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ABSTRACT The high penetration of renewable energy sources in modern distribution networks poses
challenges for grid voltage regulation. In this study, a multi-agent distributed voltage control strategy based
on the proximal Jacobian alternating directionmethod ofmultipliers (PJ-ADMM) is proposed for distribution
power systems with a high penetration of photovoltaic (PV) resources coordinated with battery energy
storage systems (BESS). In this context, the active and reactive power outputs of the PV are locally optimized
through smart inverters to improve the grid voltage with minimum power loss. Uncertainties associated with
solar energy generation and load demands are considered in the defined scenarios. This study consists of
two phases. In the first phase, the voltage control problem is formulated as an optimization problem to
regulate the voltages within an acceptable limit with fast convergence. In the second phase, a coordinated
voltage control strategy for smart PV inverters and BESS is proposed to allocate the power capacity of
the battery energy storage systems and the active power loss reduction. Finally, the proposed method is
tested on modified IEEE 13-bus, 33-bus and 141-bus distribution systems using MATLAB/Simulink and
MATPOWER. A comparison of the results of the voltage profiles with and without the control algorithm
demonstrated the efficacy, robustness, and scalability of the distributed scheme for voltage improvement and
optimal utilization of PV power under different scenarios.

INDEX TERMS Distributed energy resources (DERs), solar photovoltaic (PV), voltage control, smart
inverter, multi-agent system (MAS), battery energy storage systems (BESS), optimization, proximal Jaco-
bian alternating direction method of multipliers (PJ-ADMM).

I. INTRODUCTION
The demand for distributed energy resources (DERs) has
significantly increased. Solar photovoltaic (PV) power is a
promising renewable energy source in the global market [1].
Over the last decade, the development of PV sector tech-
nology has rapidly increased worldwide [2]. However, the
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penetration of PV resources has caused various challenges
in the performance of low-voltage distribution networks, one
of which is the voltage violation issue due to the mismatch
between loads and solar PV generation [3]. Moreover, uncer-
tainties associated with the intermittent nature of PVs lead
to additional challenges in balancing the power and voltage
profiles of the system [4].

Various methods have been proposed to prevent and over-
come voltage problems in distribution networks, such as

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 38589

https://orcid.org/0000-0002-2012-0531
https://orcid.org/0000-0003-4593-3018
https://orcid.org/0000-0003-2974-1120
https://orcid.org/0000-0002-3568-3716
https://orcid.org/0000-0002-6736-3733


S. R. Far et al.: ADMM-Based Multi-Objective Control Scheme for Mitigating the Impact of High Penetration DER Integration

1) upgrading the grid by installing more infrastructure, such
as cables, which is usually costly [5], 2) using control devices,
such as capacitor banks and on-load tap changers, which
are not sufficiently fast to regulate the voltage in highly
penetrated networks [6], and 3) PV power curtailment dur-
ing high-power generation is an effective strategy. However,
active power curtailment causes a loss of PV energy capacity,
which is against the decarbonizing goals [7].

With the recent update of the IEEE 1547 standard [8],
intelligent PV inverters can provide more features in grid
voltage support through their active power control (Volt-Watt)
and reactive power control (Volt-VAr) functions [9]. Smart
inverters can regulate voltage by curtailing active power [10].
The reactive power control functions of the smart inverter can
also support the voltage by supplying or absorbing reactive
power [11]. These advanced features provide more flexibility
in voltage support and enable smart inverters to play an
active role in maintaining the stability of the distribution grid.
Additionally, smart inverters can have communication lines
that allow them to receive reference active and reactive power
from the grid operator, which can be used to further optimize
and coordinate their output to support the grid voltage.

Different techniques have been studied in the literature
for controlling the voltage in the distribution network, which
is categorized based on their architectures:1) centralized,
2) decentralized, and 3) distributed multi-agent systems
(MAS) control [13]. A centralized control scheme with mul-
tiple DERs typically addresses challenges in terms of scala-
bility. In the centralized control method, a central controller
is required to regulate the voltage profile of the network.
However, centralized control structures face communication
challenges in large-scale networks. Moreover, this control
architecture can result in single-point failures [14]. A cen-
tralized control method was formulated for a distribution
network in [15] to control battery energy storage systems,
overcome the voltage rise issue, and reduce power costs.
However, owing to a lack of coordination among agents
in case of failure, other agents do not support the system.
Therefore, the entire system failed.

The second category is the decentralized control method.
Each unit processes local data in this technique without
interacting with the other units [16]. Therefore, this scheme
cannot achieve optimal management. The authors in [17]
developed a decentralized power control scheme for PV units
that uses only their local computations to minimize the total
cost of power losses and results in closed-form updates per
node. Coordinated control for PV and battery energy storage
based on a decentralized structure was implemented in [18] to
improve overvoltage. However, this scheme does not provide
optimal management. A decentralized control framework is
presented in [19] for a multi-objective microgrid in a dis-
tribution system; uncertain supply and demand parameters
were modelled to address the uncertainty conditions using
a robust optimization method. However, the network’s con-
straints were not considered in the proposed scheme.

Recently, distributed control structures have attracted
increasing attention. Considering the complexity of dis-
tributed energy resources, traditional distribution systems
are moving towards multi-agent designs [7]. In this method,
each decision-maker is called an agent, and each agent is
responsible for managing its local resources and participating
in data sharing in parallel with other agents [20]. Moreover,
this control method has a good potential for use in the
high penetration of renewable systems with several agents,
as they are robust and scalable. In this control method,
failure in a unit will never cause a global blackout in the
network. Distributed control algorithms are mainly designed
based on an iterative theoretical framework, such as the
alternating direction method of multipliers (ADMM) [21],
which can extract a set of optimal solutions for the opti-
mal regulation of multiple objectives. The standard ADMM
is mainly applied as an efficient solver for optimization
problems with several independent objective functions [22].
A robust distributedmulti-objective control technique for grid
support was proposed in [21], which addresses the worst-
case scenarios associated with the uncertainties of each agent
using the ADMM algorithm. The authors of [23] developed a
fully optimization-based distributed technique for managing
local resources in multiple interconnected microgrids. In this
method, the uncertainty penalties in the system can be deter-
mined locally by each unit to optimize the operation of the
grid.

Reference [24] implemented the ADMM algorithm to
decompose a complex nonconvex problem into several
subproblems to overcome the computational complications
caused by the high penetration of DERs in an extensive
network. Distributed voltage control based on the ADMM
was introduced in [25] with reactive powermanagement, con-
sidering the optimal global solution for a nonconvex system.
Reference [26] compared the performance of the ADMM
algorithm in tests related to the optimal power flow with
other decomposition algorithms. In [27], a distributed voltage
control based on the consensus ADMM was developed to
control the voltage in wind turbines using reactive power.
In [28], an ADMM-based method was proposed to solve the
power flow in a distributed system. The technology behind
smart inverters actively supports the grid and handles voltage
violations during undervoltage and overvoltage periods by
supplying or absorbing reactive power [29].

Despite the advantages of the ADMM algorithm, its imple-
mentation has some challenges owing to its complexity.
Another challenge in iterative optimization algorithms is
to solve the problem within a reasonable time, which can
be achieved by fast convergence [30]. A Jacobian-based
ADMM algorithm was developed in [31] for voltage control
by optimizing the active and reactive power support through
peer-to-peer communication protocols. The communication
layers were distributed between the initial control parame-
ters and Lagrangian multipliers between the control units.
In this context, a MAS-based optimization scheme can be
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formulated to improve the voltage profile of the network
through parallel coordination of the smart inverter. This
method aims to optimize the PV inverter outputs in the fast
MAS concept to maintain the voltage within an acceptable
range by utilizing reactive power support andminimum active
power curtailment.

The authors in [32] proposed a convex relaxation frame-
work as a distributed solution for the power flow prob-
lem using the Jacobi-proximal alternating direction method
of multipliers (JP-ADMM) algorithm [33] which is imple-
mented to efficiently solve the problemwith fast convergence
using the second-order moment relaxations provides a tighter
relaxation in complex computation. The scalability of the
proposed algorithm is addressed through case studies with
thousands of buses. The authors in [34] present the use of
a distributed power optimization technique, the JP-ADMM
algorithm, to optimize the allocation of charging services for
Plug-in Electric Vehicles (PEVs) and capacity for large-scale
PEV charging in power distribution systems with high PEV
penetration. A novel optimization approach for large-scale
distributed battery units is presented in [35], which utilizes
a modified version of the PJ-ADMM algorithm to optimize
cost and provide flexibility services. The proposed method
is demonstrated to generate optimal, real-time scalable solu-
tions through a case study, which are equivalent to centralized
optimization, and computed faster.

The primary advantage of using the PJ-ADMM algorithm
is its ability to solve large-scale optimization problems with
the cooperation of multiple agents in a parallel and distributed
manner. The PJ-ADMM algorithm can effectively handle
both convex and non-convex problems with general con-
straints, and it has been shown to have fast convergence and
good scalability. We chose to use PJ-ADMM in this study
because it can address the multi-objective and multi-agent
nature of the proposed optimization problem in a distributed
manner and reduce the communication burden among agents.
The use of smart inverters allows for a distributed and paral-
lelized approach to voltage control, as each inverter can work
on its own subproblem independently and in parallel with the
other inverters.

In this work, we focused on multi-agent distributed voltage
control systems. The main motivation for conducting this
study is to address the challenges posed by the high pene-
tration of PV resources in distribution networks, specifically
the voltage violation issue due to the mismatch between loads
and solar PV generation, and uncertainties associated with
the intermittent nature of PV generation. The study aims
to provide a robust and scalable control technique that can
handle the high penetration of DERs in an extensive network
using the JP- ADMM algorithm for voltage control by opti-
mizing the active and reactive power support in a large-scale
network.

This study ensured the optimal utilization of PV power by
controlling smart PV inverters locally using utilizing reac-
tive power support and minimum active power curtailment

through the PJ-ADMM algorithm to distribute a centralized
voltage control problem as it features a parallel updating pro-
cess, rapid convergence, the capability to impose constraints,
and superior global convergence performance. The applica-
tion of additional penalty factors resulted in faster voltage
convergence. However, curtailing the active power affects
PV owner revenue by limiting the solar PV power capacity.
Hence, there is still a need of designing an optimization-based
distributed voltage control based on the PJ-ADMMalgorithm
that enjoys a fast convergence rate without power loss. This
is made possible by utilizing energy storage systems to
store excess energy generated by PVs during periods of low
demand, which can then be released during peak demand
hours.

One way to control BESS is by integrating themwith smart
PV inverters, allowing for adjustments to energy output in
response to voltage violations on the grid. The power loss
in the PJ-ADMM algorithm motivates studying the imple-
mentation of virtual storage in the PJ-ADMM algorithm and
how to charge/discharge to minimum BESS sizing can be
allocated. Thus, the idea of storage sizing comes from a
virtual curtailment strategy through the PJ-ADMM algorithm
cycle by modifying the storage participation in voltage reg-
ulation, which gives rise to the efficient utilization of the
BESS capability during power imbalance periods and the
reduction of power losses. The distributed control policies
assign storage capacity and estimate the minimum amount
of power absorbed by storage, while taking into account
technical limitations such as capacity and determining the
charge/discharge power to be exchanged by buses.

To the best of our knowledge, this study is the first to
investigate the use of the PJ-ADMM algorithm for voltage
control in high-penetration PV systems with BESS in a fully
distributed structure and with power loss reduction as the
main objective. The proposed method operates in two phases
under different scenarios. In the first phase, the voltage con-
trol problem is formulated as a multi-objective optimiza-
tion method. In the second phase, the BESSs are integrated
with smart PV inverters to store excess solar power and
control voltage. The control policies considered determine
the active and reactive powers of the PV inverters and the
charge/discharge power of the batteries. The key contribu-
tions of the study are:

• Optimal PJ-ADMM-based modulation strategy for
active and reactive powers to improve voltage and
meet load demand using smart inverters during day and
night.

• Minimization of active power curtailment through the
use of smart inverters, which provide voltage support
during overvoltage conditions with reactive power con-
tributions in a distributed manner.

• Analytical approach for coordinating PJ-ADMM with
BESS for smart PV inverters to maximize PV power par-
ticipation in multi-agent systems, considering network
uncertainty.

VOLUME 11, 2023 38591



S. R. Far et al.: ADMM-Based Multi-Objective Control Scheme for Mitigating the Impact of High Penetration DER Integration

• Method for optimal BESS sizing to maximize PV power
utilization with PJ-ADMM for power loss reduction.

• Framework for demonstrating the scalability of the pro-
posed algorithm in large-scale, complex distribution
power systems.

The remainder of this paper is organized as follows.
Section II presents a formulation of the voltage problem.
Section III provides an overview of the ADMM control
scheme. Section IV, the proposed control scheme includes
the PJ-ADMM algorithm, and BESS sizing is considered.
Section V describes the case studies. Furthermore, simulation
results are presented and discussed in Section V to verify the
effectiveness of the proposed algorithm in different scenarios.
Finally, Section VI concludes the paper.

FIGURE 1. The basic structure of a distribution system with multiple PV
agents.

II. PROBLEM FORMULATION
Fig. 1 shows the basic structure of a distribution system with
several agents. The objective function of the voltage control
problem based on a centralized system is represented in (1a),
which aims to minimize the costs of changes in the active
power (P) and reactive power (Q) of PV inverters at time
step t.

Minimize1P,1Q

∑
n∈N

FPn(1P(t)n )
2
+ FQn (1Q(t)

n )
2

(1a)

Subjectto :Vmin
≤ Vt

n ≤ Vmax
∀n ∈ N (1b)

where N is the set of PV inverters installed in the system,
and n is the number of contributed inverters. The variables
1P(t)n and 1Q(t)

n refer to the changes in the active and reac-

tive powers of the nth inverter, respectively. FPn(1P(t)n )
2
and

FQn (1Q(t)
n )

2
are the cost functions associated with changes in

the active and reactive powers of the inverters, respectively.
FPn and F

Q
n are constant penalty factors that denote the control

of participation, P and Q, respectively. In this regard, each
inverter must locally satisfy the voltage constraint (1b). Vmin

and Vmax denote the lower and upper voltage bounds of the
nth PV inverter, respectively. Constraints (1c) and (1d) on
variables 1P(t)n and 1Q(t)

n are considered for model (1a) to
maintain the lower and upper limits on the voltage magnitude
of the units and to constrain the amount of exchanged power
between the nodes. Vt

n represents the nth inverter voltage
magnitude at the point of common coupling (PCC) after
applying 1P(t)n and 1Q(t)

n .

(−Cu)(P
PV
i )

(t)
≤ 1P(t)n ≤ 0 (1c)

−(1Q(max)
n )

(t)
≤ 1Q(t)

n ≤ (1Q(max)
n )

(t)
(1d)

The active power curtailment factor is denoted as Cu.(PPVn )
t

is the power generated by the nth inverter. The apparent power
is denoted as Sn. The maximum reactive power curtailment
can be calculated through (1e):

(1Q(max)
n )

(t)
=

√
S2n−((PPVn )t+1P(t)n )

2
(1e)

f(Vt
n, 1P(t)n , 1Q(t)

n ) = 0 (1f)

where constraint (1f) denotes the nonlinear relation between
the voltage magnitude and the active and reactive powers
as input variables in each inverter, which causes nonconvex
power flow problems [33]. The linearization of all voltage
magnitudes using voltage sensitivities can help formulate
a linear relationship between the input parameters to solve
the power flow problem in the convex relaxed form in the
distributed scheme [27]. The relation between the bus voltage
magnitude and small variations in the active and reactive
powers for a set of inverters can be calculated using volt-
age sensitivities. A first-order approximation can be used,
as shown in equation (2):

V(k)
m ≈

(
V(M)
m

)K−1
+

∑
n∈N

∂Vm

∂Pn
1P(k)n +

∂Vm

∂Qn
1Q(k)

n

(2)

where 1P(k)n and 1Q(k)
n denote the deviations in the active

and reactive powers in each iteration k. (V(M)
m )

K−1
denotes

the measured voltage of bus m at the previous iteration (k-1).
∂Vm
∂Pn

and ∂Vm
∂Qn

are the voltage sensitivity coefficient matrices

updated at each node in each iteration [36]. These parameters
express the influence of changes in variables P and Q on
the voltage control of the inverters and can be written in
simplified forms ∂Vm

∂Pn
≈V(P)

nm and ∂Vm
∂Qn

≈ V(Q)
nm . It is possible

to express equation (2) as follows:

V(k)
m ≈

(
V(M)
m

)K−1
+

∑
n∈N

V(P)
nm1P(k)n +V(Q)

nm 1Q(k)
n (3)

The topology of the grid and the information about the line
impedances can be used to compute the voltage sensitivity
coefficients. For a set of inverters, a linear voltage model can
be expressed using the voltage sensitivity coefficients (V(P)

nm
and V(Q)

nm ), which represent the effect of active and reactive
power, respectively, on the controlled voltage.

In this regard, the optimization problem is solved by a
centralized design by gathering variables as inputs, such as
solar power generation and bus voltage, to solve the prob-
lem, and a central optimizer minimizes the total change in
active/reactive power in each inverter to achieve the optimal
control in the system. The central controller then shares
the new set of points with all agents to support the grid.
However, the major challenge of this method is that the
system is always at risk of a single point of failure. A central
coordinator is required to collect variables from each unit to
regulate an optimal set point for supporting the grid. In this
scheme, a robust communication system is also required to
exchange information between the agents participating in the
system. Therefore, a solution to the challenges above is to
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use a method to split the centralized control system into
a multi-block control system that can improve the voltage
profiles in parallel using MAS-based algorithms.

III. ADMM APPROACH
The ADMM algorithm was originally a system with two
blocks, which has been widely applied to solve distributed
optimization problems in different applications. However,
it is desirable to partition the centralized optimization prob-
lem into multiple agents that allow parallel computing to
solve problems in large-scale distribution systems [37].
In general, a convex optimization problem is expressed as
follows [21]:

Min A (x) + B(z) (4a)

Subject to : ax + bz = c (4b)

where A(x) and B(z) are independent objectives and sep-
arable considering variables x and z, equation (4c) can be
formulated to solve the optimization problem using the aug-
mented Lagrangian function with penalty terms [38], where
ρ the augmented penalty factor on the constraints is a constant
positive factor.

L(x,z,λ)
ρ = A (x) +B (z) + λ

T (ax + bz − c)

+
ρ

2
||ax + bz − c||22 (4c)

Finally, the ADMM model of (4a) is derived in (4d)-(4f)
when the variables are updated in each iteration k, as
follows [21]:

xk+1
= argmin Lρ(x,zk, λ

k) (4d)

zk+1
= argmin Lρ(xk, z,λ k) (4e)

λ
k+1

= λ
k
+ρ

(
axk+1,bzk+1

−c
)

(4f)

Although the standard ADMM performs well in solving
convex models, its performance in terms of convergence
is insufficient for non-convex problems. In this regard, the
multi-block ADMM can be advanced to the proximal Jaco-
bian ADMM to relax the coupling between the functions
and help decompose the centralized problem into several
minor problems [30], [39]. This study proposes aMAS-based
distributed control system for voltage regulation using a
distributed optimization algorithm. Applying the PJ-ADMM
approach, the centralized problem can be decomposed into
subproblems that can be updated in parallel to be solved by
each agent with fast convergence iteratively [40].

IV. CONTROL SCHEME
A. PJ-ADMM ALGORITHM
The PJ-ADMM is selected to solve the proposed optimiza-
tion problem because of its robustness and high performance
in determining optimal values compared to other ADMM-
based algorithms. The original proximal Jacobian ADMM
methodology was adapted from [33]. The centralized objec-
tive function in (1a) can be decomposed into the sum of

several convex functions related to each PV unit consid-
ering the local constraints. In each iteration, the variables
1P and 1Q are updated in parallel. Adding proximal terms
such as penalty factors helps speed up the convergence rate.
Equation (6) is a derivation of the proximal augmented
Lagrangian of the (1a) after adding proximal terms on each
sub-problem and considering the initial limits on variables
Vk
n,1P

(k)
n and,1Q(k)

n in (1b)- (1f) is given formulated in (6):

fkn = FPn(1P(k)n )
2
+ FQn (1Q(k)

n )
2

(5)

Lρ(1P(k)
n , 1Q(k)

n , (λmax
n )(k−1)

, (λmin
n )

(k−1)
)

= 6(fkn+(λmax
n )(k−1)

(
Vk
n − Vmax

)
+ (λmin

n )
(k−1)

(
−Vk

n + Vmin
)

+
ρn

2
max(0,

(
Vk
n − Vmax

)
)
2

+
ρn

2
max(0,

(
−Vk

n + Vmin
)
)
2

+
τn

2
(1P(k)

n − (1Pcn)
(k−1))

2

+
τn

2
(1Q(k)

n − (1Qc
n)

(k−1))
2
) (6)

where λmin
n and λmax

n denote the Lagrangian multipliers
corresponding to the constraints on the nth inverter con-
trol variable. τn is the proximal penalization factor asso-

ciated with the proximal terms (1P(k)
n − (1Pcn)

(k−1))
2
and

(1Q(k)
n − (1Qc

n)
(k−1))

2
on each subproblem. The subscript

c refers to constant values. This parameter is used to ensure
the convergence of the controlled voltage. The proposed
approach enjoys fast convergence by adding proximal terms
to the control variables P and Q deviation. The objective func-
tions can be distributed to each PV inverter and coordinated
locally and in parallel with other controllers. The equation
of the proximal Jacobian version of the ADMM for local
controllers in a multi-agent network can be derived in (8).

H(k)
nm = 1P(k)

n V(P)
nm + 1Q(k)

n V(Q)
nm (7)

LPJ−ADMM
n = fkn+6(((λmax

n )(k−1)
−

(
λ
min
n )

(k−1)
)
H(k)
nm

+
ρn

2
max(0,

(
(VM

n )
(k−1)

)
− Vmax

+ H(k)
nm)

2

+
ρn

2
max

(
0,

(
−(VM

n )
(k−1)

)
+Vmin

− H(k)
nm)

2
)

+
τn

2
(1P(k)

n − (1Pcn)
(k−1))

2

+
τn

2
(1Q(k)

n − (1Qc
n)

(k−1))
2
)) (8)

τn>ρn

(
|D|

2 − Un
− 1

)
(9)

By applying the PJ-ADMM algorithm, the original opti-
mization problem of the system can be partitioned into several
subproblems. These subproblems are formed based on the
constraints of the problem, and they are distributed among
different agents. In a multi-agent control system, each agent
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is responsible for solving a specific subproblem that is part
of the overall optimization problem. The subproblems are
typically related to the control of a specific aspect of the
system, such as voltage regulation in the case of the invert-
ers mentioned in this paper. The agents optimize their local
subproblems while sharing information with other agents
to ensure the global solution is obtained. The subproblems
are typically designed to be solved independently, with each
agent having its own set of decision variables and local
constraints. The solutions from each agent are then combined
to form a solution for the overall optimization problem. This
approach allows for a distributed and parallelized solution
to the optimization problem, as each agent can work on its
own subproblem without needing to communicate with every
other agent.

In the context of this paper, each agent in the multi-
agent control system is a smart inverter. The inverters are
equipped with voltage-support functions and are responsible
for solving a specific subproblem related to the control of
voltage within the system. The inverters work together to
maintain the overall voltage within limits, and the solutions
from each inverter are combined to form a solution for the
overall optimization problem.

Once the voltage of any agent is outside the constraints, the
model operator can return the values to the required range and
minimize active power loss by optimizing the control vari-
ables. Furthermore, to improve the convergence speed of the
voltage, proximal penalty factors and additional acceleration
terms are used in the PJ-ADMM algorithm. This study used
the acceleration factor Un for fast updating in Lagrangian
multipliers, which led to fast convergence. The condition for
the parameter τ is given by (9), where τ depends on the
number of inverters in the system, the acceleration factor,
and the proximal penalization factor. For a set of inverters, a
smaller τ provides faster convergence in the voltage control.
The details of the multi-block PJ-ADMM scheme are sum-

marized in Algorithm 1. Here, VM corresponds to the voltage
measured at the PCC for a set of inverters after applying small
changes in P and Q at each iteration. It should be noted that
the voltage control scheme has an iterative manner. In each
round k, the control system regulates the inverter’s active and
reactive powers and PCC voltage, followed by updating the
Lagrangian multipliers.

B. BESS OPTIMAL SIZING FOR POWER LOSS REDUCTION
Energy storage has been identified as a valuable approach
for addressing the issue of load mismatch and incorporating
renewable energy. In recent years, battery energy storage sys-
tems have become a significant choice among energy storage
technologies due to their notable improvements in terms of
both performance and cost-effectiveness. During the charging
mode, BES systems can act as a load by receiving energy from
the grid to charge its batteries. However, in the discharging
mode, BES systems can act as a generator by releasing stored
energy to the grid, thus providing a source of energy.

Algorithm 1 PJ-ADMM Coordinated With BESS
Phase I:
Initialize the variables 1P, 1Q, λmax, and λmin. Set the
voltage V at each node to 0.
Measure the voltage at the Point of Common Coupling
(PCC).
If the voltage is within the specified constraints:
Vmin

≤ VM
≤ Vmax, then begin the local control iterations.

For k = 0, 1, . . . , d, update the active power deviation 1P
and the reactive power deviation 1Q in each subsystem by
solving the optimization problem given by:

argmin1p,1qLPJ−ADMM
n

Send the calculated values of 1P and 1Q to the control cycle
of each inverter.
Constrain the values of 1P and 1Q by the following
conditions:

(−Cu)(PPVn )
(k−1)

≤ 1P(t)n ≤ 0

−(1Q(max)
n )

(k)
≤ 1Q(k)

n ≤ (1Q(max)
n )

(k)

Update the variables λmax and λmin for each agent in par-
allel as follows:

(λmax
n )(k) = max(0, (λmax

n )(k−1)
+ ρnUn((VM

n )
(k)

−(V)(max))

(λmin
n )

(k)
= max(0, (λmin

n )
(k−1)

− ρnUn((VM
n )

(k)
−(V)(min))

End
Phase II:
For each hour h = 0, 1, . . . , 24, repeat the following steps:
For each BESS, Bn= 0, 1, . . . , 4, absorb or inject1P to/from
the BESS.
For all BESS, update equations (16) and (17) to determine the
charging/discharging active power.
Update the charging power PchargeBd,h

and discharging power

PDischargeBd,h
in the optimization cycle.

Measure the voltage at the PCC.
If the voltage is within the specified constraint:
Vmin

≤ VM
≤ Vmax, then end the iteration.

Determine the required BESS capacity and
charging/discharging rates.

In this study, by the end of Phase I, the minimum required
active power curtailment, denoted by 1P, for voltage-rise
mitigation is computed using the PJ-ADMM algorithm. This
section focuses on a robust optimization-based voltage con-
trol technique through the PV-battery coordination model of
a distribution system dominated by PV systems, where the
curtailed powers are specified for the charging or discharging
operations of the BESS to regulate the voltage profiles. The
model is developed aims to overcome the overvoltage and
power loss challenges that arise with the high integration
of PVs. The control scheme consists of a multi-agent con-
trol algorithm and the voltage control problem is defined
as an optimization problem. In this technique, the agents
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coordinate with each other to estimate the required amount of
curtailing active power and storage sizing needed to modulate
the voltages rise.

In the presence of uncertainties, once a voltage violation
is detected in any node, the optimization control algorithm
will be active in computing the minimum amount of active
power curtailment required to mitigate the voltage violation.
Therefore, the charging power of the BESS at each hour
of running the optimization algorithm is the same as the
curtailed active power of the PVs. To comply with network
constraints, providing energy at an optimal rate is of great
significance. The aim is to allocate BES for maximum ben-
efits from discharge mode. The control cycle considered in
this methodology is included active power curtailment from
PV inverters and charge/discharge power from virtual stor-
ages in the control cycle of the algorithm. This method will
contribute to keeping the power grid balanced by smoothing
out the demand peaks through the algorithm coupling the
BESSwith PV inverters and improving the local consumption
during the low-demand periods in the distribution system.
When the load demand exceeds the generated PV power, the
BESS starts to discharge.

In this way, the active power of PV inverters will be cut
by saving the excess active power in the storage which helps
alleviate the voltage rise issue in high PV generation periods.
In peak load periods, the stored energy in BESS will be
used for improving the voltage profile of the grid during
voltage drop periods. The general structure of the proposed
optimization method is shown in Fig 2. The coordinated
voltage control policy determines storage integration into the
voltage profile. In this case, the reactive power of the BESS
is not considered in the optimization cycle. The participation
of storage systems is proportional to their capacity, based on
the load demand at that hour of the day. The results show how
the developed mathematical optimization algorithm allocates
BESS capacity to voltage control.

FIGURE 2. General overview of the coordinated voltage control system.

The BESS is subject to charging power Ptcharge and dis-
charging power Ptdischarge constraints. The stored power of
the battery system at any time step t should not surpass the

considered limits. The boundary on the power charging and
discharging can be represented as equations (10) -(12) where
Pmax is the maximum charge/discharge power.

0 ≤ Ptcharge ≤ Pmax (10)

0 ≤ Ptdischarge ≤ Pmax (11)

Ptcharge.P
t
discharge

= 0 (12)

These constraints enforce that the power output of the
BESS cannot surpass its power capacity. Constraint (13)
enforce that the energy stored in the batteries should be
maintained within an acceptable range to avoid excessive
charging/discharging and increase the battery’s longevity.

Emin,Battery ≤ EBattery(t) ≤ Emax,Battery (13)

In the given context, t represents the overall number of
time intervals over the control horizon. EBattery(t) signifies
the energy level of at time t. Emax,Battery and Emin,Battery
denote the upper and lower bounds of its energy capacity,
respectively. The amount of energy stored in each battery can
be calculated by using the following equation (14):

EBat(t + 1) = EBat(t) + (Pcharge(t)ηch − Pdischarge(t)/ηdch)1t
(14)

Note that there are some charging/discharging losses in the
batteries owing to the internal resistance, which is modelled
by introducing the charging/discharging efficiency of the
batteries with ηch and ηdch. These values can vary depending
on the case study and have been approximated in different
ways. They can be a single constant value, or as functions
of the charging/discharging rate of BESSs. However, a linear
relationship exists between the charging efficiency and the
charging rate as given in (15). The BES can be described
using constant coefficients α and β. The same approach can
be applied to the discharging mode.

ηch = αn−βnPcharge (15)

In the case, if this study, the equations (16) and (17) are shown
the active power charging and discharging of the nth battery at
bus d, where Bn,d,h is the set of BESS installed in the system
for 24 hours each time step h.

PchargeBn,d,h
= ηch × 1P+

Bn,d
(16)

PDischargeBn,d,h
= 1P−

Bn,d
/ηdch (17)

Here, PchargeBd,h
and PDischargeBd,h

are the actual power absorbed
and injected by the nth BESS, respectively, and the charg-
ing/discharging active power of the nth BESS at bus d is
equal to1P+

Bn,d
and1P−

Bn,d
respectively. The energy stored in

each BESS is selected to equal its capacity, considering the
efficiency of 95%. 1P+

Bn,d
and 1P−

Bn,d
are assumed to be the

active power deviations (pu). Their sign is considered to be
either positive or negative, depending on the BESS operating
mode. When the battery operates in the charging mode, 1P
is positive. When the battery works in the discharging mode,
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1P is negative. The algorithm determines which BESs from
the network are chosen to participate in the control cycle
and how much power is charged or discharged to satisfy the
voltage control constraints over the whole network.

V. CASE STUDY
In this section, the performance of the proposed algo-
rithm is validated using small systems such as modified
IEEE 13-bus and 33-bus distribution feeders. The scalabil-
ity of the proposed method is demonstrated with the IEEE
141-bus distribution feeder. The optimization problem is
solved using YALMIP [41]. Simulations of the 13-bus system
are performed usingMATLAB/Simulink 2021b and executed
on a PC with an Intel i7-4790 3.60 GHz CPU and 16 GB
RAM. The MATPOWER package 7.0 [42] is used for the
method’s power flow and voltage analyses on the 33-bus
and 141-bus systems. The proposed method combines locally
distributed voltage control based on the PJ-ADMM and the
charge/discharge of batteries. The validation then focuses on
the effect of the implemented method in satisfying decar-
bonization goals, such as minimum power loss, maximiz-
ing the participation of PVs capacity, and satisfying load
demands under different conditions to maintain the voltages
of all buses and PV/battery inverter constraints within an
acceptable rage.

A. 13-BUS SYSTEM
The modified configuration of the IEEE 13-bus test feeder
with the PV locations is illustrated in Fig. 3. Four PV panels
with similar solar irradiance profiles and commercial load
profiles with a capacity of 200 kW were installed on buses
634,675,692 and 684. The ratios of PV generation to load
during peak hours are listed in Table 1. The detailed data of
the loads and solar power profiles were adapted from [43]
and modified based on the capability of the system used in
this case study. Using the MAS-based topology, each inverter
is an independent agent. All participating inverters are smart
and operate with voltage-support functions. Each PV unit’s
active and reactive powers are regulated in each round of
the optimization calculation cycle. In addition, uncertainties

FIGURE 3. The 13-bus distribution network.

TABLE 1. The ratio of PV generation compares to the load during peak
hours.

regarding the PV power and load disturbances are considered
in the case studies. The system parameters are shown in p.u.
The voltage constraint in each bus is set to [0.95, 1.05] p.u.
Finally, the iteration number is considered to investigate the
influence of related parameters on the convergence rate.

In this study, four possible scenarios are considered to
indicate the effectiveness of the proposed control strategy.
The performance of the implemented method at all smart
inverters is analyzed when the system is experiencing under
or upper voltage conditions, specifically at midday and early
at night. An advantage of the proposed algorithm is that it
improves the voltage profiles with a minimum amount of
reactive power compensation and active power curtailment
at each iteration. The performance of the proposed optimiza-
tion method is compared with that of the base case without
distributed control. The grid voltage support function does
not need to be activated when the voltage falls below the
limits.

Several parameters of the algorithm influenced the results.
The term Cu is used to penalize active power curtailment.
In this study, Cu is set to 1, which means that the invert-
ers can curtail the maximum capacity of their active power
when necessary. The active and reactive power penalization
factors are FP = 1000 and FQ = 500 (based on trial and
error). Here, FP > FQ for minimizing active power cur-
tailment. The number of iterations is related to the penalty
factor FP. Generally, small FP yields a faster convergence.
We also examined the effects of τ on the convergence
speed.

B. SCENARIO I
Scenario I involve only active power control by curtailing
the active power to reduce overvoltage when the PV out-
put reaches its maximum value. Fig. 4(a)-4(c) presents the
24-hour voltage profile of the network with the proposed
controller under scenarios I and II compared with the pro-
file without control. Fig. 4 (a) shows the voltage profiles
of the buses without control. The yellow line indicates the
maximum boundary at Vmax = 1.05 p.u. It can be observed
that the voltage rise problem occurs when there is low load
demand and high PV generation. It can be observed that the
voltage violates the upper limit on some buses in the time
slots of 11:00-13:00. As shown in Fig. 4 (a), the voltages on
bus 634 exceeded the constraints, with a voltage of 1.053 at
midday. The inverter at the end of the line at bud no 634 is
selected to monitor the method’s performance because it
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TABLE 2. Results under scenario II.

is more sensitive. In Fig. 4 (b), we can see that using the
PJ-ADMM algorithm, the voltage rise problem at noon is
mitigated to 1.043 through an iterative voltage regulation
method.

C. SCENARIO II
The second scenario is the method of supporting volt-
age by reactive power in the under-voltage condition when
the voltage of some nodes is lower than 1 p.u. during
1:00-16:00 and 18:00–24:00. In this scenario, there is no
need to afford active power control. As shown in Fig. 4 (c),
when there is no PV generation and high load demand
in the early evening, all buses experience low voltages.
In this case, injecting reactive power can improve the voltage
profile.

In this scenario, we set the constraint for reactive power as
the maximum capacity of the inverters. The results indicate
that intelligent inverters can support the grid at night by
injecting reactive power. It can be seen that the voltage drop
occurs at 20:00, approximately 0.98 p.u., which is improved
to 1.02 pm. Table 2 lists the total amount of reactive power

FIGURE 4. (a) 24h voltage profile of the system without control,
(b) voltage profile with control under the scenario I, and (c) voltage
profile with control under scenarios I and II.

provided to the inverters at bus 675 during 20:00–22:00 under
scenario II.

FIGURE 5. Voltage regulation under scenario III.

D. SCENARIO III
In this scenario, active power curtailment is disabled. There-
fore, the PCC voltage is regulated using only reactive power
when an overvoltage problem occurs. Fig. 5 shows the opti-
mized voltage profile under scenario III. It can be observed
that the voltage rise during peak hours is controlled for all
participating buses. Smart inverters start decreasing the over-
voltage by absorbing a minimum amount of reactive power
with no active power loss. In this case, smart inverters con-
tribute to voltage control through a voltage support function
by supplying or absorbing reactive power during voltage-rise
conditions.

FIGURE 6. Voltage regulation under scenario IV.

E. SCENARIO IV
The last scenario is designed to verify the effectiveness of
intelligent inverters in voltage profile regulation with both
active and reactive powers during periods of high solar power
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generation. In this case, smart inverters provide reactive
power to the grid, along with the minimum curtailment of
active power at each iteration, until the desired voltage limits
are reached for all buses. Fig. 6 shows the controlled voltage
profiles under scenario IV.

TABLE 3. The total amount of curtailment in the system.

TABLE 4. Active and reactive power in the swing bus at midday.

Table 3 illustrates the total active and reactive power
curtailment under each scenario in the entire system
during 11:00 -13:00 when PVs are at maximum output.
In the last scenario, the total reactive power support at noon
is approximately 33 kVAR. In contrast, the entire curtailed
active power when the system experiences the maximum
overvoltage is about 24 kW, which shows the impact of reac-
tive power curtailment on the voltage profile of the system.
Note that there was no voltage violation for the rest of the day;
therefore, the voltage support functions were inactive during
these hours. Table 4 presents the active and reactive powers
received from the main network under the different scenarios
at 12:00. These values reflect the amount of curtailed active
and reactive powers, as shown in Table 3. Note that the PVs
were at their maximum generation levels at midday.

Fig. 7 shows the active and reactive power curtailment
at bus-634. In this result, the performances of scenario III
with only reactive power control and scenario IV with
both active and reactive power curtailment are compared.
Fig. 8 shows the high-speed convergence of the voltage in
bus-634 at midday under the different scenarios. Notably, the
voltages are returned to the range of constraints by selecting
the optimal value for the acceleration factor through the
proposed algorithm for each agent independently in less than
ten iterations. In this case, better results were achieved when
the curtailment acceleration factor was set toYP = 10000, the
reactive acceleration factor was Yq = 100, and the proximal
penalization factor was set to τ = 0.0001.
Finally, a comparison of the results shows that applying the

PJ-ADMM algorithm can improve the voltage profile of the
multiagent system. It can be observed that the smart inverters

FIGURE 7. Active and reactive power curtailment at bus-634 under
scenarios III and IV.

at all buses start supporting the grid voltage locally and
in parallel by injection/absorbing reactive power. Moreover,
both control variables P and Q are updated with minimum
curtailment at each iteration in parallel for all agents. Table 5
lists the voltages in bus 634 (with PV) and bus 633 (without
PV) during peak hours. As can be seen, this method canmain-
tain the voltage of all nodes in the allowed range, considering
the uncertainties in the high penetration of solar PV networks.
Smart inverters can also contribute to voltage control in buses
without PV with reactive power control, which shows the
ability of smart inverters in voltage regulation. The results
demonstrated the flexibility and capability of the algorithm
in smart inverters using reactive power, which considerably
impacts voltage control. Scenario IV provides optimal regu-
lation of the voltage profile with minimum curtailment com-
pared with the other cases.

FIGURE 8. Voltage convergence at bus 634 at 12:00.

F. 33-BUS SYSTEM
The performance of the proposed scheme is tested using a
33-bus system. The MATPOWER package 7.0 was used for
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TABLE 5. Maximum voltage (p.u.) in buses 634 and 633 at midday.

the power flow analysis and computing voltage profiles. The
robust optimization problem was solved using the YALMIP
toolbox. In this case, 20 PVs with an equivalent capacity of
0.2 MWwere installed. Four distributed BESSs were consid-
ered in this system. Each BESS has a capacity of 2.5 MWh.
A block diagram of the proposed control strategy is shown
in Fig. 9, where it should be noted that all loads of the
IEEE 33-node test system were increased by 10% to stress
the network. The voltage constraints for each bus were set
to [0.98 1.05] p.u.

Fig. 10 shows the voltage profiles of the 33-bus system
without voltage control. It can be observed that the voltages
violate the voltage constraints at midday and noon. This
section presents the results for the optimal sizing of the BESS.
In this method, voltage rise/drop problems are addressed
using virtual BESSs to optimally utilize the active power of an
intelligent PV inverter. Power generation from PV inverters
can be limited by absorbing excess active power using bat-
teries, which helps to reduce solar energy curtailment. The
charging mode can be considered a network load, and the
energy stored in the storage systems can be used as backup
power during the discharging mode when the BESS provides
energy to the network.

FIGURE 9. General Configuration of case study on 33-bus system.

Fig 11 shows the 24-hour voltage profiles after applying
the coordinated control policies using the PJ-ADMM algo-
rithm. In this case, excess active power injection from the
PV inverters is absorbed by the grid and stored in storage to
mitigate the voltage rise problem during 10:00-15:00. When
all bus voltages are in the secure range, BESS systems do not
provide further support. The results show that the proposed
technique significantly improves voltage. As seen, allocating
the BESS helps maximize the discharging mode’s benefits,
providing peak shaving and load control in the system.

FIGURE 10. Voltage profiles of 33-bus system with no voltage control.

FIGURE 11. The 24h voltage profile of all buses with voltage scheme
control considering BESS.

FIGURE 12. BESS participation.

The total charge and discharge rates for each hour of the
day for four BESSs are shown in Fig. 12. The BESS is
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charged during high PV generation and discharged during
on-peak load periods. Note that in the cycle of the optimiza-
tion algorithm, the power is proportionally shared between
the BESS according to their capacity and load demand at
each hour. The figure illustrates that the BESSs are charged
during high PV generation and discharged during high load
demand periods, and BESS’s charge and discharge efficien-
cies were set to 95%. For the peak hour of the day, at 13:00,
approximately 1.8 MW losses of active power were reduced
by charging four BESSs, which is almost the same as the
maximum discharging rate at 20:00. The results presented
in Fig. 12 validate the effectiveness of the proposed math-
ematical optimisation method under peak- shaving or load-
levelling scenarios.

G. 141-BUS SYSTEM
The proposed voltage control model has been thoroughly
tested on both small-scale and large-scale systems, show-
casing its versatility and scalability. In the case study, the
system was expanded from a 33-bus network (comprised
of 20 PV smart inverters and 4 BESSs) to a 141-bus network
(comprised of 35 PV smart inverters and 3 BESSs), and the
capacity of the PV panels was increased from 0.2 MW to
0.7 MW. The results from the case study on the 141-bus sys-
tem, which was conducted using the same PV generation and
load data as previous case studies, highlight the scalability of
the proposedmethod. It was ensured that each bus maintained
a secure voltage within the range of [0.95, 1.05] p.u. and that
the PV panels were capable of operating at a power factor of
up to 0.9.

As shown in Fig 13, without the proposed distributed
voltage control strategy, the voltage profiles of the 141-bus
system exceeded the maximum voltage limit between 10:00
and 14:00. Over-voltage (1.07 p.u.) was observed at midday,
while some buses experienced under-voltage (0.92 p.u.) dur-
ing the evening. With the proposed voltage control scheme,
the system operator can effectively address the issue of rising

FIGURE 13. Voltage profiles of 141-bus system with no voltage control.

FIGURE 14. The 24h voltage profile of 141-bus network with PV-BES
voltage control.

FIGURE 15. Charging discharging rate (MW) for each BESS in 141-bus
system.

voltage through the voltage regulation process. As illustrated
in Fig 14, after applying the coordinated voltage control
policy using the PJ-ADMM algorithm, a significant improve-
ment in the voltage profile was achieved, demonstrating
the scalability of the proposed method. The figure shows
24-hour profiles of bus voltages in the 141-bus system and it
can be seen that when voltages increase more than 1.05 p.u,
the BESS will start to charge and absorb the active power
from the grid.

The results of the case studies demonstrate that the pro-
posed method is both robust and scalable, making it a viable
solution for voltage control in large-scale PV-integrated
power systems. The BESS starts to discharge power to the
grid when voltages drop below 0.95 p.u. When all bus voltage
levels are stabilized within normal limits, there is no longer
a need to make changes to the active power output of the
BESSs. This study aimed to examine the potential reduction
in power loss in power systems with high PV penetration and
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TABLE 6. Power loss reduction with BESs.

to highlight the role of storage systems in mitigating these
losses. To that end, we calculated the maximum reduction
in power loss at midday and found that the use of virtual
BESS with the PJ-ADMM algorithm resulted in a reduction
of approximately 2.5MWper BESS, or up to 10MWh in daily
energy losses.

It was observed that power loss increased during charging
hours and decreased during discharging hours. The optimal
time to discharge BESSs was found to be during peak hours
when electricity demand spikes, leading to an increase in
active power loss. Fig 15 displays the participation rate of
BESSs and provides a visual representation of their charge
and discharge in MW over a 24-hour period. The figure
shows that the PJ-ADMM algorithm evenly distributes power
based on each BESS’s capacity, with each BESS charging
approximately 2.5MW at 13:00 and reaching a total charging
power of 7.7 MW for all three BESSs, which represents the
discharged energy amount at hour 18. This study highlights
the importance of incorporating storage systems, such as
BESS, into power systemswith high PV penetration to reduce
energy loss and improve overall system performance.

Table 6 presents a clear correlation between the rise in PV
power generation and the increased capacity of BESS. The
data demonstrates that for every 10% increase in PV genera-
tion at 13:00, there is approximately a 30% increase in BESS
capacity. This strong positive relationship between rising PV
power generation and BESS capacity emphasizes the signifi-
cance of incorporating BESS into renewable energy systems
to enhance their overall efficiency and performance. For
example, the data shows that with the installation of 38 PV
units and a 3.4 MWh BESS capacity, there is a 30% increase
in BESS capacity compared to the case of 35 PV installa-
tions. This highlights the benefits of incorporating BESS into
renewable energy systems to effectively manage and store
excess energy generated by PV units.

Fig. 16 provides a visual representation of the voltage con-
vergence performance at node 29 at 13:00 for a smart inverter.
To assess the impact of network size on the performance
of the control algorithm, a comparison was made between
the 33-bus and 141-bus networks. The results in the 141-bus
network indicated that the PJ-ADMM algorithm with BESS
converged to the optimal solution relatively quickly, reaching
it after approximately 14 iterations. In contrast, the 33-bus
network required only 10 iterations to reach the optimal
solution. Each iteration of the JP-ADMM control took about
3 seconds, and the case studies revealed that the JP-ADMM
took approximately 0.5 minutes (10 iterations) in the

FIGURE 16. Voltage convergence at node 29 at 13:00.

FIGURE 17. Voltage profile with and without control compared with BESS
at node 28.

33-bus network and 0.75 minutes (14 iterations) in the
141-bus network to converge voltage at each bus to its
limits. Although the increase in the system’s size and the
corresponding increase in the number of iterations led to
an increase in calculation time, the JP-ADMM method still
maintained a reasonable convergence rate. This highlights the
effectiveness and importance of this method, as the increase
in the number of agents was not proportional to the increase
in the number of iterations required for convergence.

The proposed voltage control model was rigorously evalu-
ated to determine its effectiveness. To do this, a comparison
was made between the results obtained from the proposed
model and those obtained from the default profile without
control at node 28. The results of the comparison were visu-
alized in Fig 17 and provided conclusive evidence of the
success of the proposed model in reducing energy losses.
The results showed that regulating voltage, either through a
distributed control approach or using BESSs, produced the
same optimal solution during over voltage periods. However,
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during under voltage periods, the proposed coordinated volt-
age control model was found to be superior to the original
algorithm and default profile without control. This highlights
the versatility and effectiveness of the proposed model in
achieving the desired outcome of stable and efficient volt-
age regulation, which effectively reduces energy losses and
provides the same optimal solution in voltage regulation.

VI. CONCLUSION
In this study, a fully distributed control scheme for smart PV
inverters based on the PJ-ADMM algorithm was proposed
for reducing power loss by determining charging/discharging
control actions for BESSs. A new approach of incorporat-
ing virtual BESSs into the PJ-ADMM algorithm for voltage
control was introduced, allowing network operators to utilize
storage systems without active power curtailment. The pro-
posed method demonstrated the capability of smart inverters
to handle uncertainty associated with PV systems and provide
voltage support through either active or reactive power. The
optimal utilization of PV power was ensured by locally con-
trolling smart PV inverters through the PJ-ADMM algorithm
in cooperation with BESSs, with charging/discharging rates
allocated based on minimum curtailment. The scalability of
the method was demonstrated with the 141-bus distribution
feeder, showing that voltage rise/drop issues were mitigated
at midday and evening through the use of installed BESSs.
Simulation results validated that the strategy could maintain
voltage profiles within established constraints and minimize
PV power loss, highlighting the effectiveness and robustness
of the control scheme. The voltage profiles of the 141-bus
system without the proposed distributed voltage control strat-
egy exceeded the upper voltage and under voltage limits with
1.07 p.u. at 13:00 and 0.92 p.u. at 20:00, respectively. Apply-
ing the coordinated voltage control policy demonstrates a
significant improvement which validates the scalability of the
proposedmethod The results of the simulation show 10MWh
reduction in daily energy losses is possible using virtual
BESS for the PJ-ADMM algorithm. Future research can be
conducted in several areas. One possibility is to investigate
how the proposed method can be extended to create a scal-
able platform that includes various renewable energy sources,
energy storage systems, and electric vehicles that can com-
municate with each other through a powerful control system.
Additionally, developing an intelligent method for training
agents using neural networks that aims to reduce the running
time of distributed algorithms and investigating the impact
of reactive power regulations on the frequency control of the
system could also be beneficial.
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