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ABSTRACT Vehicular motion simulators have evolved to become an important contributor to major
industries, including defense, aerospace, and vehicle manufacturing. During the past few decades, many
efforts have been made towards developing robust, adaptive motion simulators with the highest level of
fidelity and realism. Thus, it is important to recollect, in order to evaluate the current state of complex
robotic systems, encouraging careful planning of further improvements in the future. This article focuses on
the current motion simulators’ structural designs and working principles alongside the currently developed
motion control algorithms to achieve the highest fidelity. Furthermore, within the era of industry 4.0 and the
fast-paced merging of technologies into key industries, some suggestions are made for future works which it
is believed are worth investigating to provide robustness and adaptivity to the control of simulation systems,
improving their fidelity and realism alongside reducing motion sickness experienced by the simulator
operator.

INDEX TERMS Driver-in-the-loop simulation, simulation fidelity, simulation sickness, vehicular motion
simulator.

I. INTRODUCTION
Vehicular simulators are playing an expanding role in differ-
ent applications [1] including vehicle dynamics (tire devel-
opment, driver training, control system design, and tuning of
the chassis), autonomous vehicle (AV), advanced driver assis-
tance systems (ADAS), vehicle development, V2X studies
andmore. The high-bandwidth dynamic simulator establishes
new standards as well. Thus, the simulation of extremely
dynamic evasive maneuvers, complete braking, and strong
acceleration is possible. The industries and the regulatory
bodies feel that this has resulted in a cost-effective means of
manufacturing, improving the safety records, and enhancing
the current state of vehicular technologies. Vehicle manufac-
turers invest significant capital on testing and performance
assessments for every new design of a vehicle, such as the
axles, chassis, suspension, engine, gear-shifting modes, steer-
ing, and brake controls, etc. In addition to being expensive,
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testing with real prototype vehicles takes significant time
and can pose risks for the test drivers. By utilizing cutting-
edge motion platform-based driving simulators, which offer a
lifelike virtual experience for vehicle prototyping and virtual
vehicle testing, these drawbacks can be significantly reduced
or completely eliminated. Moreover, as autonomous driving
becomes more prevalent and the advancement of driving
assistance systems, vehicle manufacturers are putting more
emphasis on high-performance driving simulation to test new
features and improve driving comfort before production [2].
For instance, ADAS market size is estimated to be worth
USD 29.74 billion in 2022 and is forecast to be a re-adjusted
size of USD 57.76 billion by 2028 [3]. This is compounded
by the increasing government legislations, mandating new
vehicles have basic ADAS features by 2030. Physical pro-
totypes can be delayed until much closer to final production
since driving simulators make testing possible far earlier in
the vehicle development process. Thus, simulators are an
essential component of the vehicle development process. The
phases of vehicle design are naturally connected by the results
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from simulator tests. From 2019 to 2021, the GMC’s 1000-hp
Hummer EV went from being a concept car to a product
launch. To re-establish the Hummer brand as the company’s
design leader, 17 new features were added during the pro-
cess. This quick development is entirely attributable to the
motion simulator that was used in the design process, where
the new EV was fully engineered in a virtual environment
before the first actual prototypes ever left a production line.
With this project delivered, the high-tech simulator used for
Hummer EV, is now set to be utilized for another futuristic
and ambitious project. The Lunar Mobility Vehicle (LMV)
is a joint Lockheed Martin and General Motors project to
develop the next generation of lunar and martian rovers.
Potentially expensive flaws can be found before they appear
in a real, and possibly very remote world by having the ability
to accurately simulate a lunar environment, where vehicle
properties can be adjusted and tested in real-time here on
Earth. Engineers can modify a vehicle’s top speed, turning
angle, torque, suspension travel, and other driving dynamics
using high-fidelity vehicular simulators. These parameters
must be tuned to one-sixth of Earth’s gravity acting on a vehi-
cle as it transits the highly abrasive, rocky, and disorienting
lunar surface. Once vehicle specifications are confirmed, the
simulator will eventually be utilized to help give astronauts a
sense of what driving on the moon is like.

The most crucial element of a simulation is immersion [4].
The driver must experience driving in a real vehicle and in
a realistic environment. The way they react to the virtual
environment around them and the virtual vehicle they are
driving must be a replica of the real-life scenario. Every
element needs to accurately replicate the feel and response
of the driving experience. The value of the resulting data and
feedback increases as the gap between the simulated and real
worlds is reduced.

Advances in technology are resulting in a steady improve-
ment in the fidelity and the effectiveness of vehicular simula-
tors [5]. Inmodern simulators themotion generation system is
one of the major subsystems employed to create realistic vir-
tual worlds that draw the humans in to the experience. Recent
hardware developments have improved the fidelity of these
motion systems significantly, with increased processor speed
complementing projector systems with greater resolution.
Because of things like the extent of the accessible workspace
and the intrinsic resistance that results from the motion actu-
ators’ operation, driving simulators are constrained environ-
ments within the simulated environment. A control block
that is a component of the software running any motion
platform must manage the position of the cabin by giving
the driver a realistic sense of acceleration and deceleration.
For a high-fidelity driving simulator, it is necessary that the
human does not find any differences between the experi-
ence of driving in the simulator’s virtual environment versus
the experience encountered on the road in a real vehicle.
To accomplish that, the vehicle model must be as accurate
as possible and the feedback, that renders information about

the current simulated situation in real-time, must be well
reproduced to ensure the correct interaction between the user
and the simulation. Because a ground-basedmotion simulator
system cannot duplicate the motions of an actual vehicle
it becomes necessary to determine the best way to utilize
the full spectrum of motion within the constraints of its
capabilities. This, in turn, requires a determination of how
motion inputs are detected and interpreted by human opera-
tors. The motion-base drive software algorithms are intended
to maximize the motion cueing effect while restricting the
physical motion: the simulated environment may use only
the displacement, velocity, and acceleration capacity of the
motion system hardware.

It is very complex, almost impossible, to reproduce exactly
the large-scale motion of a vehicle in the limited workspace
of a motion platform. A proper motion strategy must be set
to deceive the human perception of the sensed acceleration
to reproduce the experience of those large motions with only
abbreviated movements. As a result, Motion Cueing Algo-
rithm (MCA) strategies have been developed [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35] to define the motion of the platform
and deceive the human vestibular perception. However, these
strategies could generate the perception of false cues due to
imperfections and consequently do not match the visual stim-
ulation [36]. These false cues generate fatigue and discomfort
in the operator. Hence, false cues must be at least reduced,
if not eliminated, to increase the simulator’s fidelity.

The computer software that commands the motion system
needs further refinement. The lack of realistic motion cues
during various conditions and maneuvers is still a constant
problem experienced by the drivers, pilots, and helmsmen.
In some instances, they resort to effectively turning off the
motion system to avoid improper cues. Motion and simulator
sickness [37], [38], [39], [40] can arise in some partici-
pants through a conflict that arises between different sen-
sory systems, i.e. the signals from visual, vestibular, and
non-vestibular proprioceptors differ from one another and
inevitably differ with expectations based on previous expe-
rience. This conflict between present sensory information,
and that retained from the immediate past, elicits sickness.
Moreover, it has been discovered that regardless of the type of
vehicle simulated, transport delay effects [41], [42] are simi-
lar. They mainly fall under the control degradation and simu-
lator sickness categories. Both these effects have the potential
to adversely affect research data collected in a simulator as
well as training effectiveness. The asynchronous architecture
of the software is found to be a significant cause of trans-
port delay. Furthermore, the hardware-related transport delay
should be investigated in order to identify the ideal config-
uration for a high-performance, full-scale dynamic vehicular
simulator [43]. The asynchronism between vision and motion
systems expresses a latency gap which is regarded as the
key latency contributing to simulator sickness and should be
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minimized as much as possible. As an emphasis, the response
time to input and feedback must have the lowest possible
latency. The delivery of vestibular, auditory, haptic, and visual
cues to the driver’s senses must occur with the least amount of
delay possible. Another considerable requirement is that the
rendered motion must be synchronized with the visual stim-
ulation to reproduce a realistic driving sensation. The overall
system latency has to be minimal, e.g. below the required
180 ms for vehicular simulators [44], otherwise, the driver
will feel fatigued and uncomfortable after their experience
in the simulated environment. This latency can be reduced
using compensation algorithms. These compensators, which
are essentially filters, are developed to provide enough phase
lead at frequencies crucial to driver control to compensate for
inherent system delays. In simulation tests, three compen-
sation methods (lead/lag, three-velocity-term predictive fil-
ter, and four-velocity-term predictive filter) appear to handle
improvements. Althoughminimizing or eliminating transport
delays will not stop participants from feeling discomfort,
they could be highly helpful in enhancing the realism of a
particular simulator.

In technical terms, motions simulators are based on the
utilization of an electromechanical system integrated with
multiple actuators and sensors [45], [46], [47], [48], [49].
These mechanisms are often capable of generating different
kinds of translational and rotational motions in different axes
and are categorized into serial, parallel, and hybrid struc-
tural principles. Each principle provides different pros and
cons. Numerous benefits come with using a serial robot as
a motion simulator [50], [51], [52], including high dexterity,
sustained centrifugal accelerations, a large motion envelope,
and the ability to position subjects in extreme orientations
(e.g. upside-down) [53]. On the other hand, Stewart plat-
forms with a hexapod motion system [24], [39], [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63] are advantageous
for motion simulation because of their position accuracy,
dynamic efficiency, and payload to weight ratio.

Different aspects of these kinds of complex motion sim-
ulators have been utilized in over a dozen countries, and
researched over the past two decades. Now seems an appro-
priate time to step back and look at where we are and
where we intend to go from here. Thus, in the present work,
a comprehensive review of the past and current state-of-the-
art dynamic vehicular simulators and particular aspects of
vehicular systems and simulation algorithms is investigated
as a guide for future improvements and applications. The
goal of a vehicular simulator is to create a motion simulation
with the highest level of fidelity and realism. Figure 1 shows
how different systems including hardware and software are
integrated and work collaboratively to achieve that goal. The
vehicle operator and vehiclemodel are at the center of the pro-
cess. Operator input is used to calculate the vehicle dynamics
by the vehicle model, which will be used by the feedback
systems including steering wheel, gear selector, foot pedals,
active seats, seat belts, actuated dashboard and heel rest to

FIGURE 1. Schematic diagram of a driving simulator.

give the driver the necessary cues. These cues are signaled
by the human vestibular and proprioceptive sensory systems
and can be reproduced in dynamic simulators by controlling
their mechanical actuators within certain limits in terms of
displacement, velocity, and acceleration. The scenario control
outputs, visual and auditory cues using the created simulated
environment, as well as the vehicle dynamics. Moreover, the
generated scenario is projected onto a curved screen using
multiple projectors to create an immersive experience: one
of actually operating a vehicle. Finally, the motion cueing
algorithm will use the vehicle response to calculate how
to move the motion system while accounting for the sys-
tem’s kinematics, be converted into actuator command by the
machine’s kinematics, and then be generated by the motion
system delivering cues to the human operator.

This paper is organized as follows. Section II introduces the
current state-of-the-art vehicular simulators in research and
industry and categorizes them based on their robotic working
principle, degrees of freedom (DoF), and the manufacturing
country. Section III explains the motion cueing algorithms
that have been developed and utilized to date for achieving
a vehicular simulator with high fidelity. Section IV discusses
the optimization methods that have been utilized, or have
the potential to be utilized, for automation of the tuning
parameters of motion cueing algorithms to find the optimal
parameters for each system, and reduce the computation time
and power. Finally, Section V concludes the work and states
the prospects for vehicular simulators.

II. MOTION SIMULATORS
The available motion simulators which have been used for
commercial and/or research purposes are reviewed in this
section comprehensively. Table 1 outlines these complex
advanced robotic systems based on their company, name,
working principle, degrees of freedom, and their location.
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FIGURE 2. IISRI motion simulators: (a) Genesis, (b) Mobile, (c) Core, (d) Infinity.

A. IISRI MOTION SIMULATOR
Universal Motion Simulator (UMS) [64], [65], [66] was
developed by the Institute for Intelligent Systems Research
and Innovation (IISRI) at Deakin University in Australia
(Figure 2(b-d)). Presently, IISRI is home to several types
of motion simulators, i.e. UMS Core, Mobile UMS and

UMS Infinity. The UMS platform is based on a KUKA
commercial off-the-shelf robot. Through the use of haptic
vehicle controls, an immersive high-resolution head-mounted
display capable of 3D visualization, head-tracking ability,
and a complete set-up of 36 motion capture cameras and
tracking system, the UMS family offers total immersion in
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the simulation world. The UMS can also perform physical
monitoring, such as electrocardiogram (EEG) and heart rate
monitoring.

The latest addition to the IISRI motion simulators family
is the next generation of realistic advanced motion simula-
tor with 360-degrees platform view, which has the Ansible
Delta S3 simulator at its heart (Figure 2(a)). The Delta S3
delivers accelerations up to 2G, velocities up to 5m/s and
200deg/s, and a class-leading frequency response of about
40Hz for each axis. The 360-degrees graphics is visual-
ized using 12 Norxe P1+ WQXGA projectors with 2560 ×

1600 resolution, 3000 RGB ANSI lumens and 16:10 aspect
ratio. Furthermore, the projectors have a 2-DoF lens shift
feature. The simulator is capable of full 360◦ dynamic yaw
rotations, and a set of engineered linear rails - 4m in length -
enables sustained, independent sway and surge motions for a
more immersive and representative experience for maneuvers
such as aggressive lane changing, autonomous parking and
anything in between. The mechanism that bears the cabin
offers an additional 3-DoF to the vehicle motion profile:
heave, pitch, and roll. Importantly, this design enables the
dynamic exercise of a vehicle cabin up to 500 kg in all 6 DoF,
the maximum possible for fully defining the motion of a
3D body, at any point in a spatial space. Moreover, the
cabin is equipped with a 2-DoF Seat Vibration Loading
System (SVLS) which provides vehicle physics-derived high
frequency motions directly to the driver’s seat. This system
allows the driver to experience the slightest road details trans-
ferred to the seat. The SLVS system has 12mmmotion in each
axis with the frequency range up to 200Hz. This simulator is
an advanced research and innovation platform to be utilized
for both driver-based and driver-less (autonomous) mobil-
ity technologies, plus research in human-centered advanced
mobility factors.

Many channels of data are available in Genesis to record
from. Some examples of the Genesis simulator’s results are
shown in Figures 3 and 4. The data transmission rate was set
at the frequency of 100Hz, however it can be maximized to
1kHz if needed. The results are as expected and shown within
the motion platform system to replicate the expected behavior
defined by the Physics model.

B. ANSIBLE MOTION SIMULATORS
Ansible Motion’s Delta DIL simulator [67], [68], [69], [70]
is a sophisticated, high-performance, dynamic driving sim-
ulator. It aims to satisfy the increasing demand for human-
centered, high-fidelity, high-dynamic vehicle simulations in
both road and racetrack applications. Designed and manufac-
tured in-house in Norfolk, UK, it has a scalable architecture
meaning it can be built and delivered in various sizes, making
it ideal for a wide range of automotive product develop-
ment use cases such as expert driver assessments, chassis
dynamics, powertrain driveability, V2X research, ADAS and
active safety function calibration, and Human-Machine Inter-
face (HMI) design evaluations. Mindful of the flexibility that
has made such driving simulators popular with development

engineers, the Delta offers an open software and hardware
architecture that facilitates the use of essentially any option
for real-time vehicle modelling, scenario simulation, graph-
ical rendering, or supplemental cueing, whether they are
sourced from Ansible Motion themselves or a third party.

C. FORD’s DRIVING SIMULATORS
The Ford Performance Technical Center in Concord, North
Carolina, opened in 2014. The facility serves as a Center
of Excellence for Ford NASCAR and IMSA race teams to
test theories and refine driving skills through the use of
full-motion platform simulators [62], [71]. At the Center, var-
ious bucks can be installed on the motion platforms. Whether
it’s a Ford GT endurance racer or a NASCAR Sprint Cup
car, each buck is built to replicate the interior of different
automobiles as accurately as possible. To generate a virtual
model of each vehicle, engineers feed data from a variety of
sources, including engine dynamometers and kinematics and
compliance devices that measure suspension motion. This
simulator is a great tool since the model precisely recreates
all of the measurements of a particular car. This buck and the
virtual model is then run on a simulated road surface - such
as a testing facility or a given road. As the Ford team stated,
running the simulator is undoubtedly an expensive endeavor,
but it is considerably less expensive than sending cars and
personnel to tracks around the world. On a virtual replica of
the infamous Nürburgring track in Germany, the Ford team
tested the Mustang GT500. Furthermore, they virtually tested
five different aerodynamic GT500 kits, which was a much
faster and less expensive process than manufacturing and
swapping out five separate sets of wings, splitters, and other
aerodynamic components. In conclusion, evidence shows use
of high-fidelity simulation at this stage has saved time and
money in manufacturing a new car.

D. BEC SIMULATOR
BEC, a German company, incorporates KUKA indus-
trial robots into cutting-edge simulators for virtual reality
research, dynamic pilot training, and driving simulations.
The BEC motion simulator originally has 6-DoF, however,
this can be customized by adding more axes of motion
(e.g. a linear axis or curved rail on the pod). It can also
operate with cockpits customized for each customer. Thus,
the motion range can be expanded to 8-DoF. The simulator
pod’s modular architecture allowed for the simple swap of
instrumentmodules and the ability to simulate various aircraft
or helicopters.

E. MAX PLANCK INSTITUTE (CYBERNEUM)
The Cyberneum is part of the Max Planck Institute, located
at Tübingen, Germany. This facility is home to three kinds
of motion simulators, i.e. CableRobot, CyberMotion, and
CyberPod. The CableRobot simulator employs a parallel
kinematics architecture, where winch-driven cables are used
in place of the rigid linkages found in other simulators. The
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FIGURE 3. Comparison of the accelerations and velocities generated by physics model and IMU mounted on the platform of the motion system.

power-to-weight ratio of the CableRobot is approximately
2.6 kW/kg, and it can be operated at a maximum acceleration
of 5m/s2 in a workspace of 5 × 6×4 m3, and maximum
roll, pitch, and yaw angles of ±40◦, ±40◦, ±5◦ respectively.

The CyberMotion Simulator [53], [72] is a six-axis indus-
trial robot arm that is extended by an L-shaped cabin axis.
By moving the cabin’s attachment point from behind the
seat to under the seat, or any other intermediate position, the
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FIGURE 4. Comparison of the steering torque generated by physics model
and post motion cue signal from the electric steering torque motor.

seventh axis enables the cabin’s orientation with respect to
the robot arm to be altered. Moreover, a ten-meter linear axis
has been fitted to the CyberMotion unit. A large workspace
is provided by the resulting 8-DoF. It is possible to pro-
duce a variety of extreme motions and positions, including
upside-down motions, sustained centrifugal motions, large
lateral/longitudinal motions, and infinite head-centered rota-
tion. A stereo projection system (eyevis GmbH) with a field-
of-view (FOV) of 140◦ H × 70◦ V and a resolution of
1920 × 1200 on each projector is installed in the cabin.
With projection filters and glasses (Infitec), high-fidelity
3D visualization is possible. The centerpiece of the MPI
CyberPod is a 6-DoF Bosch Rexroth eMotion-1500 hexapod
Stewart platform. An Aluminum platform measuring 2.5 by
2.2 meters is mounted on the motion base. The platform has a
detachable projection screen for visualizations that is placed
1.1meters from the user and has a FOVof roughly 95◦ by 53◦.
Instead of the projection screen, the platform can also be
utilized in combination with head-mounted display systems
and optical tracking systems to measure head poses and the
position of the simulator in the room. Auditory stimulation
can be supplied using either noise-canceling headphones or a
surround sound system.

F. DLR ROBOTIC MOTION SIMULATOR
The DLR Robotic Motion Simulator [50], [51], [52] is made
by the Institute of Robotics and Mechatronics, located within
the German Aerospace Center. It is an interactive motion
simulator based on an industrial robot (Robocoaster (KUKA
KR500-2)). Additional to the six axes of the robot, a seventh
linear axis (KUKA KL3000 linear axis) increases the span
of motion (to 10 m lateral) and allows redundancy for move-
ments. At the tool center point, a simulator cell is mounted
which consists of exchangeable instruments, input devices,
two projectors and safety equipment. Moreover, utilizing two
slip rings, one in axis 1 (the first rotational axis in yaw

direction) and another in axis 6 (last axis before the simulator
cell) it is possible to generate unrestricted rotation around the
yaw and roll axis. This can be used to display yaw and roll
motions of cars or airplanes directly without scaling down the
resulting angular velocities.

G. SimAero
SimAero is a provider of flight simulator training and head-
quartered in Paris, France. The working principle of the
SimAero is based on a 6-DoF Stewart mechanism. The com-
pany’s flight simulators and training solutions cover a range
of aircraft types including Airbus A320, A330, A340; Boeing
737, B757, B767; ATR 500, 600; ERJ 145; Beechcraft 1900;
Dash 8; MD80/82; Fokker 100, Fokker F28.

H. AXIS SIMULATOR
AXIS Flight Training Systems GmbHwas founded in 2004 in
Austria. It manufactures flight simulators for different types
and configurations of aircraft, including business jets, turbo-
prop commuters, and passenger jetliners. These pilot training
simulators are developed based on a Stewart mechanism.

I. DELFT VEHICLE SIMULATOR
These simulators are based on a Stewart platform and built
by Delft University researchers. Delft Advanced Vehicle
Simulator (DAVSi) [54] is a motion platform which can
have motions in three translational directions (surge, sway
and heave) and three rotational directions (roll, pitch and
yaw). Therefore, it can imitate the motion of a freely sus-
pended body. SIMONA Research Simulator (SRS) [55] is
another 6-DoF simulator developed by the Delft University
of Technology. This system is mainly a flight simulator tool
that serves as a testbed for new technologies and as a tool
for Human-Machine Interaction (HMI) research. The third
Delft’s vehicle simulator is MOTORIST, a motion-based rid-
ing simulator [56] that uses amock-up Piaggio Beverly 350 cc
motorcycle which is installed on a 6-DoF Stewart motion
platform. The throttle handle and two brake levers are used
by the rider to control the motorcycle. Independent of one
another, the front and rear brake levers operate. Furthermore,
to enhance the fidelity of the motorcycle-riding experience,
the rider is encouraged to wear a helmet and a protective
jacket. A helmet-mounted monitor is also used to generate
the rider’s virtual visual environment.

J. CRUDEN SIMULATOR
Cruden B.V. is a Dutch motion-based racing simulator com-
pany that manufactures static and motion-based driving and
fast craft simulators which may be developed to suit a broad
range of budgets and specifications. Its simulators meet the
testing needs of automotive OEMs and their technology sup-
pliers, race teams and motorsport engineering companies, the
defense industry, including naval training organizations, and
universities and research institutes.

For instance, the Cruden motorcycle simulator [57], [58]
consists of a mock-up Ducati 848 EVO motorcycle installed
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on a 6-DoF Stewart motion platform and a head mounted
display (HMD) for the visualization of a surrounding virtual
environment.

K. RENAULT DRIVING SIMULATOR
Renault 8 axis vehicle simulator [24], [59], [73], [74] was
built in 2004 and updated in 2012. The system is a 6-DoF
Stewart mechanism sitting on a 2-DoF XY linear platform,
and is located at the Renault’s virtual reality and immersive
simulation center, Guyancourt, France. The simulation sce-
nario is shown on a cylindrical screen with a FOV of 210◦,
horizontally. Moreover, a manual transmission, steering force
feedback, and a sound system that reproduces engine and
environmental noises are all included in the cockpit.

L. AVSimulation
AVSimulation designs, sells and maintains a wide range of
automotive simulation software and simulators. The sim-
ulations are available on different operating systems and,
are used in hardware-in-the-loop (HIL), software-in-the-loop
(SIL), Model-in-the-loop (MIL) test benches, massive simu-
lation in the cloud or located on-site. The Renault Automobile
company is stakeholder of the AVSimulation and uses their
simulator at the Renault Optimization Autonomous Driving
Simulator (ROADS) facility, in Guyancourt, France.

M. VI-GRADE
VI-grade [63] is a developer of real-time simulation and
driving simulator solutions across the transportation industry
and, headquartered in Darmstadt, Germany. The developed
driving simulators by this company, which range from static
deskside solutions to full-scale driver-in-the-loop dynamic
simulators, enable research facilities, universities, OEMs,
suppliers, and motorsport teams to lessen their reliance on
purpose-built physical prototypes and, through avoiding the
need to construct and evaluate these, accelerate innovation.

N. TOYOTA DRIVING SIMULATOR
In order to help with the development and verification of
traffic accidents and the reduction of active safety technology,
Toyota Motor Corporation (TMC) [39] has established a
driving simulator that analyzes the driving characteristics of
typical drivers effectively. Furthermore, this facility enables
vehicle researchers and engineers to carry out driving exper-
iments that would be too risky and unsafe or necessitate
particular driving circumstances to be present in the real
world. A crucial component of this driving simulator is a real
car mounted on a platform inside a 7.1-meter-diameter dome
with a large 360-degree concave video screen covering the
dome’s ceiling. The dome can move 35meters in longitudinal
and 20 meters in lateral directions.

O. NADS-1 SIMULATOR
The National Advanced Driving Simulator Center houses
a high-fidelity simulator, NADS-1, based at the College of
Engineering, University of Iowa, USA. Vibrations emulating

road sensation are produced by four hydraulic actuators con-
nected to the cab. A yaw ring supporting the 7.3-meter dome
provides for a 330◦ rotation of the dome around its vertical
axis. The XY assembly moves inside a 19.5 × 19.5 meters
bay to generate lateral and longitudinal accelerations. The
NADS-1 motion system can give the driver precise motion
cues that enable the driver to feel steering, braking, and accel-
eration, as well as experience extreme maneuvers typically
associated with dangerous driving scenarios. The NADS-
1 system displays a virtual environment with high-fidelity
graphics, using sixteen high-definition LED projectors for
seamless imagery on the interior walls of the dome resulting
in a 360 degree horizontal and 40 degree vertical field of view.

P. aVDS SIMULATOR
The advanced Vehicle Driving Simulator (aVDS) is a driv-
ing simulator which utilizes linear actuators to deliver
6-DoF dynamic performance, providing low latency and
high-frequency response. Themotion platform can be quickly
configured to take a variety of payloads up to 500kg, facili-
tating the installation of real vehicle cabins to suit particular
simulation requirements.

Q. KRAKEN DISORIENTATION SIMULATOR
The KRAKEN spatial disorientation training simulator is
the U.S. Navy’s $19 million beast, which is a dynamic,
cutting-edge motion system with multipurpose capabilities.
It mimics the extreme maneuvers and physiological pres-
sures endured by drivers and passengers of different kinds
of vessels and vehicles, including the U.S. Navy’s aviation
operations involving flight operations with aircraft-carriers
at sea. This simulator can be used for innovative human
factors research as well as flight training for all sorts of naval
aviation aircraft. For instance, areas of application in naval
aviation include, but are not limited to, spatial disorientation
(SD), accident recreation, upset recovery scenarios, loss of
control in flight (LOCI), human factors research, and many
more. Moreover, this simulator can sustain G acceleration
up to ±3G.

R. NOVA VR
Nova VR is made by Eight360, a startup company in
Wellington, New Zealand. The company’s motion simulator
can turn 180-degrees in any direction in only one second,
combining visual, audio, and physical elements to allow users
to experience immersive content as realistic as possible.

S. DESMORI MOTORCYCLE SIMULATOR
The DESMORI dynamic motorcycle riding simulator is
built by Würzburg Institute for Traffic Sciences, a company
based in Veitshöchheim, Germany, and it is equipped with a
BMW F800S installed on a hydraulic Stewart platform with
6-DoF motion. The handlebar, gear selector, clutch, brake
pedal/lever, and other motorcycle parts can all be operated
by the rider. A sequential six-speed gearbox is used by the
installed manual gearshift to allow for faster shifts. A steering
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TABLE 1. Summary table of the reviewed dynamic vehicular simulators.
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torque up to 80 Nm can be generated at the handlebar using
an electrical actuator. The riders steer the motorcycle using
a combination of steering torque and induced roll torque
by shifting their weight. The two rear mirrors are simulated
by 7’’ TFT displays while the instrument cluster is repre-
sented by a 10’’ TFT touchscreen containing a speedome-
ter, revolution counter and gear indicator. Auditory feedback
is provided by a helmet that has Sennheiser HD419 head-
phones installed. Additionally, a shaker placed beneath the
seat transmits to the rider vibrations from the engine and
high-frequency road roughness between 10 Hz to 50 Hz.
Moreover, the rider is wearing a Motoair customized motor-
cycle airbag jacket with air-filled compartments. The jacket
is attached to a system that pulls the rider backward while
providing proprioceptive feedback on speed, acceleration,
and static wind forces.

III. MOTION CUEING ALGORITHMS
In order to produce motion cues in driving simulators,
amotion cueing algorithm is crucial. The angular velocity and
linear acceleration of a vehicular system transform into the
rotational and translational motions of a simulator within its
physical constraints by using a motion cueing algorithm. The
goal is to use the platform more effectively while adhering to
its physical limitations by producing controlled motions with
high levels of accuracy and fidelity. Consequently, there is a
real need to reduce the sensation error between the simulator
and real drivers, while satisfying the constraints imposed
by the platform boundaries. The simulator must slow down
and restrict its motion trajectory as the motion platform gets
close to its physical workspace limits in order to remain
inside these boundaries. Without any constraints in the MCA,
the simulator acceleration could be contrary to the vehicle
acceleration with a significant mismatch, causing the driver’s
expectation, inertial perceptions, and visual perceptions to
feel inconsistent with each other. It is critical to handle the
washout which is the transition of the simulator’s states from
tracking to braking action smoothly for both operational rea-
sons (wear and tear) as well as for the safety of the simulator’s
occupants.

A. CLASSICAL WASHOUT FILTER
The classical algorithm [6], [7], [9], [10], [11], [12], [13]
is the most widely used in commercial simulators. It is
characterized by the empirically determined combination of
linear high- and low-pass filters whose break frequencies and
damping ratios can be adjusted off-line by trial and error. The
schematic of this cueing technique is illustrated in Figure 5.
Although the classical algorithm is mathematically and com-
putationally simple and cheap, it uses linear elements and so
does not fully exploit the simulator capabilities or fully take
into account the nonlinear characteristics of human motion
perception.

FIGURE 5. Classical washout filter motion cueing algorithm.

B. ADAPTIVE WASHOUT FILTER
There is an important advance between the classical washout
filter motion cueing and an adaptive filter [6], [14], [15], [16],
[17], which is the removal of erroneous rotational rate cues
generated by classical filters. The adaptive washout filter’s
principle is the same as the classical one, with the main
distinctions being that it uses nonlinear adaptive filters in lieu
of linear ones, and it does the washout in the inertial refer-
ence frame as opposed to the body-axis system. Objective
and subjective data were the focus of a comparative study
in [14] between a linear classical washout filter technique
and a nonlinear adaptive one. It appears that pilot perfor-
mance as assessed was not affected by the motion cues dur-
ing instrument-landing-system approaches for the objective
experiments because there were no statistically significant
variations in pilot performance for the various motion condi-
tions. However, the subjective findings of this study suggest
that the motion cues enhance the sense of realism. More
importantly, the pilots expressly disapproved of aberrant rota-
tional rate cues in roll and yaw with the linear technique,
rating the nonlinear adaptive washout as considerably supe-
rior to the linear classical washout. The elimination of the
unpleasant abnormal rate cues is extremely desirable in this
situation since the pilots believed that roll representation to
be the most crucial component of the overall airplane feel.

C. OPTIMAL WASHOUT FILTER
Reid and Nahon algorithm: The need to predict the sensation
of actual physical motion by the human operator arises during
the evaluation of motion-based drive algorithms and in the
formulation of the optimal control algorithm [6]. Although
many sensors throughout the human body play a role in
this sensing process it is apparent that the vestibular sys-
tem located in the head provides the dominant signals [88].
To obtain the desired time histories of sensation in response
to a motion, dynamic models in the form of differential equa-
tions suitable for implementation on a digital computer are
desirable. Such models have been developed and are reported
in [89].

Sivan algorithm: In a dynamic flight motion simulator, the
vestibular system plays a critical role in detecting motion
cues. The otoliths and semicircular canals are two different
groups of organs that constitute the vestibular system. It is
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widely acknowledged [90], [91] that the semicircular canals
play a significant role in both the detection of angular motion
when light is not available as well as the detection of the
high-frequency components of the angular motion even when
light is present. The otoliths are also widely acknowledged
[90], [91] to have a significant part in the detection of
high-frequency components in the presence of light and the
linear acceleration motion in the dark. Sivan [21] employed
the optimal simulator design process based on the abovemen-
tioned assumptions to create the simulator motion in order
to reduce the dissimilarity between the physiological outputs
of the pilot’s vestibular organs in the simulated scenario and
those in an actual aircraft [92]. For this purpose, a weighted
sum of the vestibular error which is the difference between
the two pilots’ otolith and semicircular outputs was kept at a
minimum. The discrepancy between the motion cues in the
actual aircraft and the moving simulator was measured using
the mean-square value of vestibular error. In [21], the dynam-
ical systems, including the vestibular systems, were modeled
using time-invariant low-dimensional linearized equations.

ZyRo algorithm: When using washout algorithms in
flight simulators, tilt coordination is utilized to demonstrate
steady-state specific forces by rotating the motion platform
to line up gravity with the overall specific force vector of the
simulated aircraft. In the ZyRo algorithm [18], [19], a new tilt
coordination control technique was established to be utilized
with motion washout algorithms. Thus, a linear model of
the tilt coordination system was introduced after removing
the conventional linear high-pass filters from the classical
washout algorithm. Furthermore, the tilt channel is controlled
by a linear quadratic Gaussian regulator (LQGR) in a way
that minimizes both the total position of the motion platform
and the required tilt rate. Moreover, the required linear accel-
eration of the motion platform was decreased via nonlinear
feedback to a level that could be controlled by the tilt channel
control system. The outcome of these modifications is an
adaptive complementary filter pair that offers unity gain and
zero phase error for low-frequency and/or small specific force
inputs. When inputs are large, the nonlinear feedback to
the motion platform’s required linear acceleration generates
sagging cues that are reminiscent of those in the classical
technique. In tests involving a set of deceleration maneuvers
while taxiing, the ZyRo algorithm was found to outperform
the classical washout filter technique.

Telban algorithm with Young Meiry vestibular model: The
MCA introduced in [20] comprises models of the human
vestibular sensory system, i.e. a unique semicircular canals
model and the Young-Meiry otolith model [93], along with a
new integrated vestibular-visual perception model. Accord-
ing to the Young-Meiry model of the functionality of the
otolith receptors, otolith displacement causes hairs in sensory
cells to deflect, which in return produces sensory signals. The
otolith-endolymph system transforms a specific force input,
such as tilt or linear acceleration, into the otolith displace-
ment. Mechano-neural transduction system, which consists

of sensory hair cells and both afferent and efferent neurons,
further transforms this displacement into a sensory signal.
An overdamped mass-spring-damper system could be used
to model the otolith-endolymph system. Furthermore, due
to losses in neural transmission and central nervous system
processing, the quick dynamic response of the otolith will
drop to the slower ocular torsion response.

D. OpDA ALGORITHM
OpDA algorithm was proposed by [22], which integrated
dynamic models of the motion multi-sensory system, includ-
ing the vestibular and the proprioceptive systems (Figure 6).
OpDA showed to have a good response which tracks the tar-
get lateral specific force, decreases the false cues of angular
velocity, and reduces the negative cues of head-tilted-angle.
A comparison study shown in [22] illustrates that OpDA out-
performs some of the current MCAs and offers performance
at a level close to that of the MPC algorithm.

FIGURE 6. OpDA motion cueing algorithm.

E. SLIDING MODE-BASED CUEING
The aims of the classical sliding mode control technique
are to control the state variables of an electro-mechanical
system in such a way that they reach the sliding surface in
the state space and then continue to slide along it to reach the
origin (s = 0). This definition is adopted [23] and is utilized
for the motion cueing purpose. The simulator thus has two
operating modes. It starts in the washout filter motion cueing
mode, generating motion references while moving inside the
workspace. However, when the simulator reaches theworking
range limits, it then switches to sliding mode-based cueing
if the prerequisites for sliding are met close to the sliding
surface, and it remains in the slidingmode until the behavioral
conflicts are settled.

F. MODEL PREDICTIVE CONTROL (MPC)
The MPC algorithm [24], [25], [26] minimizes a defined
cost function in search of an optimal control law while tak-
ing into account the limitations of the system. In addition,
it has the advantage of including the vestibular system of the
human body, the Otolith model and the Semicircular canal
model, which each is different by a specific transfer function
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(Table 2). Figure 7 presents the block diagram of this cueing
technique.

FIGURE 7. MPC motion cueing algorithm.

TABLE 2. Human vestibular models.

In Table 2,ω and ω̂ are the real angular velocity and the per-
ceived angular velocity for the three rotations around the x, y,
z axes, respectively. Furthermore, f and f̂ indicate the specific
force and the sensed specific force, respectively. Based on the
literature, the parameters for both Otolith and Semicircular
canal models are largely determined by subjective responses
and may change. Table 3 presents the parameters of the most
popular vestibular models in MCAs.

TABLE 3. Parameters of vestibular models.

G. TIME-VARYING MODEL PREDICTIVE CONTROL
Since the workspace on any motion platform is constrained,
it is physically impossible to reproduce the actual vehicle
signals. So, that is where the motion cueing algorithm plays
its part by recreating a convincing vehicle motion feeling for
the user within the physical and dynamic constraints of the
motion platform. A Linear time-variant (LTV) MPC-based
motion cueing algorithm [27], [28], [29] is introduced to
overcome a common problem associated with linear time-
invariant (LTI) MPC-based MCA methods. As discussed
in III-F, the LTI MPC method is developed to obtain the
best input motion signals while taking into account the
motion platform constraints in the Cartesian coordinate sys-
tem. However, this MCA is still unable to incorporate the
design parameters of the motion platform mechanisms into
their model, and handle any unexpected individual driver’s
behavior, which results in the occupant experiencing unreal-
istic motions. Due to this shortcoming, the LTV MPC-based

MCA method is introduced which takes the design parame-
ters of a motion platform alongside its physical constraints
into consideration in the MPC model. Moreover, this MCA
can be modified to the driving prowess of the particular user
in order to obtain more accurate motion cues.

H. NONLINEAR MODEL PREDICTIVE CONTROL
Nonlinear model predictive motion cueing algorithm [30],
[32] represented an improvement with respect to the linear
algorithm described in [31] to handle the complexmechanical
structure of a robotic-based simulator. It was shown that
thorough the utilization of this algorithm a satisfactory per-
formance can be achieved in terms of reproducing accurate
perception even in critical operating conditions.

I. DEEP NEURAL NETWORK
A neural network can be utilized to imitate a motion cue-
ing algorithm which provides optimal cueing (Figure 8).
This method cannot be utilized to train a neural network
in real-time experiments while there is a driver-in-the-loop
because of the algorithm’s offline nature. However, the neural
network develops an approximation of an MCA after offline
training that may be used with a driver-in-the-loop in real-
time applications. In [33] (https://www.in.tum.de/fileadmin/
w00bws/i06/Personal_Files/Emec_Ercelik/PMS_Final.mp4),
the model was trained in an end-to-end manner, meaning
that the neural network learned the complete next state of
the simulator in addition to the control input signals. When
applied to a dataset with a small sample size, the end-
to-end approach produced more reliable results. In addition,
a second cost term for neural network training was included
to lessen the likelihood that learning the simulator’s complete
next state would result in inconsistent neural network outputs.

FIGURE 8. DNN motion cueing algorithm.

J. FUZZY CONTROL SYSTEM
Another type of MCAs is adaptive ones based on fuzzy
logic [34] which have been used to replicate the motion sig-
nals of simulators. Considering the end-effector constraints
in Cartesian space, it is claimed that the implementation
of fuzzy logic-based adaptive MCA minimizes the move-
ment sensation inaccuracy between the real vehicle and the
simulation-based motion platform user. The schematic of this
cueing technique is shown in Figure 9.
Unfortunately, motion cueing is widely believed to be the

only part of the vehicular motion simulators contributing
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FIGURE 9. Fuzzy logic control motion cueing algorithm.

to the system’s fidelity. However, the vehicle dynamic is
deeply tied to the cueing definition, and it determines the
sensation difference between the simulation environment and
the real-world experience by the user. In the current state of
motion cueing, including the abovementioned, the dynamic
characteristics of the driven vehicle are ignored in the cueing
algorithm. The changes in the dynamic characteristics of
a vehicle result in retuning/redesigning of the motion cue-
ing. In the future, more attention should be sought towards
adapting vehicle dynamic parameters in the cueing algorithm,
which not only can reduce the computation time when the
vehicle model changes but also can improve the driver expe-
rience and the simulator’s fidelity.

IV. CONTROL PARAMETERS TUNING METHODS
One issue associated with the development of MCAs for the
generation of realistic motion for the vehicle’s driver is the
multitude of control parameters that require manual tuning in
order to obtain the desired performance. Although trial and
error is a possible solution, it is not recommended because it
could jeopardize the system’s safety. This approach opens the
possibility that parameter combinations with high oscillation
or instability could be chosen, resulting in the termination
of the simulation. In addition, using such a method does not
ensure the highest performance possible. Hence, an optimiza-
tion technique must be used as a necessity to automate this
process.

Generally speaking, optimization algorithms are divided
into two types of algorithms: local and global search. Local
search algorithms, particularly those based on gradients, have
a high likelihood of trapping in local minima solutions, and
their convergence is quite sensitive to chosen initial values.
On the other hand, because of the derivative-free nature of
global search algorithms, they are not affected by these draw-
backs. In the literature, a number of global search algorithms
have been proposed, including the Genetic Algorithm (GA)
[95], Differential Evolution (DE) [96], Particle Swarm Opti-
mization (PSO) [97], Spider Monkey Optimization (SMO)
[98], Antlion optimization (ALO) [99], Grey wolf optimizer
(GWO) [100], and many others. These algorithms send out

a number of search agents into the solution space in an
effort to find the optimization problem’s global optima. These
agents employ exploitation and exploration tactics to inves-
tigate their surroundings and identify the best and optimal
solution. These tactics are necessary to prevent the local
minima, which may cause an early convergence in some
algorithms.

A. MEAN-VARIANCE MAPPING OPTIMIZATION (MVMO)
MVMO [101], [102], [103], [104], [105] is an emerging vari-
ant of a population-based, evolutionary optimization algo-
rithm whose features include the evolution of its solutions
through a unique search mechanism within a normalized
range of the sample space. It uses a specific mapping function
that is utilized to mutate the offspring based on the mean
and variance of the n-best population achieved thus far. This
mapping function always generates outputs that fall within
the normalized range [0,1]. Consequently, this means that
during the search process, the variable limits cannot be vio-
lated. Furthermore, MVMO updates the candidate solution
around the best solution in each iteration step, adjusting the
mapping curve’s location and shape in accordance with the
progress of the search process.Moreover,MVMO can swiftly
locate the optimum with a low risk of premature convergence
because of the carefully considered balance between search
intensification and diversification.

B. GENETIC ALGORITHM (GA)
The GA-optimized nonlinear scaling unit [8], [106], [107],
[108] is created to address the shortcomings of the existing
scaling techniques, including the reliance on trial-and-error
tuning, the inefficient workspace utilization, and the neglect
of physical constraints and user perception factors in the scal-
ing unit’s design. By lowering human sensation error without
breaching the simulator’s physical constraints, the suggested
nonlinear scaling unit can enhance the performance of opti-
mal MCA.

C. PARTICLE SWARM OPTIMIZATION (PSO)
Particle swarm optimization (PSO) [97] is one of the
population-based optimization algorithms inspired by believ-
ing that a school of fish or a flock of birds that moves in a
group can profit from the experience of all other members.
In PSO, a population of random solutions is used as the
system’s initial state, and subsequent generations are updated
in order to find the optimal and best solution. In contrast
to GA, PSO lacks evolution operators like mutation and
crossover. In PSO, the particles—potential solutions—follow
the current optimum particles as they move through the prob-
lem space. PSO is more efficient computationally in terms of
memory and speed needs. PSO is unquestionably less precise
and practical than GA, which are the evident drawbacks
of this technique. Due to the advantages and disadvantages
of the PSO technique, more researchers started to adopt a
PSO-GA combined method for optimization [109], [110].
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D. ANTLION OPTIMIZATION ALGORITHM
One of these metaheuristic optimization algorithms that
is motivated by the biological behavior of antlions is the
Antlion Optimizer (ALO), which was proposed/utilized in
[99], [111], and [112]. Because it uses both local and global
search for its exploitation and exploration stages, it has an
edge over other algorithms. Through this combination, the
search space is better explored and the optimal solution is
found more quickly. Consequently, it has been applied to a
variety of scientific problems, such as optimizing the control
parameters for different kinds of engineering applications.
The effectiveness of ALO in resolving a number of important
optimization problems can be attributed to its simplicity and
avoidance of local optima.

Table 4 highlights a summary of the state of existingMCAs
and optimization algorithms.

TABLE 4. Summary table of the reviewed motion cueing and optimization
algorithms.

V. CONCLUSION AND FUTURE WORK
This paper presented an in-depth review of dynamic motion
simulator systems alongside the cueing and optimization
algorithms that have been implemented to create compre-
hensive and realistic systems capable of mimicking the
real-world experience for the driver. These advanced systems
have evolved during the past few years and are utilized to
simulate different types of scenarios including the land, air,
and sea environments. The core of a motion simulator system
consists of a robot that is capable of maneuvering in spatial
space. This paper categorized these robotic machines based
on their working principles and the number of DoF that
they provide to facilitate smooth translational and rotational
positioning in the 3d space. Furthermore, the control unit
of these robotic machines contains a cueing algorithm in
which the hyperparameters are optimally tuned utilizing an
optimization technique. The current state of these cueing and

optimization approaches was presented in this paper and the
findings were outlined in Table 4.

Despite the advancement of these state-of-the-art systems,
there are still works to be done in terms of performances and
applications. The vehicle dynamic parameters should be inte-
grated into the MCAs to improve the driving experience by
the users and reduce the software computation time. This way
the MCA will be dependent on the vehicle model and if the
vehicle model changes, possibly only partial tunning of the
MCAs is essential to be performed to obtain the optimal cue-
ing algorithm and realistic driving experience. Furthermore,
disturbance observers (DOs) have been proven to improve the
performance of modern control techniques drastically [115],
[116], [117]. DOs estimate external disturbances includ-
ing wind, vibration, friction, temperature changes, inertial
effects, and any unmodelled phenomena that can affect the
motion of the simulator and generate compensation signals
to counteract those effects. Therefore, it is expected by incor-
porating DOs into MCAs to improve the accuracy and real-
ism of the motion simulators and lead to a more immersive
experience. Moreover, tuning of MCAs’ parameters is impor-
tant for improving the overall performance of the motion
simulator, particularly including motion/simulation sickness
impacts on humans within them. Thus, a robust optimization
procedure can improve the quality of the MCAs by finding
the optimal solution for control parameters. Many of the
existing optimization methods are prone to divergence and
instability. To avoid this, robust optimization algorithms such
as competitive gradient descent [118] can be considered in
future works. This algorithm has shown to be less sensitive to
the initial state of control parameters and with the ability to
achieve faster convergence.

On the other hand, machine learning (ML) techniques such
as Generative Adversarial Networks and Deep Learning [37],
[38], [119], [120] could be utilized to create convincing artifi-
cial data or motion sickness compensation. In addition, future
studies could investigate model-free Reinforcement Learn-
ing (RL) techniques integrated with modern control tech-
niques such as model predictive control to get the advantages
of both control schemes. By learning through exploration,
the RL may be able to offer pre-trained neural networks
that possess significantly higher-level and more reliable per-
formance. Furthermore, with the development of AVs and,
considering the complexity of our current road structures and
the increased number of vehicles, it is important to look into
smart vehicle platooning tominimize accident risks, transport
times, costs, energy and fuel consumption. Using the simula-
tor, and leveraging complex ML techniques, more in-depth
V2X studies can be conducted [114]. Furthermore, existing
real-world inefficient traffic light control causes numerous
problems, such as long delays and waste of energy [121].
To improve efficiency, taking real-time traffic information as
an input and dynamically adjusting the traffic light duration
accordingly, is a key element which can help from the virtual
environment of a simulator. Moreover, to deploy a large num-
ber of AVs in the future, safety and legal challenges need to be
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overcome. To meet the necessary safety standards, effective
collision avoidance technologies are required to ensure that
the number of accidents is kept to a minimum. The research
showed the implementation of ML techniques (e.g. Deep RL
[122]) and modern control techniques (e.g. Multiconstrained
MPC [123]) to train a controller that introduces collision
avoidance behavior is a useful future activity. The use of
simulation could further enhance previous achievements in
these areas.

Furthermore, human factor analysis is an important part
of vehicle manufacturing. Having a human in the loop of
the process, the factors including drivers’ age [124], [125],
fatigue, level of concentration, level of comfort, risky driving,
etc. have to be carefully studied [126] to improve regulations
and legislation surrounding the vehicle’s usage by the end-
users. Besides, the cognitive load on the driver must be stud-
ied to examine the level of driver tiredness and fatigue, and
differences that may arise between the simulation and real-
world experiences. This information would improve results
in an evaluation of the simulator’s fidelity and realism.

Finally, the vehicle dynamics model needs to be as close
as possible to the real vehicle to provide a complete sense
of realism. Small details of a particular vehicle model may
have a significant effect on the experience that is pro-
vided by driving a simulator. The suspension system, pedals’
displacement-force relationship, seatbelt force, driver seat
vibration, gear shift, steeringwheel displacement-torque rela-
tionship, tire modelling, traction of the tire to the road surface
under different road conditions, etc. are among the physics
factors that need to be carefully studied and designed to not
only provide an exceptional driving experience but also to
increase the desirability, effectiveness and suitability of a
commercial simulator.

Hopefully, the outcomes of this work will shed a light on
the careful planning of further improvements in the future.
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