∗ }.
Definition 5: A marking Md

cw =
∑

p∈V ′ M
d
cw(p)p is said

to be a deadlocked marking in a WCWG Cw = (V ′,C,W ),
if for all resource places pr ∈ V ′, the following equations
hold:∑

pa∈Pr→a

Md
cw(pa) = M0

cw(Pr ) (1)

Md
cw(Pr ) = 0 (2)

Md
cw(P) = {1, 2, 3, . . .}, p ∈ Pr→a ∩ V ′ (3)

Md
cw(P) = {0, 1, 2, 3, . . .}, p ∈ Pr→a \ V ′ (4)

whereM0
cw is the initial marking of the WRFG.

The set of all deadlocked markings in a WCWG
Cw = (V ′,C,W ) is denoted asMd

cw. Algorithm 2 presents
the computation of the set of deadlocked markings of each
WCWGs (Cw) in WRFG.

Consider an S4R (N ,M0) and its WRFG presented in
Figs. 1 and 2, respectively, where there are three WCWGs
as shown in Fig. 3. According to Algorithm 2, there are three
deadlocked markings: Md

cw1 = p1 + 2p9 + 0p12 + 0p13 in
Cw1 = {p12, p1, p13, p9}, Md

cw2 = p2 + p8 + 0p13 + 0p14 in
Cw2 = {p13, p2, p14, p8}, andMd

cw3 = p5 + p8 + 0p13 + 0p14
in Cw3 = {p13, p5, p14, p8}.
Theorem 1: Let Md

cw ∈Md
cw be a deadlocked marking in

a WCWGs Cw = (V ′,C,W ). Marking M ∈ R(N ,M0) is a
partial deadlock one ifM ∈Md

cw.
Proof: As seen, in a WCWG Cw = (V ′,C,W ),

let V ′ = {pr1, pa1, pr2, pa2, . . . , prn, pan, pr1}, C =

{(pr1, pa1), (pa1, pr2), (pr2, pa2), . . . , (prn, pan), (pan, pr1)},
and W = WV ′1 ∪ WV ′2, where WV ′1 : (pr × pa) → Nn =

{1, 2, . . . , n}, WV ′2 : (pa × pr ) → Nn = {1, 2, . . . , n},
pri ∈ PR, and pai ∈ PA, i ∈ {1, 2, . . . , n − 1}. According
to Definition 5, a deadlocked marking Md

cw of WCWG (Cw)
is a state at which the tokens in pr1 are granted to pa1, those in
pr2 are granted to pa2, . . ., and those in prn are granted to pan.
In this state, no token is in any resource place in V ′, implying
that the process presented by pai has started. Then, to finish
these processes, pa1 requests the tokens in pr2 that is currently
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Algorithm 2 Computation of deadlocked markings of
WCWGs in a WRFG
Input: A WRFG = (V ,A,W ) of an S4R (N ,M0) = (PA ∪
P0 ∪ PR,T ,F,W ,M0).
Output: Deadlocked markings of WCWG Cw = (V ′,C,W )
in a WRFG.
1: Find all WCWGs (Cw), denoted by Ncw =

{Cw1,Cw2, . . . ,Cwn}, where Cwi = (V ′i ,Ci,Wi), i ∈
{1, 2, . . . , n}, according to Definition 3.

2: for all Cwi← (V ′i ,Ci,Wi) ∈ Ncw do
3: for all pr ∈ V ′i ∩ PR do
4: Find the deadlocked markings that satisfy Eqs.

(1), (2), (3), and 4.
5: LetMd

cw be the set of deadlocked markings of
Cwi.

6: end for
7: end for
8: output: The deadlockedmarkings of eachWCWGCw =

(V ′,C,W ) in weighted resource flow graph WRFG, i.e.,
Md
cw1,M

d
cw2, . . . ,M

d
cwn.

9: End.

held by pa2. Similarly, for i ∈ {1, 2, . . . , n − 1}, pai requests
the tokens in pri+1 that is currently held by pai+1. Finally, pan
requests the tokens in pr1 that is currently held by pa1. which
leads to a deadlocked circular wait. As a result, a subnet N ′

of N formed by the places in V ′ is dead at Md
cw. Let T

′ be
the set of transitions in N ′. No transitions in T ′ is enabled at
Md
cw. For all M in Md

cw, no transition t in T ′ is enabled at M .
By Definition 4,M is a partial deadlock. ■
To break a weighted circular wait, one needs to enforce

the operation places at Md
cw to let the tokens move back to

the corresponding resource places. One way to do so is to
construct recovery transitions such that they are enabled at
partial deadlock markings and firing them can recover the
system to live states. In this way, one needs only to consider
a WCWGs Cw = (V ′,C,W ) to detect the deadlocked
markingsMd

cw, and then design a recovery transition for them.

III. TRANSITION-BASED RECOVERY POLICY
An optimal transition-based recovery policy for eachWCWG
(Cw) is proposed in this section. Notice that, at a partial
deadlock marking Md

cw, a designed recovery transition
should be enabled such that its firing can function as
resource reallocation to release the tokens from the operation
places back to the corresponding resource places. When the
controller formed by the designed recovery transitions is
applied, the controlled system becomes deadlock-free with
all reachable markings.

Let (N ,M0) be an S4R and (Nr ,M0) be its controlled
system under the control of a recovery-transition-based con-
troller. Let tr denote a recovery transition for a WCWG Cw
with the incidence vector [Nr ](P, tr ) = [x1, x2, x3, . . . , xn]T ,
where n is the number of places. At Md

cw in a WCWG Cw,

in V ′, the tokens originally owned by the resource places are
currently occupied by the operation places and no resource
place holds a token. Hence, we design recovery transitions to
return the tokens to resource places. Consider the following
equations with tr being a designed recovery transition:

[Nr ](pa, tr ) = −W (pr , pa) ∀pa ∈ PA ∩ V ′,

pr ∈ PR ∧ pr→a (5)

[Nr ](pr , tr ) = W (pr , pa) ∀pr ∈ PR ∩ V ′,

pa ∈ PA ∧ pr→a (6)

[Nr ](p, tr ) = 0 ∀p ∈ P \ (P0 ∪ V ′) (7)

Eq. (5) means that firing tr reduces the number of tokens
in the operation places in V ′ and the reduced number is equal
to the weights of their input arcs (the arcs are from their
input resource places). Eq. (6) means that firing tr increases
the number of tokens in the resource places in V ′ and the
increased number is equal to the weights of their output arcs
(the arcs are from their output operation places). Eq. (7)
indicates that firing tr does not change the number of tokens
in places that do not belong to V ′ ∪ P0.
To get the fully incidence vector of tr , x ′is for each place

p0i ∈ P0 must be computed. Let I denote a P-vector for
an S4R. It is known that IT · [N ] = 0T with positive
integers for I ensures the conservativeness of a PN, which
presents the necessary condition for structural boundedness
and liveness of an S4R. Therefore, one needs to guarantee
conservativeness of the controlled system by designing a
recovery-transition-based controller.

For an S4R, we have ∥ Ip0i ∥= {p
0i
} ∪ PA. We denote

a minimal P-semiflow associated with p0i as IT
p0i
=

[IT
p0i
(p0i), IT

p0i
(P0 \ {p0i}), IT

p0i
(PA), ITp0i (PR)], where I

T
p0i
(P0 \

{p0i}) = 0 and IT
p0i
(PR) = 0. To ensure the conservativeness

of the controlled Nr , ITp0i [Nr ](P, tr ) = 0 should hold,

i.e., IT
p0i
[Nr ]({p0i} ∪ (P0 \ {p0i} ∪ PA ∪ PR, tr ) = 0.

As known, IT
p0i
(P0 \ {p0i}) = 0 and IT

p0i
(PR) = 0, i.e.,

IT
p0i
(PA).[Nr ](PA, tr )+ ITp0i (p

0i).[Nr ](p0i, tr ) = 0. resulting in

[Nr ](p0i, tr ) = −ITp0i (PA).[Nr ](PA, tr )/I
T
p0i
(p0i). By (5) and

(7), we already get [Nr ](pa, tr ). Then, for any p0i ∈ P0,
we have

xi = −
∑
pai∈PA

Ip0i (p
ai)xai/Ip0i (p

0i), ∀p0i ∈ P0 (8)

In this way, we can fully compute the incidence vector
[Nr ](p, tr ) for tr . Also, in a WRFG, the number of required
recovery transitions is equal to the number of WCWGs.
By doing so, it is certain that a behaviorally optimal recovery-
transition-based controller is designed to make the controlled
net deadlock-free with all reachable markings. Algorithm 3
presents the procedure to design the recovery-transition-
based policy.
Theorem 2: The controlled system (Nr ,M0) obtained

from Algorithm 3 is deadlock-free.
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Algorithm 3 Computation of a controlled live system
(Nr ,M0) by adding recovery transitions

Input: An S4R (N ,M0) = (PA ∪ P0 ∪ PR,T ,F,W ,M0) for
an FMS.
Output: A controlled live system (Nr ,M0).
1: Construct the WRFG = (V ,A,W ) of N by applying

Algorithm 1.
2: Find all the WCWGs (Cw) = (V ′,C,W ) in WRFG

denoted by Ncw = {Cw1,Cw2, . . . ,Cwm}, where Cwx =
(V ′x ,Cx ,Wx), x ∈ {1, 2, . . . , n}.

3: Find the deadlocked markings in WCWGs:
Md

cw1,M
d
cw2, . . . ,M

d
cwn, by applying Algorithm 2.

4: Tr ← ∅. /∗ the set of designed recovery transitions ∗/
5: for allMd

cwi ∈Md
cw do

6: Compute the incidence vector [Nr ](P, tri) by Eqs.
(5)–(8).

7: Tr ← Tr ∪ {tri}. /∗ add a recovery transition tri of
Md
cwi. ∗/

8: end for
9: Get the controlled system (Nr ,M0) by applying the

controller formed by Tr .
10: Output: (Nr ,M0)
11: End.

Proof: Assume that there exists a deadlock marking M
in (Nr ,M0). MarkingM must be a partial deadlock according
to Proposition 1. It follows from Theorem 1 that a deadlocked
marking Md

cwi ∈ Md
cw exists. In this case, by applying

Algorithm 3, one can design a recovery transition tri such that
any partial deadlocks inMd

cw can be recovered. Therefore,
(Nr ,M0) will not be deadlocked atM . ■
Now, consider the S4Rgiven in Fig. 1. For this net, there are

1280 reachable markings with six dead states. Its WRFG =
(V ,A,W ) is presented in Fig. 2 with threeWCWGs as shown
in Fig. 3, Cw1 = (V ′1,C1,W1),Cw2 = (V ′2,C2,W2), and
Cw3 = (V ′3,C3,W3), where Cw1 = {p12, p1, p13, p9},Cw2 =
{p13, p2, p14, p8}, and Cw3 = {p13, p5, p14, p8}. In Cw1, the
set of in-arcs is C1 = {(p12, p1), (p13, p9)} and the set of
out-arcs is C2 = {(p1, p13), (p9, p12)}; in Cw2, the set of in-
arcs is C1 = {(p13, p2), (p14, p8)} and the set of out-arcs
is C2 = {(p2, p14), (p8, p13)}; in Cw3, the set of in-arcs is
C1 = {(p13, p5), (p14, p8)} and the set of out-arcs is C2 =

{(p2, p14), (p8, p13)}. Md
cw1 = p1 + 2p9 + 0p12 + 0p13 is

only one deadlocked marking in Cw1 = {p12, p1, p13, p9},
Md
cw2 = p2+p8+0p13+0p14 is only one deadlockedmarking

inCw2 = {p13, p2, p14, p8}, andMd
cw3 = p5+p8+0p13+0p14

is only one deadlocked marking in Cw3 = {p13, p5, p14, p8}.
The recovery transition tr1 of Md

cw1 is designed and we
have [Nr ](P, tr1) = [x1, x2, x3, . . . , x15]T . With Algorithm 3,
we find xri ∀pi ∈ V ′1, resulting in [x1, x9, x12, x13]T =
[−1,−1, 2, 1]T . Also, for pi ∈ P \ (P0 ∪ V ′1), we get
xi = 0 such that [x2, x3, x4, x5, x6, x8, x10, x14, x15]T =
[0, 0, 0, 0, 0, 0, 0, 0, 0]T . Then, we compute x0i’s ∀p0i ∈
P0 to get [Nr ](P0, tr1) = [x7, x11]T . There are associated

with idle places p7 and p11; two place invariants I7 and I11
are found as given below.

I7 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]T

I11 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]T

Furthermore, we have I7(PA) = [1, 1, 1, 1, 1, 1, 0, 0, 0]T ,
[Nr ](PA, tr1) = [−1, 0, 0, 0, 0, 0, 0,−1, 0]T , and I7(p7) = 1.
Hence, x7 = −IT7 (PA).[Nr ](PA, tr1)/I7(p7) = 1. Similarly,
x11 = −IT11(PA).[Nr ](PA, tr1)/I11(p11) = 1. The complete
incidence vector of tr1 is found to be [Nr ](P, tr1) =
[−1, 0, 0, 0, 0, 0, 1, 0,−1, 0, 1, 2, 1, 0, 0]T .

The recovery transition tr2 of Md
cw2 is designed and we

have [Nr ](P, tr2) = [x1, x2, x3, . . . , x15]T . By applying Algo-
rithm 3, we get xri, ∀pi ∈ V ′2, to obtain [x2, x8, x13, x14]T =
[−1,−1, 1, 1]T . Then, for pi ∈ P \ (P0 ∪ V ′2), we get
xi = 0, resulting in [x1, x3, x4, x5, x6, x9, x10, x12, x15]T =
[0, 0, 0, 0, 0, 0, 0, 0, 0]T . Next, we compute x0i’s, ∀p0i ∈ P0,
for [Nr ](P0, tr2) = [x7, x11]T . Associated with idle places
p7 and p11, two place invariants I7 and I11 are got as given
below.

I7 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]T

I11 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]T

Furthermore, we have I7(PA) = [1, 1, 1, 1, 1, 1, 0, 0, 0]T ,
[Nr ](PA, tr2) = [0,−1, 0, 0, 0, 0,−1, 0, 0]T , and I7(p7) = 1.
Hence, x7 = −IT7 (PA).[Nr ](PA, tr2)/I7(p7) = 1. Similarly,
x11 = −IT11(PA).[Nr ](PA, tr2)/I11(p11) = 1. We then get
the complete incidence vector of tr2 to be [Nr ](P, tr2) =
[0,−1, 0, 0, 0, 0, 1,−1, 0, 0, 1, 0, 1, 1, 0]T .
The recovery transition tr3 of Md

cw3 is designed
and we have [Nr ](P, tr3) = [x1, x2, x3, . . . , x15]T .
By applying Algorithm 3, we compute xri ∀pi ∈

V ′3 and find [x5, x8, x13, x14]T = [−1,−1, 1, 1]T .
Then, for pi ∈ P \ (P0 ∪ V ′3), we get xi =

0, resulting in [x1, x2, x3, x4, x6, x9, x10, x12, x15]T =

[0, 0, 0, 0, 0, 0, 0, 0, 0]T . Next, we compute x ′0is ∀p
0i
∈

P0 and get [Nr ](P0, tr3) = [x7, x11]T . Associated with idle
places p7 and p11, we get two place invariants I7 and I11 as
given below.

I7 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]T

I11 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]T

Furthermore, we get I7(PA) = [1, 1, 1, 1, 1, 1, 0, 0, 0]T ,
[Nr ](PA, tr3) = [0, 0, 0, 0,−1, 0,−1, 0, 0]T , and I7(p7) = 1.
Hence, x7 = −IT7 (PA).[Nr ](PA, tr3)/I7(p7) = 1. Similarly,
x11 = −IT11(PA).[Nr ](PA, tr3)/I11(p11) = 1. Finally, we get
the complete incidence vector of tr3 to be [Nr ](P, tr3) =
[0, 0, 0, 0,−1, 0, 1,−1, 0, 0, 1, 0, 1, 1, 0]T .
With the designed controller formed by the recovery

transitions tr1, tr2 and tr3, the controlled system (Nr ,M0) is
obtained as shown in Fig. 4. Its deadlock-freeness is checked
with all 1280 reachable markings.

For computational complexity, in the worst case, it takes
time O(n2) and space O(n) for Algorithm 1 to find the
WRFG of an S4R, where n is the maximum number of
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FIGURE 4. The Controlled System (Nr , M0) With Three recovery
transitions.

places and transitions in the model. The time to find the
WCWGs (CW ) from the WRFG by Algorithm 2 is with
O((k+ l)(m+1)), where k, l, andm are the numbers of places
in the WRFG, arcs, and WCWGs (CW ), respectively. Then,
recovery transitions are decided via applying Algorithm 3.
Consequently, the developed method is of polynomial
complexity. Especially, with the proposed policy, one does
not have to compute all the siphons or full reachability graphs,
which is the real and main cause of high computational
complexity.

IV. ILLUSTRATION WITH WIDELY APPLIED EXAMPLES
To demonstrate the proposed DDR policy, a few widely used
FMS examples are presented in this section. An S4R is given
in Fig. 5 with PA = {p2−p6, p8−p11}, PR = {p12−p16}, and
P0 = {p1, p7}. For this net, there are 165 reachable markings
with four dead states.

By Algorithm 1, the WRFG is obtained as shown in
Fig. 6. It is clear that, for this WRFG, we have A1 =
{(p12, p2), (p12, p11), (p13, p3), (p13, p10), (p14, p5), (p14, p9),
(p15, p6), (p15, p8), (p16, p4)}, and A2 = {(p2, p13), (p3, p14),
(p3, p16), (p4, p15), (p5, p15), (p8, p14), (p9, p13), (p10, p12)}.
There are four WCWGs in the WRFG shown in Fig. 6,

i.e., Ncw = {Cw1,Cw2,Cw3,Cw4}. These WCWGs and
the deadlocked markings are detailed in Tables 1 and 2,
respectively. Associated with the two idle places p1 and p7,
we get two place invariants I1 and I7, given as follows:

I1 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

I7 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T

FIGURE 5. An S4R (Nr , M0).

FIGURE 6. Weighted Resource Flow Graph (WRFG) of an S4R (N, M0) in
Fig. 5.

By Algorithm 3, as given in Table 3, the incidence vectors
of the recovery transitions are found. With the designed
transitions tr1, tr2, tr3 and tr4, the controlled system (Nr ,M0)
is shown in Fig. 7. The deadlock-freeness is checked with all
165 reachable markings.

Consider an FMS with four machines M1–M4 and three
robots R1–R3. Its layout is given in Fig. 8, while the part
processing routes are given in Fig. 9. While both R1 and
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TABLE 1. Weighted circular wait graphs in the WRFG shown in Fig. 6.

TABLE 2. Sets of deadlocked markings of weighted circular wait graphs
listed in Table 1.

TABLE 3. Incidence vectors of recovery transitions for deadlocked
markings listed in Table 2.

FIGURE 7. Petri net model (Nr , M0) with four recovery transitions.

R2 can hold two parts at a time, the capacity of R3 is one.
For the machines, while M1 can process one product only at
a time, two parts can be processed concurrently for any of
M2, M3, and M4. Three unloading buffers O1–O3 and three
loading buffers I1–I3 are configured to hold completed and

FIGURE 8. An FMS layout.

FIGURE 9. The production routings of an FMS layout.

raw parts. Three part types A, B, and C are to be processed
with the production cycles given in Fig. 9.
Now, we consider each working process individually. With

the cycles given in Fig. 9, R2 picks a raw part A up from
I1 and loads to M2. Then, after its completion by M2, R2 then
unloads it to O1.

A raw part B is picked up from I2 by R3 and loaded to
M4 for processing. After its completion, R2 delivers it to M3.
After its completion at M3, R1 delivers it to O2.
A raw part C is picked up from I3 by R1. Then, it can be

loaded into M1 and M3 for processing. If it is processed by
M1, then after its completion, it is delivered to M2 by R2;
otherwise, if it is processed by M3, then after its completion,
it is delivered to M4 by R2. Finally, after being processed by
M2 or M4, R3 delivers it to O3.
An S4R for this FMS can be established and shown in

Fig. 10, where PA = {p2 − p4, p6 − p13, p15 − p19},
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FIGURE 10. The S4R that represents an FMS layout shown in Fig. 8.

FIGURE 11. Weighted resource flow graph (WRFG) of an S4R in Fig. 10.

PR = {p20 − p26}, and P0 = {p1, p5, p14}; the places
p20, p21, p22, p23, p24, p25 and p26 model R1, R2, R3, M1,

M2, M3, and M4, respectively. There are 28051 reachable
markings, among them, 120 are deadlock ones.

With Algorithm 1 being applied to this example, the
WRFG is obtained, as shown in Fig. 11. In the WRFG,
we have A1 = {(p20, p6), (p20, p15), (p21, p8), (p21, p4), (p21,
p2), (p21, p12), (p21, p17), (p22, p10), (p22, p19), (p23, p7), (p24,
p3), (p24, p9), (p25, p11), (p25, p16), (p25, p13), (p26, p18)},
and A2 = {(p2, p24), (p3, p21), (p6, p25), (p6, p23), (p7, p21),
(p8, p24), (p9, p22), (p11, p21), (p12, p26), (p13, p22), (p16, p20),
(p17, p25), (p18, p21), (p19, p26)}.
As shown in Fig. 11, in theWRFG, there are nineWCWGs,

i.e., Ncw = {Cw1,Cw2,Cw3, . . . . . . ,Cw9}. Their details are
presented in Table 4 and the deadlocked markings in Ncw
are given in Table 5. There are associated with the three idle
places p1, p5 and p14; we have three place invariants I1, I5 and
I14 as given below.

I1 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0]T

I5 = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0]T

I14 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,

0, 0, 0, 0, 0]T

With Algorithm 3, the recovery transitions and their
incidence vectors are obtained, as presented in Table 6.
In this way, we get the recovery-transition-based controller
and the resulting controlled system (Nr ,M0) by adding
{tr1, tr2, . . . . . . tr9} as shown in Fig. 12. This controlled sys-
tem is checked to be deadlock-free with all 28051 reachable
markings.
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TABLE 4. Weighted circular wait graphs in the WRFG shown in Fig. 11.

FIGURE 12. Petri net model (Nr , M0) with nine recovery transitions.
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TABLE 5. Sets of deadlocked markings of weighted circular wait graphs listed in Table 4.

TABLE 6. Incidence vectors of recovery transitions for deadlocked markings listed in Table 5.

V. CONCLUSION
This paper extends the policy of deadlock detection and
recovery for flexible manufacturing systems (FMSs) pre-
sented in [33]. Different from the study in [33], this work
is done on a weighted class of Petri nets called S4R that
can model FMSs where a process stage may require multiple
resource types andmultiple units for a type to complete a task.
Thus, the proposed method can be applied to more complex
real-world FMSs and MURSs containing concurrently cyclic
sequential processes, disassembly and assembly operations.
We first design an algorithm to construct the WRFG of
an S4R to describe the competition for shared resources
by various processes. Then, from the WRFG, we find the
weighted circular wait graphs (WCWGs). In this way, the
relationship between the WCWGs and partial deadlocks is
revealed such that it can detect partial deadlocks. Then, for
the detected deadlocked markings, an algorithm is derived to
design recovery transitions. By analysis, it demonstrates that
the resulting controlled S4R net system is deadlock-free. The
S4R is validated and tested using the Integrated Net Analyzer
(INA) simulator.

Overall, we conclude that the proposed policy has the
following advantages: (1) it is applicable to any generalized
classes of Petri nets such as ES3PR, S∗PR, S2LSPR, S3PGR2,
and S3PMR; (2) it is computational more efficient than the
existing ones since it does not require calculating reachability
graphs, which suffers from the state explosion problem; (3)
we design a recovery-transition-based controller to make the

controlled S4R deadlock-free, which provides an efficient
way for the operation of FMSs; (4) the method can be
applied to systems with sequential and complex resource
requirements.

The follow-up study is, with affordable efforts, to optimize
the supervisors’ behavioral permissiveness, reduce structural
complexity, and extend the reported method in this research
to the systems with unreliable resources.

APPENDIX A
BACKGROUND
A. DEADLOCK IN MULTI-UNIT RESOURCE SYSTEMS (MRS)
A resource allocation graph (RAG) [16] is a directed graph
(V ,E) with V and E being the sets of nodes and directed
edges, respectively. Let V = P ∪ Q with P ∩ Q =

∅, where P is a set of processes and Q is the set of
resources. In this sense, an RAG is a bipartite graph. An edge
dij = (xi, yj) is a request edge if xi ∈ P and yj ∈ Q.
An edge dji = (yj, xi) is a grant edge if yj ∈ Q and
xi ∈ P. Each edge in a path of a resource allocation graph
(xi1, yj1), (yj1, xi2), . . . , (xik , yjk ), . . . , (yjs, xis+1) is distinct.

The reachable set of a node x is defined as a set of nodes
to which the node can reach. A knot is a non-empty set K of
nodes satisfying the fact that the reachable set of each node
in K is exactly K [49].

Resource requests and allocation in a production pro-
cess can be represented by a weighted resource alloca-
tion graph (WRAG). Fig. 13(a) depicts System-on-a-Chip
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FIGURE 13. SoC example with its corresponding (WRAG).

FIGURE 14. Resource allocation graph (RAG) with a knot.

(SoC) with five processors and four multi-unit resources.
Fig. 13(b) visualizes a current resource allocation situa-
tion by WRAG. Fig. 14 illustrates an RAG with a knot
K = {p1, p2, p3, q1, q2} that represents a circuit wait, where
the following statements are assumed to be true: (1) the
capacity of a resource is fixed, i.e., it has a fixed number of
processing units, and (2) a resource unit is granted without
any time delay if it is available.

B. BASICS OF PETRI NETS
The basics of Petri nets used in this paper can be found
in [81], [82], [83], [84], [85], and [88].
Definition 6: APetri net is a four-tupleN = (P,T ,F,W ),

where P and T are finite, non-empty, and disjoint sets; P is a
set of places and T is a set of transitions. F ⊆ (P × T ) ∪
(T × P) is its flow relation, represented by arcs with arrows
from places to transitions or from transitions to places. W :
(P×T )∪(T×P)→ N is a mapping that assigns a weight to an

arc: W (x, y) > 0 if (x, y) ∈ F , and W (x, y) = 0, otherwise,
where (x, y) ∈ (P×T )∪(T×P) andN is a set of non-negative
integers. N is ordinary, denoted as N = (P,T ,F), if for all
(x, y) ∈ F,W (x, y) = 1.
Definition 7: A marking is a mapping M : P → N.

Notation M (p) denotes the number of tokens in p at M .
Usually, a multi-set

∑
p∈PM (p)p is used to describeM. A net

N with an initial marking M0 is called a net system, denoted
as (N ,M0).
Definition 8: ·x = {y ∈ P ∪ T |(y, x) ∈ F} is called the

preset of x and x · = {y ∈ P ∪ T |(x, y) ∈ F} is called the
postset of x. A net is pure (self-loop-free) if there do not exist
x, y ∈ P ∪ T such that (x, y) ∈ F and (y, x) ∈ F hold.
Definition 9: A pure net N = (P,T ,F,W ) can be

represented by its incidence matrix [N ], a |P| × |T | integer
matrix with [N ](p, t) = W (t, p)−W (p, t). A transition t ∈ T
is enabled at markingM if for all p ∈·t,M (p) ≥ W (p, t). This
fact is denoted byM [t⟩. Once t fires, it yields a new marking
M ′, denoted as M [t⟩M ′, where M ′(p) = M (p) − W (p, t) +
W (t, p), for all p ∈ P. A marking M ′ is said to be reachable
from M if there exist a sequence of transactions σ =

t0t1 . . . . . . tn and a sequence of markings M1,M2, . . . ,Mn
such that M [t0⟩M1[t1⟩M2 . . . .Mn[tn⟩M ′ holds. The set of
markings reachable fromM in N is denoted as R(N ,M ).
Definition 10: A transition t ∈ T is live at M0 if for all

M ∈ R(N ,M0), there exists M ′ ∈ R(N ,M ),M ′[t⟩. (N ,M0)
is live if for all t ∈ T , t is live atM0. (N ,M0) is dead atM0 if
there does not exist t ∈ T ,M0[t⟩.
Definition 11: A P-vector is a column vector I : P → Z

indexed by P and a T-vector is a column vector J : T → Z
indexed by T, where Z is the set of integers. A P-vector I is
called a P-invariant (place invariant) if I ̸= 0 and IT • [N ] =
0T . A T-vector J is called a T-invariant (transition invariant) if
J ̸= 0 and [N ] • J = 0. P-invariant I is a P-semiflow if every
element of I is non-negative. ∥ I ∥= {p|I (p) ̸= 0} is called
the support of I. I is called a minimal P-invariant if ∥ I ∥ is not
a superset of the support of any other one and its components
are mutually prime..
Definition 12: Let N = (P,T ,F) be a net. X ⊆ P ∪ T

generates a subnet NX = (PX ,TX ,FX ), where PX = P ∩ X ,
TX = T ∩ X , and FX = F ∩ (X × X ). A string x1 . . . ..xn is
called a path of N if for all i ∈ {1, 2, . . . .., n − 1}, xi+1 ∈ x ·i
for all x ∈ {x1, . . . . . . , xn}, x ∈ P∪T. A simple path is a
path whose nodes are all different (except, perhaps, x1 and
xn). A path x1, . . . xn is called a circuit if it is a simple path
and x1 = xn.

A Petri net N is called a state machine if for all t ∈ T ,

|
·t| = |t ·| = 1. For more basic knowledge and applications
of Petri nets, readers are referred to [86], [50], [51], and [52].

C. SYSTEM OF SEQUENTIAL SYSTEMS WITH SHARED
RESOURCES (S4R)
This work considers a class of systems, namely a system of
sequential systems with shared resources (S4R) [34], [87].
Given a place p, we denote maxt∈p·{W (p, t)} by maxp·.
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Definition 13 [88]: A Simple Sequential Process (S2P) is
a Petri net N = (P ∪ {p0},T ,F), where
1) P ̸= ∅ (p ∈ P is called an operation place), p0 /∈ P

(p0 is called a process idle place);
2) N is a strongly connected state machine; and
3) Every circuit in N contains place p0.
Definition 14 [88]: A Simple Sequential Process with

Resources (S2PR) is a net N = (P ∪ {p0} ∪ PR,T ,F) such
that

1) The subnet generated by (P ∪ {p0} ∪ T ) is an S2P;
2) PR ̸= ∅ (r ∈ PR is called a resource place) and (P ∪
{p0}) ∩ PR = ∅;

3) ∀p ∈ P,∀t ∈ · p,∀t ′ ∈ p·, ∃rp ∈ PR,· t ∩ PR = t ′· ∩
PR = {rp};

4) The two following statements are verified:
a) ∀r ∈ PR,·· r ∩ P = r ·· ∩ P ̸= ∅
b) ∀r ∈ PR,· r ∩ r · = ∅; and

5) ··(p0) ∩ PR = (p0)·· ∩ PR = ∅; for r ∈ PR,H (r) =··

r ∩ P, the operation places that use r are called the set
of holders of r .

Definition 15 [88]: Let N = (P ∪ {p0} ∪ PR,T ,F) be an
S2PR. An initial markingM0 is acceptable for N ifM0(p0) ≥
1,M0(p) = 0 for all p ∈ P, and M0(r) ≥ 1 for all r ∈ PR.
Recursively, a system S2PR is called an S3PR.
Definition 16 [88]: A System of S2PR, S3PR, is defined

recursively as follows:
1) An S2PR is an S3PR;
2) LetNi = (Pi∪P0i ∪P

R
i ,Ti,Fi), i ∈ {1, 2}, be two S

3PRs
such that (P1∪P01)∩(P2∪P

0
2) = ∅,P

R
1 ∩P

R
2 = Pc ̸= ∅,

and T1∩T2 = ∅ (in this case we say that N1 and N2 are
composable); then, N = (P∪ {p0} ∪PR,T ,F) resulted
from the composition of N1 and N2 via Pc (denoted as
N1 ◦N2) is defined as: 1) P = P1∪P2, 2) p0 = p01∪p

0
2,

3) PR = PR1 ∪ P
R
2 , 4) T = T1 ∪ T2, and F = F1 ∪ F2,

is also an S3PR.
Definition 17 [88]: Let Ni = (Pi ∪ P0i ∪ P

R
i ,Ti,Fi), i ∈

{1, 2}, be an S3PR. An initial marking M0 is called an
acceptable initial marking for N if one of the two following
statements is true:

1) (N ,M0) is an acceptably marked S3PR;
2) N = N1 ◦ N2 such that (Ni,M i

0) is an acceptably
marked S3PR and a) for all i ∈ {1, 2}, for all p ∈
Pi ∪ P0i , M0(p) = M i

0(p); b) for all i ∈ {1, 2}, for
all r ∈ PRi \ Pc,M0(r) = M i

0(r); c) for all r ∈ Pc,
M0(r) = max{M1

0 (r),M
2
0 (r)}.

Definition 18 [88]: A Simple Sequential Process with
Weighted Resources Allocation (WS2PR), is a generalized
Petri net N = (P ∪ {p0} ∪ PR,T ,F,W ) such that

1) The subnet generated by X = P ∪ {p0} ∪ T is an S2P;
2) PR ̸= ∅ and (P ∪ {p0}) ∩ PR = ∅;
3) ∀p ∈ P,∀t ∈· p,∀t ′ ∈ p·, ∃rp ∈ PR,· t ∩ PR = t ′· ∩

PR = {rp};
4) The two following statements are verified:

a) ∀r ∈ PR,·· r ∩ P = r ·· ∩ P ̸= ∅ and
b) ∀r ∈ PR,· r ∩ r · = ∅;

5) ··(p0) ∩ PR = (p0)·· ∩ PR = ∅; and
6) The three following statements are verified:

a) W (p, t) = 1 andW (t, p) = 1, ∀p ∈ P∩{p0},∀t ∈
T ;

b) W (r, t) ≥ 1 and W (t, r) ≥ 1, ∀r ∈ PR,∀t ∈ T ;
and

c) Two arcs of any arc pair have the same weight.
Definition 19 [88]: Let N = (P ∪ {p0} ∪ PR,T ,F,W )

be a WS2PR. An initial marking M0 is acceptable for N if
M0(p0) ≥ 1,M0(p) = 0 for all p ∈ P, and M0(r) ≥ W (r, t)
for all r ∈ PR, t ∈ r ·.
Definition 20 [88]: A System of WS2PR called WS3PR

for short, is defined recursively as follows:
1) An WS2PR is a WS3PR; and
2) Let Ni = (Pi ∪ P0i ∪ P

R
i ,Ti,Fi), i ∈ {1, 2}, be two

WS3PRs such that (P1∪P01)∩(P2∪P
0
2) = ∅,P

R
1∩P

R
2 =

Pc ̸= ∅, and T1 ∩ T2 = ∅ (in which case we say that
N1 and N2 are composable); then, N = (P ∪ {p0} ∪
PR,T ,F) due to the composition of N1 and N2 via Pc
(denoted as N1 ◦ N2) is defined as: 1) P = P1 ∪ P2, 2)
p0 = p01 ∪ p

0
2, 3) PR = PR1 ∪ P

R
2 , 4) T = T1 ∪ T2, and

F = F1 ∪ F2, is also an WS3PR.
Definition 21 [34]: An S4R is a marked Petri net

(N ,M0) = (P,T ,F,W ,M0), such that
1) P = PA ∪ P0 ∪ PR, where PA =

⋃n
j=1 P

j
A is called the

set of operation places such that PiA ∩ P
j
A = ∅, for all

i ̸= j, P0 =
⋃n

i=1{p
0
i } is called the set of idle places

with P0 ∩ PA = ∅, and PR = {r1, r2, . . . , rm} is called
the set of resource places such that (P0∪PA)∩PR = ∅;

2) T =
⋃n

j=1 Tj, and for all i ̸= j, Ti ∩ Tj = ∅;
3) W = WA ∪ WR, where WA : ((PA ∪ P0) × T ) ∪ (T ×

(PA ∪ P0)) → {0, 1} such that for all j ̸= i, ((PjA ∪
{p0j })×Ti)∪ (Ti× (PjA∪{p

0
j }))→ {0}, andWR : (PR×

T ) ∪ (T × PR)→ N;
4) ∀j ∈ Nn = {1, 2, 3, . . . , n}, the subnet Nj derived from

PjA ∪ {p
0
j } ∪ Tj is a strongly connected state machine

such that every circuit contains p0j ;
5) ∀r ∈ PR, there exists a unique P-semiflow Ir such that ∥

Ir ∥ ∩PR = {r}, ∥ Ir ∥ ∩P0 = ∅, ∥ Ir ∥ ∩PA ̸= ∅, and
Ir (r) = 1. Furthermore, it holds that PA = (

⋃
r∈PR ∥

Ir ∥) \ PR;
6) N is pure and strongly connected;
7) ∀p ∈ PA,M0(p) = 0; ∀r ∈ PR,M0(r) ≥

maxp∈∥Ir∥Ir (p); and ∀p
0
j ∈ P

0,M0(p0j ) ≥ 1.
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