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ABSTRACT Many events, such as robberies, missing people, and other suspicious activities, are often
captured by cameras. However, these videos are, more often than not, short and not from an optimal angle.
Biometric recognition techniques such as facial or iris recognition are inadequate for situations like this.
Gait recognition techniques are more suitable than other types of biometrics in such situations. In this work,
we propose a new gait recognition technique using viewpoint normalization and a sliding window process.
The proposed technique is designed to handle short walking videos captured from any angle. The proposed
technique consists of 3 steps. First, a 2-second walk is preprocessed using the sliding window process. This
step allows us to generate more gait data in a form of a set of sliding windows from only a 2-second walk.
Then sliding windows are transformed into the optimal viewpoint using ViewNet, a proposed neural network
designed for finding and transforming sliding windows into the optimal viewpoint angle. Finally, local joint
movement information is extracted from sliding windows and used to identify a person using IdenNet,
a proposed neural network designed for identifying a person from local joint movements. Four evaluation
methods, the top k accuracy test, the precision-recall curves, the cumulative matching characteristic curves,
and the gallery-size test, are used to assess the proposed technique. The experimental results show that the
proposed technique outperforms existing techniques on all four tests. In particular, the proposed technique
can provide a small group, not more than 5, of suspects with a chance above 90% that the real person of
interest is in the group. Moreover, the proposed technique still maintains high accuracy even when used with
a larger pool of people.

INDEX TERMS Gait recognition, human identification, microsoft kinect, viewpoint, camera, biometric
recognition.

I. INTRODUCTION
With cameras almost everywhere, security cameras, web

recognition, which can be used to identify a person from afar
and does require high-resolution images or videos, is more

cameras, car cameras, or mobile phone cameras, important
events, such as robberies, abductions, or even terrorist activ-
ities, are recorded by these cameras. However, video clips
that contain a person of interest are often concise with poor
quality. Conventional biometric recognition techniques such
as facial or iris recognition are unsuitable in these situa-
tions since they require close and steady information. Gait
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suitable to use in these situations.

Gait is the locomotion of an animal. The basic locomotion
of a human being is a bipedal walking with one foot in front
of another, one step at a time. To put it in an easier term,
gait is how a person moves his or her body from head to
toe while walking. Gait is a person’s biometric characteristic
that includes physical and behavioral data. Physical or static
biometrics in gait are limb lengths and a body’s structure.
Behavioral or dynamic biometrics are movement patterns
of limbs or an entire body. The gait of a person is unique
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and hard to modify. Gait data is not limited to providing
biometrics information. Comparing the gait analysis of an
individual to others can lead to assessment and feedback tools
for areas such as athlete examination, persons with movement
disorders, and predicting fall detection.

Gait recognition is a field of study that uses gait, both
physical and behavioral characteristics, to identify a person.
Unlike other biometric recognition techniques, a gait recog-
nition technique can be done from afar without a subject’s
awareness [1], [2], [3], [4]. Gait recognition techniques can be
used as tracking or surveillance and authentication systems.

Gait recognition techniques consist of two main steps.
First, gait features are extracted from walking videos as input
(gait feature extraction step). Then, these gait features are
compared to the gait features of a known subject using var-
ious techniques. An output of the process is a label of gait
features closest to the input (classification step). There are
two main categories of gait recognition techniques; model-
free (or appearance-based) and model-based.

Il. RELATED WORK

A. MODEL-FREE GAIT RECOGNITION

Model-free gait recognition techniques typically use gait
features extracted by isolating a person’s silhouette from
the background. This means that a person’s silhouette is
crucial information in the model-free gait recognition field.
However, silhouettes and appearances change drastically with
different clothes, carried objects, lighting environment, and
different observation angles. As a result, the accuracies of
model-free gait recognition techniques are based on silhou-
ette qualities as discussed in [1], [4], [5], and [6]. Many
model-free approaches such as [5], [6], [7], [8], [9], and [10]
offer different ways to handle the viewpoint issue.

A gait energy image (GEI) is an image that is created by
combining all spatial-temporal silhouettes of a subject while
walking within a limited duration into one 2-dimensional
image [11]. GEIs are standard gait features widely used
in many model-free approaches [5], [6], [8], [10], [11].
GEl-based gait recognition approaches commonly combine
silhouettes extracted from a sequence of frames in a walking
video into one GEI, then find the similarities between GEIs.
Most model-free gait features have higher feature dimensions
which could lead to a heavy computation burden. Some GEI-
based gait recognition techniques try to lighten the compu-
tation burden by reducing the dimensions, such as work by
Zhang et al. [12] that uses a simple approach of GEI-based
methods with the principal component analysis or PCA to
reduce gait feature dimensions. Many model-free GEI images
are obtained by averaging silhouettes from frames during a
certain period of time. As a result, the temporal informa-
tion is removed. In order to keep the temporal information,
some model-free gait recognition works [13], [14] used the
Long Short-Term Memory or LSTM on sequential silhouette
images.
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B. MODEL-BASED GAIT RECOGNITION

Model-based gait recognition techniques use structural infor-
mation such as skeleton data and joint coordinates as gait
features. This field of study has received more attention
after low-cost sensors such as Microsoft Kinect became
more available. Microsoft Kinect cameras were initially
designed as input interface devices for gaming consoles
such as XBOX-360. Microsoft Kinect cameras as well as
their SDKs, generate a 3-dimensional model-based skele-
ton stream directly from a video stream. Many model-based
recognition approaches such as [15], [16], [17], [18], [19],
[20], [21], and [22] use gait features obtained from Microsoft
Kinect devices. An advantage of the model-based gait recog-
nition technique is that its data are kept in a more structural
form with fewer dimensions, leading to a lighter load of com-
putations. The model-based approaches also rely mostly on
coordinates of body joints. These models minimize problems
caused by changes in silhouettes and appearances (viewpoint,
clothing, and carried objects).

Early model-based gait recognition works, [16], [17], [23]
were designed to handle gait data from fixed-direction walks
(view-dependent). Gaits features used in these works are
average values of specific dynamic characteristics, such as
stride lengths or angles of some three connected joints, over
a period of time or a walk cycle, along with static char-
acteristics, such as limb lengths or height. A walk is pre-
processed and represented in the form of a vector. Among
these works, a technique by Yang et al. [23] outperforms
the rest in a fixed-direction walk dataset. Yang et al. [23]
propose a technique using both standard deviations and mean
values of static features (the limb lengths and the sub-
ject’s height) and dynamic features (distances between non-
connected joints). In the classification step, the technique
from [23] uses k-NN with the Manhattan distance, similar
to [17]. The results confirm that static features alone are
not enough to achieve high accuracies. Dynamic features
are needed to accomplish that goal. The best parameters for
k-NN are the Manhattan distance function with the param-
eter of k = 1. However, Yang et al. [23] and other early
works do not perform well with view-independent walks
where gait features are collected from different observation
angles. This problem is sometimes referred to as a viewpoint
issue.

Khamsemanan et al. [20] propose a coordinate system
called the Center-of-Body (CoB) relative coordinate system.
The COB system uses the four center joints of the body (hip-
center, hip-left, hip-right, and spine) as the fixed reference.
Gait features are based on the CoB coordinates. Since all
coordinates of all joints are relative to the center of the body,
the technique proposed in [20] is equipped to handle the
viewpoint issue. Intuitively, the entire body in each frame is
rotated so that the body is always facing forward. The tech-
nique significantly outperforms earlier works, such as [17],
[23], on a view-independent dataset collected from different
observation angles.
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Limcharoen et al. [21] also propose a model-based gait
recognition technique that can handle the viewpoint issue
by using a technique called Joint Replacement Coordinates
(JRCO). JRC is a new coordinate system that represents the
relations of three connected joints. Therefore, this coordi-
nate system focuses more on local movement, unlike [20],
which focuses on the entire body movement. The technique
from [21] outperforms [20], which suggests that the local
movement of body parts is crucial in identifying a person
from gaits.

Ahmed et al. [24] propose a new concept called Joint Rel-
ative Angle (JRA). A JRA is an angle between a vector from
the hip-center joint to a joint, and a vector from the hip-center
joint to another joint. Later, Ahmed et al. [19] introduce a
technique called Joint Relative Distance (JRD). A JRD is
a distance between a pair of skeletal joints (including non-
connected joints). Both [19] and [24] use the Dynamic Time
Warping (DTW) to measure the similarity between walks.
The hip-center joint is the main contributor to both JRA and
JRD approaches. Both techniques cannot be used when the
hip-center joint is not detected. Moreover, both JRA and JRD
approaches require data over a complete walking cycle, which
means that both techniques may have serious issues when
used with incomplete walking cycle data.

Following [24] and [19], Bari et al. introduce two view-
independent gait features based on the joint relative cosine
dissimilarity (JRCD) and the joint relative triangle area
(JRTA) [25], [26]. JRCD is the cosine distance of any two
joints. JRTA is an area of a triangle formed by the spine joint
and the other two joints. A deep neural network consisting
of four blocks of multi-layer perceptrons (MLP) is used in
the classification process. Their works show that the best
performance technique comes from an ordinary cross-entropy
loss with hyperbolic tangent activation function (tanh) for
activation layers. Even though JRCD and JRTA outperform
JRA and JRD approaches and the works from Preis et al. [16],
and Ball et al. [15], the same issues as in JRA and JRD
approaches remains since the technique by Bari et al. still
relies on a fixed joint, namely the spine joint, and it requires
a complete walking cycle.

Lately, some model-based gait recognition techniques rely
on skeleton data from Pose Estimation techniques. The Open-
Pose, [27], [28], is a pose estimation program that extracts
2-dimensional and 3-dimensional coordinates of body parts
such as shoulders, elbows, hands, hips, knees, ankles, and feet
from an image or a video based on a neural network model.

Liao et al. [29], [30], [31] produce a series of gait recog-
nition works based on the pose estimation. Their work pro-
posed gait recognition on top of joint coordinates from the
OpenPose network.

In [29], Liao et al. propose a gait recognition technique
called the pose-based temporal-spatial network (PTSN).
PTSN is designed to obtain temporal-spatial features from
gait pose sequences. A convolutional neural network (CNN)
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is used to extract spatial features, and LSTM is used to extract
temporal features from the gait pose of a frame.

In [31], Liao et al. introduce a network called PoseGait.
PoseGait extracts four types of features from 3-dimensional
coordinates, which are fpose (coordinate of joints), fangle
(two angles between two adjacent joints), flimb (Euclidean
distances between two adjacent joints), and fimotion (coor-
dinate difference between the same joint on two adjacent
frames). Input for a classification network are matrices that
combine four types of features. Their classification network
consists of multiple CNN layers and two loss functions (Soft-
max and Center losses). Their experiments show that CNN
extracts the important features efficiently and achieves better
results than LSTM or recurrent neural network (RNN).

Other types of sensors are also used to obtain gait data.
A work by An et al. [32] uses gait features obtained from
Inertial Motion Unit (IMU) sensors. These sensors provide a
3-axis accelerometer and 3-axis gyroscope information, and a
bend sensor. They use this information to estimate step length,
stride length, and other joint angles. Their work also utilizes a
deep neural network technique using Generative Adversarial
Network (GAN) to create a synthetic dataset and combine it
with a real dataset to achieve better regression results.

In this work, we propose a new model-based gait recogni-
tion technique designed to deal with the viewpoint issue and
the short walking video issue. The proposed technique gener-
ates more information from a 2-second walk using the sliding
window process, finds a viewpoint that provides optimal
results in an unsupervised manner using a proposed neural
network called ViewNet, extracts local joint movements, and
uses another proposed network called IdenNet to identify a
person. Unlike previous works, such as [19], [20], [21], [24],
[25], [26], [29], and [31], our proposed technique does not
rely on any particular angles of observation. Moreover, our
proposed technique is designed to be used with gaits from at
most 2-second walks and does not require complete walking
cycle data. The experimental results show that our proposed
technique outperforms existing techniques significantly on
a view-independent 2-second walk dataset. Moreover, our
proposed technique performs well under the gallery size test,
Precision-Recall curve as well as the Cumulative Matching
Characteristic test. This suggests that the proposed technique
is suitable for real-world use.

lll. METHOD
The proposed gait recognition technique consists of two main
processes; viewpoint normalization and identification. The
overview of the proposed technique is shown in Fig. 1.
Input of our technique is a skeleton stream of a 2-second
walk captured by Microsoft Kinect cameras (with various
observation angles, i.e., different viewpoints). One input con-
sists of 40 consecutive frames of skeleton data where a frame
consists of 3-dimensional coordinates of 20 joints. An input
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FIGURE 1. Overview the proposed gait recognition process.

walk w is defined as

w=(F', ..., F%), 1)
where F¥ is frame k, fork = 1, ..., 40 of walk w. Frame F*
is defined as
fy
Fr=| ], 2)
o

where f;‘ is a 3-dimensional coordinate (x, y, z) of a joint /, for
I =1,...,20,in a frame k. An input walk w has dimensions
of 40 (frames) x 20 (joints) x 3 (x, y, z coordinate).

A. PRE-PROCESSING AND SLIDING WINDOWS

The proposed technique is designed to identify a person from
just a 2-second walk. An input of a 2-second walk by itself
may not contain enough information. We apply a sliding
window technique to obtain and generate more information
from a 2-second walk. A sliding window, in this case, is a
series of p consecutive frames. Since a 2-second walk con-
tains 40 frames, a parameter p can be between 1 and 40.
We employ the sliding window technique to turn a 2-second
walk with only 40 frames into a sequence of 40 — (p — 1)
sliding windows. In particular, we create a sliding window
walk w' from a 2-second w by letting

wo=(s!, ..., s00=Dy 3)
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FIGURE 2. Proposed network for the viewpoint normalization model.

where s¥ is a sliding window from frame k to frame k+p—1,
fork =1,...,40 — (p — 1), defined as follows

+@-1)
#o g

sk = (Fk, PRy = )

k=1
fhy - 5

A sliding window walk w’ has dimensions of 40 — (p — 1)
(sliding windows) x p (sliding window size) x 20 (joints) x
3 (x, y, z coordinate).

The proposed sliding window technique generates 40 —
(p — 1) walks with p frames from a single 40-frame walk.
According to [20], a quick movement provides a high
human identification accuracy. The sliding window tech-
nique produces many different sequences of quick move-
ments, which, in turn, provide more ways to identify a person
from a 2-second walk. Each of these new shorter walking
sequences can be considered as another new and different
quick movement.

The sliding window also reduces noise. Some joints
detected from Microsoft Kinect are labeled as “inferred” or
“not tracked” statuses. Joints with these statuses are consid-
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FIGURE 3. Proposed network for the identity classification model.

ered as noise because joints are extrapolated in the cases of
“inferred” and not detected in the cases of “not tracked”.
A full 2-second walk contains more of these joints. By apply-
ing the sliding window technique to an original 2-second
walk, we can obtain smaller walking sequences, where many
of which contain much less or none of these noise.

We conduct an experiment to investigate the necessity of
the sliding window process. The result of the investigation is
in Table 6.

B. VIEWPOINT NORMALIZATION AND ViewNet TRAINING
The viewpoint normalization process aims to find a viewpoint
that the center of the body stays at the same place as much as
possible. Consequently, an optimal viewpoint for this work is
defined as an observation point such that the torso or the core
of bodies stay more or less in the same location regardless
of an original observation angle. Mathematically, the optimal
viewpoint is an angle such that a sum of the Manhattan dis-
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tances of core body joints of any pair of frames is minimized.
The purposes of this process are (1) to find such optimal
viewpoint and (2) to find a way to transform a viewpoint
of each frame into the optimal viewpoint. Note that different
frames of walks may be required different transformations.

In a way, we normalize a viewpoint of a walk. We create a
neural network called ViewNet to identify such optimal view-
point and find a way to rotate and translate (shift) an original
viewpoint of a walk into the optimal viewpoint. Since each
walk may be obtained from a different angle of observation,
different walks may have to be rotated and shifted differently.
The ViewNet is designed to provide a way to normalize all
ways to achieve the optimal result.

The viewpoint normalization and ViewNet training process
consist of 3 steps, (1) Random geometric transformation (I1I-
B1) where each sliding window walk is randomly rotated
and translated, (2) Optimal viewpoint transformation (I1I-B2)
where ViewNet rotates and translates each sliding window
repeatedly M times into a new viewpoint, and (3) Loss cal-
culation (I1I-B3) where displacements of the core body joints
are minimized. An overview of the viewpoint normalization
model is shown in Fig. 2.

1) RANDOM GEOMETRIC TRANSFORMATION
In this step, a sliding window from a walk is rotated and
translated randomly. Note that different sliding windows in
the same walk may be translated and rotated differently. The
process of this step is described below.

For Q = (w1, w2, w3, w4, s, ws) € RO and v € R3, let
t :R® x R? — R3 defined as

w4
1(€2,v) = R(Q)v + | ws (5)
w6
where
1 0 0 coswy 0 sinwy
R(2) = | 0 cosw; — sinw; 0 1 0

0 sinw; coswi —sinwy 0 cos wy

coswsz —sinws3 0

X | sinwy cosw3z 0
0 0 1

A transformation ¢ rotates an input vector v counterclockwise
w1 degrees along the x-axis, wy degrees along y-axis and
w3 degrees along z-axis, then shifts w4 units along the x-axis,
ws units along y-axis and ws unit along z-axis.

Let T : RO x RP*20x3 _, RP*20%3 defined as

(R 1) @ 0T
Q= . : . ©
H(Q.4h) - Q. 853" 7Y)
where 7 is as defined in (5).

For a sliding window s of a walk w, a new sliding window
ocg is obtained from randomly rotating and translating s. This
means 0/5 = T (2, s ), where €2y is selected randomly.
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TABLE 1. Architecture of the proposed ViewNet.

Type Size Kernel size, Activation
Number of kernel

Input; px20x%3

a sliding window

Slice for 6 core joints pXxX6x3

Convolution2D pX6x6 1x1x3,6 RelLU

Flatten 36p

Fully-connected 16 ReLU

Fully-connected 6 Linear

Output; 6

a 6-dimensional vector

Intuitively, this step is applied to the input gait data to
handle the viewpoint issue further. Since the gait data are ran-
domly rotated and transformed, gait features from different
observation angles are added to the training process.

2) OPTIMAL VIEWPOINT TRANSFORMATION

We create a new network called ViewNet. The proposed
ViewNet takes a sliding window 0{’6 from a walk k as an
input. An output of ViewNet is a 6-dimensional vector. The
architecture of ViewNet is shown in Table 1. The proposed
ViewNet is designed to take a sliding window and return a
way to rotate and translate that particular sliding window.

This means that T(ViewNet(oeg), a’é ) is a new sliding win-
dow obtained from rotating and translating aé according to
ViewNet(ozg).

We repeat this process M times. Each time a sliding win-
dow is rotated and translated slightly to a new viewpoint
according to ViewNet. This process is described as follows.
Let

ot]]‘ = T(ViewNet(ag), ozg)
ak = T(ViewNet(@*_)), o _Hm=2,....M

m
~k k

S =a M-

An output of this step is a sliding window 5 that has been
translated and rotated M times.

Note that from the preliminary result, applying ViewNet
once in a training process is not as robust. Applying ViewNet
multiple times in the training process provides a much better
result. This may be due to applying ViewNet once in the
training process may have rotated and translated joints in a
step that is too small to obtain an optimal result.

Figure 4 shows examples of inputs and outputs of ViewNet.
The input frames on the left show different original obser-
vation viewpoints of walks. The output frames on the right
show that all joints are transformed into the optimal viewpoint
where the core joints stay, more or less, in the same location
of each frame.

3) LOSS CALCULATION FOR VIEWPOINT NORMALIZATION

The objective of this proposed ViewNet is to create a tool
that is able to find a way to rotate and translate a walk from
any angle of observations into the viewpoint that the cores
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FIGURE 4. The ViewNet input (left) and output (right) of a walk without
sliding window process.

of the bodies in all sliding windows stay at the same place.
To do so, we need to focus on minimizing displacements of
6 core joints of the bodies, i.e., Hip-Center, Hip-Left, Hip-
Right, Shoulder-Center, Shoulder-Left, and Shoulder-Right.
To achieve this goal, we define a loss function for updating
ViewNet’s weights as follows.

If 557 is an output from the previous step of a sliding
window k in a walk i and 5/ is an output from the previous
step of a sliding window [ in a walk j, then

o FA+p=D.i
Fo L o

:S:k,t

~.,i = +(p.—1),i
igo féo

where fj‘s’i is a joint B of a sliding window s* of a walk i that
has been translated and rotated M times (8 =1, ..., 20).

Similarly, if 5/ is an output from the previous step of a
sliding window [ in a walk j, then

NI d+(p—1),j
ﬁJ”.ﬂ J
gl,j — . .

AR R Y,
By - By
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LetC = {c1, c2, ..., ce} be asetof indices of 6 core joints,
and the loss function L, is defined as
40—(p—1) _
L= > 2 4@ i), @
i# k=1,I=1 BeC
where d(-, -) is a Manhattan distance function.
The loss function L, is minimized and is used to update
weights in ViewNet.
The trained ViewNet is then used in the Identity Classifi-
cation process.

C. IDENTITY CLASSIFICATION AND IdenNet TRAINING
Identity classification is a process that identifies a subject
from a walk. In this work, we create a new network called
IdenNet to find the probability that a sliding window belongs
to a particular subject.

Let W) = (s!,..., s*~?=D) be a sliding window walk i
in a dataset as defined in Eq. 3. We define

wi= (!, .. 507y ®)

where 55! = T (ViewNet(s*"7), s*-7), T(-, -) is as defined in (6)
and ViewNet is a trained network as described in section III-
B.

For identity classification, a training data is {(w', Vi) Yiegs
where ¢ is the total number of walks in training set, Wl is as
defined in (8) and y; is a label of w'.

The identity classification and IdenNet training consists of
3 steps; (1) Joint Localization, (2) IdenNet Training and (3)
Loss Calculation of Identity classification

1) JOINT LOCALIZATION
Since previous works such as [21] show that gait features
from local movements of connected joints perform well with
data from multi-view points, we create a new gait feature
vector focusing on groups of connected joints instead of
focusing on joint coordinates separately.

For a 5©7 is a sliding window k, rotated and translated
according to the trained ViewNet, of a walk i, we construct
a new gait feature of 557 as

k,i k+@p—1),i
wyt ey (p=1.i

o = . : .

ki k+(p—1),i
Moy -« Moo

where

Leftloint* — MiddleJoint*-/
MiddleJointt-! :

RightJoint*' — MiddleJoint*-/

and LeftJoint*/, MiddleJoint*-!, and RightJoint*- are joins

shown in Table 2.

2) IDENTITY CLASSIFICATION
We create a neural network called IdenNet to identify a person

from gait features. The architecture of IdenNet is shown in
Fig. 3 and Table 3.
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TABLE 2. Index of joint localization.

Index r LeftJoint, MiddleJoint, | RightJoint,.

1 Knee Right Ankle Right Foot Right

2 Hip Right Knee Right Ankle Right
3 Hip Center Hip Right Knee Right
4 Spine Hip Center Hip Right

5 Knee Left Ankle Left Foot Left

6 Hip Left Knee Left Ankle Left

7 Hip Center Hip Left Knee Left

8 Spine Hip Center Hip Left

9 Head Shoulder Center | Shoulder Right
10 Spine Shoulder Center | Shoulder Right
11 Shoulder Center | Shoulder Right | Elbow Right
12 Shoulder Right Elbow Right Wrist Right
13 Elbow Right Wrist Right Hand Right
14 Head Shoulder Center | Shoulder Left
15 Spine Shoulder Center | Shoulder Left
16 Shoulder Center | Shoulder Left Elbow Left
17 Shoulder Left Elbow Left Wrist Left
18 Elbow Left Wrist Left Hand Left
19 Hip Left Hip Center Hip Right
20 Shoulder Left | Shoulder Center | Shoulder Right
21 Shoulder Center Spine Hip Center
22 Head Shoulder Center Spine

An input of IdenNet is a gait feature o*! of a sliding

window k of a walk i. An output of IdenNet is a probability
vector of dimension N, the number of subjects in the dataset.
This means that, for each o**/ we have

k.i
Vi

Vi = IdenNet (o) = p
S
N
where v*7 is a probability that X7 belong to a subject u in
the dataset,u =1,--- , N.
We use Softmax Cross-Entropy Loss to update weights in
IdenNet and use a training batch size of 128 and “Adam” as
a network optimizer.

D. GAIT RECOGNITION PROCESS
An overview of the proposed gait recognition process is
shown in Fig. 1 and Table 4.
Let w be a walk of an unknown subject. The proposed gait
recognition process is as follows:
1) Apply the sliding window process (as in III-A) to w,
we get

/

w = (sl, _._’340—(17—1)).

2) Apply the viewpoint normalization (as in III-B) to each
sKok=1,...,40 — (p — 1) we get

= T(ViewNet(sk), sk),

where T(-,-) is as defined in (6) and ViewNet is a
trained network as described in section III-B.
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TABLE 3. Architecture of the proposed IdenNet for predicting an identity
of input window.

Type Size Activation
Input window pX22x9

(window sizes, joint localize,

coordinates)

Slice on joint localize 22 x (px9)

(22 localize of (p x 9))

- Flatten Ip

- Batch normalization

- Fully-connected 256 ReLU
- Batch normalization

- Fully-connected 32 ReLU
- Batch normalization

- Dropout (0.5)

Concatenate 704

(22 localize x32 = 704)

Fully-connected 256 ReLU
Batch normalization

Dropout (0.1)

Fully-connected Number of subjects () Softmax
Output Number of subjects ()

3) Apply the joint localization process (as in III-C1) to
each 5, we get a proposed gait features o* extracted
from 5X.

4) Apply the identity classification process (as in III-C2)

to each o¥, we get a probability vector

k
Vi

V¢ = IdenNet(ak) = :
N
5) Find an average vector of all probability vectors
Vk=1,...,40—(p—1)

| 40—(p—1)
S <k
V= ——— v
40-p-1) ;
Identify a subject for a walk w from the highest average
probability,
y = arg max v,,. 9)
u=I1,...,.N

An output of the proposed gait recognition is y.

IV. EXPERIMENTS
A. DATASETS
The data used in this work comes from the dataset SII'T-
CN-C [21]. SOT-CN-C is a dataset collected by Microsoft
Kinect cameras, where 130 unique subjects were asked to
walk freely in any direction in an area of 335 cm by 250 cm.
Each subject where asked to walk six rounds (30-60 seconds
each round) where Microsoft Kinect cameras were placed at
different heights and angles (235, 185, 150, and 100 cm from
the ground and tilted 27, 20, 10, and 0 degrees down from the
horizontal line, respectively).

We randomly extract 100 2-second walks (40 consecutive
frames) from one subject in SIIT-CN-C so that there is no
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TABLE 4. Output dimension of the proposed gait recognition process.

Type Output dimension
Input walk 40 x 20 x 3
(number of frames, joints,

coordinates x, y, z)

Sliding window process 40— (p—1)xpx20x3

40—-(p—1)xpx20x3

Viewpoint normalization process,
using 7'( ViewNet(-), ) with M = 10
Joint localization process

40—-(p—1)xpx22x9

Identity classification process, 40— (p—1)x
using IdenNet(-) Number of subjects (V)
Identity subject for a walk 1

Output 1

overlap between any 2-second walks. This means that the data
in the experiments consists of 13,000 2-second walks (multi
viewpoints) from 130 unique subjects (different heights, ages,
weights, and genders).

B. EXPERIMENTAL SET-UP

We perform a 10-fold cross-validation technique on all exper-
iments. The dataset is divided into ten sets. Each set contains
ten different 2-second walks from a subject. This means that
one set contains 1,300 2-second walks. In each round of the
experiments, nine sets are used as training data, and one set
is used as a test set.

In this paper, we implement our proposed techniques,
including deep neural network models, using Python with
TensorFlow library on a machine with an Intel i17-8§700 CPU,
32 GB RAM, NVIDIA GeForce RTX 2060 GPU, and 6 GB
GPU RAM.

C. PERFORMANCE EVALUATIONS

To assess the performances of the proposed techniques,
we employ three popular evaluation methods for gait recog-
nition techniques; (1) Top-k accuracy, (2) Precision-Recall
Curves, (3) Cumulative Matching Characteristic (CMC)
Curves, and (4) Gallery Size Test.

1) TOP-k ACCURACY TEST

Top-k accuracy test is one of the most crucial evaluation
tools in biometric recognition techniques. This test assesses
whether a particular biometric recognition technique can
accurately identify a subject within the first k ranks. In other
words, this test provides accuracies (percentages) when a sub-
ject is one of the top k predicted subjects from the particular
technique. Top-k accuracy test is useful in real-world usages
because, most of the time, authority figures are interested in
a small group of people that contains the person of interest.
The top k accuracy is calculated by

1 n
Top-k accuracy = — Z D(i), (10
n
i=1
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where n is the number of walk samples in the gallery

1, if the top k ranked predict subjects contain
the same subject (class) as i;
0, otherwise.

(i) =

(11)

2) PRECISION-RECALL (PR) CURVES
A Precision-Recall (PR) curve is a matric to evaluate the rel-
evancy of a technique. A PR curve shows a relation between
the precision of a technique (y-axis) against the recall of the
technique (y-axis). Precision and Recall of a technique are
defined as

True Positives

Precision = — —, (12)
True Positives + False Positives

and

True Positives
Recall = — . (13)
True Positives + False Negatives

A technique with a larger area under the PR curve has
higher relevancy.

3) CUMULATIVE MATCHING CHARACTERISTIC (CMC)
CURVES

A Cumulative Matching Characteristic (CMC) Curve shows
the performances of a particular biometric recognition tech-
nique based on the accuracy of each rank. A CMC curve
shows a rank k on the x-axis against a top-k accuracy as
defined in (10) on the y-axis.

4) GALLERY-SIZE TEST

A gallery-size test assesses how well a biometric recognition
performs when the gallery size (dataset size) is increased.
This test is used to confirm that a biometric recognition
technique performs well not just when the number of unique
subjects is small but also when the number of unique subjects
in the dataset increases.

We evaluate a top-1 accuracy under increasing gallery size,
starting from 10 subjects, increasing by 10 more each step
until the gallery reaches 130 subjects. A gallery-size test is
shown in the form of a curve where top-1 accuracies are
shown on the y-axis, and gallery sizes are shown along the
X-axis.

5) COMPARISON TO EXISTING TECHNIQUES

To check the robustness of the proposed technique, we also
implement the JRC-CNN and JRC-KNN techniques [21],
COB-CNN and COB-KNN techniques [20], the JRTA, JRCD
with DNN, and the JRA, JRD with DNN techniques [25],
techniques (PoseGait with 7 convolution layers and PoseGait
with 20 convolution layers) by Liao et al. [31], and a tech-
nique by Yang et al. [23]. We also conduct all four evaluation
methods, top-k accuracy test, PR curves, CMC curves, and
the gallery size test on the proposed techniques and existing
techniques mentioned above using the same dataset.
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V. RESULTS AND DISCUSSIONS

A. TOP k ACCURACY TEST

Results of top 5 accuracy tests of the proposed technique
(sliding window sizes p = 1,5, 10, 15,20) and existing
techniques [20], [21], [25], [31] (PoseGait with 7 convolution
layers and PoseGait with 20 convolution layers), and [23] are
reported in the Table 5.

The experimental results show that the proposed technique
with the sliding window size 10 yields the highest accura-
cies in all ranks k = 1,...,5. In theory, longer walking
sequences contain more information and should have pro-
vided higher accuracies. But the experimental results show
that the accuracies are dropped when the sliding window is
more than 10. This may due to more noise in longer walking
sequences. The experimental results support that the sliding
window technique reduces noise in the data.

Furthermore, these accuracies from the proposed tech-
nique with the sliding window size 10 are significantly
higher than existing techniques. This suggests that our pro-
posed technique is better equipped to handle situations with
short gait videos and the viewpoint issue than existing
techniques.

The proposed technique produces high accuracies even
with low ranks; 82.50 % accuracy in rank 1 to 95.76% in rank
5. This implies that, when used in real-world situations, the
proposed technique would provide a small group of people (5
people) that 95% of the time would have a person of interest
in this group.

The accuracies obtained from the JRC-CNN tech-
nique [21] of rank 1 to 5 are in the 70% to high 80%. The
JRC-CNN technique also focuses on the movements of local
joints. This indicates that gait recognition techniques focus-
ing on local joint movements, such as our proposed tech-
nique and [21], provide better accuracies in a small rank than
techniques using other types of gait features. However, [21]
returns lower accuracies than the proposed technique. This
demonstrates that only focusing on local joint movements
alone is not enough to achieve high accuracies in the dataset
of short walking videos. The proposed technique uses a slid-
ing window process to generate more gait features from a
short 2-second video where [21] does not. This key difference
between the proposed and the JRC-KNN techniques [21] con-
firms that the sliding window process is crucial. Interestingly,
the JRC-KNN technique [21] yields lower accuracies than the
JRC-CNN techniques by almost 20% in all ranks from 1 to 5.
This suggests that simple machine learning techniques such
as k-NN might not be suitable for gait recognition, especially
when walking videos are short and observation angles are not
fixed.

The work from [20] focuses on quick movements of the
entire body. This may be a reason why both COB-MLP and
COB-KNN techniques [20] provide lower accuracies than
the proposed technique and [21] in all ranks. This further
indicates that local joint movements are better gait features.
Accuracies from the COB-KNN technique are also lower than
those from the COB-MLP technique. This, again, confirms

VOLUME 11, 2023



P. Limcharoen et al.: Gait Recognition for 2-Second Walks Using Viewpoint Normalization and Sliding Window Process

IEEE Access

TABLE 5. Performance of the proposed techniques compared to the existing techniques.

Top-k Accuracy (%)

Techniques 1 2 3 4 5
Proposed gait viewpoint normalization

Viewpoint normalization, 1 Frame 73.8474 1.39 83.497+ 1.14 87.627 4+ 1.06 90.0774 0.76 91.817+£ 0.68
Viewpoint normalization, 5 Frames 82.12 +1.39 89.557+ 1.02 92.72+ 0.72 94.47 £+ 0.65 9548 +0.64
Viewpoint normalization, 10 Frames 82.50 +1.32 90.34 +0.83 93.21 + 0.87 94.85 + 0.64 95.76 + 0.40
Viewpoint normalization, 15 Frames 80.827+ 1.63 88.277+ 1.31 91.887+ 0.89 93.78"+ 0.65 95.027+ 0.66
Viewpoint normalization, 20 Frames 78.08" 4 2.01 86.857+ 1.57 90.56"+ 1.14 92,5774+ 0.94 94.0374 0.87
Limcharoen et al. (JRC-CNN) [21] 70.687+ 1.43 79.487+ 1.18 83.887+ 1.17 86.297+ 1.05 88.057+ 1.09
Limcharoen et al. (JRC-KNN) [21] 50.8374 1.89 60.36"+ 1.66 65.5174+1.50 69.1574+ 1.65 71737+ 1.81
Khamsemanan et al. (COB-MLP) [20] 51.147+ 1.53 64.127+ 1.57 71217+ 1.63 76.037+ 1.39 79.60"+ 1.26
Khamsemanan et al. (COB-KNN) [20] 39.5074 1.45 49.117+ 1.64 552274+ 1.74 59327+ 1.81 62.387+ 1.55
Bari et al. JRTA, JRCD and DNN) [25] 28337+ 1.22 40457+ 1.57 48.557+ 1.88 54477+ 2.26 59.157+2.48
Bari et al. (JRA, JRD and DNN) [19], [25] 28.737+ 1.27 41.077+ 1.74 49.097+ 1.61 54887+ 1.78 59.407+ 1.81
Liao et al. (PoseGait 7 convolution layers) [31] 29.3574 6.21 41.507+ 7.86 48987+ 8.17 54,7574+ 8.25 58.967+ 8.21
Liao et al. (PoseGait 20 convolution layers) [31] 23.097+ 2.23 34177+ 2.72 41.817+3.32 47537+ 3.39 52397+ 3.54
Yang et al. [23] 21.2174+ 0.61 29.3374 1.05 34.857+ 1.05 39317+ 1.11 42827+ 1.14

Note: techniques in boldface font show our proposed techniques; accuracy in boldface font shows the highest performance between techniques and ranks.
" indicates significantly different from the highest accuracy with the 95% confidence level.

that simple machine learning techniques are not suitable for
gait recognition.

Accuracies obtained from [25] and [31] are compara-
ble and quite low in all ranks. In particular, the accuracies
from [25] and [31] are around 20% — 30%. These accuracies
increase when the rank is higher but not above 60% in rank 5.
Gait recognition techniques by [25] and [31] perform poorly
even though they are designed to handle the viewpoint issue.
One reason for this might be because [25], [31] use gait
data from fixed points of reference, e.g. JRA uses a hip-
center joint. In other words, techniques in [25] and [31]
transform gait data from multi-viewpoints to a single fixed
viewpoint. Moreover, both [20] and [21] also use this same
principle. However, this fixed viewpoint may not be an opti-
mal viewpoint. The proposed technique is designed with this
problem in mind. The ViewNet network is created to resolve
this problem. Another reason that may lead [25] and [31] to
have low performances is because [25] and [31] require a
longer walking sequence. These techniques perform best with
complete walking cycles. Consequently, [25] and [31] are
unsuitable for short walking sequences. This illustrates that
the sliding window process used in the proposed technique is
important for datasets with short walking sequences.

Yang et al. [23] return the lowest accuracies in all 5 ranks.
This technique uses static gait features such as limb lengths as
well as dynamic gait features such as distance between non-
connected joints. A machine learning technique used in [23]
is k-NN with the Manhattan distance function. The poor
performance of [23] implies that simple direct gait features
and less complicated machine learning techniques are not
adequate for the viewpoint issues with short walking videos.

B. PRECISION-RECALL (PR) CURVES
Precision-Recall curves of the proposed technique (sliding
window sizes p = 10) and existing techniques [20], [21],
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[25], [31] (PoseGait with 7 convolution layers and PoseGait
with 20 convolution layers), and [23] are shown in the Fig. 5.

The results of PR curves show that the proposed technique
with 10 frames yields the highest area under the curve with
89.07%. The area under the curve of the proposed tech-
nique is 13.16% higher than the area under the curve of
JRC-CNN [21] (75.91%), and much higher than other exist-
ing techniques. Only the proposed technique and the JRC-
CNN [21] obtain the area under the PR curves above 75%,
while the area under the PR curves of JRC-KNN [20], [21]
(COB-MLP and COB-KNN) AUC are between 51.02% to
39.73%, and those of [23], [25], and [31] are below (between
25.05% to 21.13%.)

Compared to the proposed technique, the precision rates
of other existing techniques decrease with high rates when
the recall rate increases. At the recall rate of 50%, the pro-
posed technique can maintain precision above 98%, while
the JRC-CNN [21] precision rate is dropped to 92%, and the
JRC-KNN [21] precision rate decreases quickly to 51%.

The PR curves suggest that the proposed technique yields
much better discrimination performance between classes than
other existing techniques. With the average accuracy of the
retrieved set of 98%, the proposed technique can retrieve a
larger set of results compared to those from the other existing
techniques. The results show that when used in real-world
situations with a certain threshold, the proposed technique
can retrieve a larger set of results than existing techniques.

C. CUMULATIVE MATCHING CHARACTERISTIC (CMC)
CURVES

Results of CMC curves, with the first 80 ranks of 130 ranks,
of the proposed technique (sliding window sizes p =
1,5,10,15,20) and existing techniques [20], [21], [25],
[31] (PoseGait with 7 convolution layers and PoseGait with
20 convolution layers), and [23] are shown in the Fig. 6.
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FIGURE 5. Micro-average precision-recall curves of the proposed and
existing techniques.

From the experimental results, the proposed technique with
10 frames achieves 98% accuracy at rank 11 and above,
whereas it takes until rank 31, 41, 71, and 72 for JRC-
CNN [21], COB-MLP [20], and [31] to achieve 98% accu-
racy, respectively. The JRC-KNN, COB-KNN and Yang et al.
do not obtain accuracies above 90% until rank 66, 71, and 77,
respectively.

The results from the CMC curves suggest that, when used
in real-world situations where walking videos are short and
come from many observation angles, the proposed technique
can provide authorities with a much smaller group of people
with a percentage that the real person of interest is in that
group. In contrast, other techniques would require much big-
ger groups of people with lower accuracies.

D. GALLERY-SIZE TEST

Results of the gallery-size test of the proposed technique
(sliding window sizes p = 1,5, 10, 15,20) and existing
techniques [20], [21], [25], [31] (PoseGait with 7 convolution
layers and PoseGait with 20 convolution layers), and [23] are
shown in Fig. 7.

In the gallery size test, the proposed technique with
10 frames obtains above 97% accuracy when the number of
unique subjects in the dataset is 10 and maintains accura-
cies above 82% when the number of subjects is increased
to 130. The results of the gallery size test show that the
proposed technique performs very well even when the gallery
size increases. Accuracies of the proposed technique do not
drop quite quickly even when the gallery size increases
from 10 to 130.

The JRC-CNN [21] starts with an accuracy of around
96% when the number of subjects is 10, and the accuracies
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FIGURE 6. CMC curves of the proposed and existing techniques reported
with 80 of 130 ranks.
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FIGURE 7. Prediction accuracies under different gallery sizes.

decrease down to just above 70% at 130 subjects. Accuracies
of the JRC-KNN, COB-MLP, and COB-KNN start between
70% to 80% when there are 10 subjects and decrease more
than 20% when there are 130 subjects in the gallery. Accura-
cies of [25], and [31] start below 60% at gallery size 1 and
drop quickly down to below 30% when the gallery size is
130. The results illustrate that gait recognition techniques
from [25], and [31] perform much worse, and the accuracies
drop down much more quickly than the proposed technique
when the number of people in the gallery size is increased.
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TABLE 6. The proposed techniques with ablation studies.

TABLE 7. The proposed techniques with adjusted network structure.

Technique components

Sliding Top-1

window ViewNet IdenNet accuracy (%)
Included?® Included Included 82.50 + 1.32
Included? Included Not included® 354274 1.42
Included?® Not included Included 80.477+2.01
Included® Notincluded  Not included® 14.757 4 0.94
Not included Included Included 59337+ 1.79
Not included  Included Not included® 152274 1.28
Not included Not included Included 60.317+ 1.65
Notincluded ~ Notincluded  Not included® 8.5274+0.79

Note: the technique with a boldface font is the proposed viewpoint normal-
ization with sliding window size 10 technique from Table 5; an accuracy in
a boldface font shows the highest performance.

indicates significantly different from the highest performance at the 95%
confidence level.
* indicates the sliding window process with sliding window size 10.
* indicates the 1-NN with Euclidean distance function.

Interestingly the accuracy from Yang et al. is 65% at the
gallery size 10, which is higher than those of [25], and [31] but
drops even more quickly when the gallery size is increased.
This shows that when there are not many subjects in the
gallery, simple techniques such as Yang et al. may perform
better than the rest, but their accuracy drops much more
quickly when there are more people.

E. NETWORK COMPONENT ANALYSIS

To validate and study all three major components (sliding
window, ViewNet, and IdenNet), we construct an experiment
to investigate each component and all possible combinations
of the three components. The results of the network compo-
nents study of the proposed technique are reported in Table 6.

The result shows that the highest accuracy is achieved
when all three components are included and it is significantly
higher than other combinations of components with the 95%
confidence level. This validates that all three components are
needed in order to obtain the highest performance. When the
IdenNet is not included, the accuracy is decreased quickly to
35.42% and when the IdenNet is employed alone without the
other two components, the accuracy is 60.31%. This shows
that the IdenNet plays a bigger role in the overall perfor-
mance than the other two components. Similarly, the result
also shows that the sliding window technique contributes to
the overall performance more than the ViewNet. However,
the ViewNet is not without its merit. Without the ViewNet
component, the accuracy cannot reach it full potential.

The proposed technique with all three components
achieves the highest accuracy 82.50% with statistical signif-
icance compared to other settings. This show that all three
components are necessary and complement each other.

F. NETWORK PARAMETER ANALYSIS

We conduct an experiment to study the effects of the param-
eters of our proposed techniques on the accuracies. We vary
parameters by doubling and decreasing parameters by half
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ViewNet

No. of kernels (VN1) 6 3 12 6 6
No. of hidden units (VN2) 16 8 32 16 16
Total no. of parameters 59k 1.5k 233k 59k 59k
IdenNet

No. of hidden units (IN1) 256 256 256 128 512
No. of hidden units (IN2) 32 32 32 16 64

No. of hidden units (IN3) 256 256 256 128 512
Total no. of parameters 941.6k 941.6k 941.6k 384.7k 2,596k

Top-1 accuracy (%) 82.50 81.88 8277 80.557 81.43%
+132 +£1.83 £191 £1.77 £1.73

Note: an accuracy in boldface font shows the highest performance
between techniques. The technique in blue (column 2) is the proposed
viewpoint normalization with sliding window size 10 technique from
Table 5.

indicates significantly different from the highest performance with
the 95% confidence level.

parameters in both ViewNet and IdenNet. The result of the
parameter study is shown in Table 7.

Table 7 shows that the highest accuracy is obtained when
the number of parameters of ViewNet is doubled but the
number of parameters of IdenNet remains the same as the
originally proposed technique. However, the highest accuracy
is not significantly different from the accuracy obtained by
the originally proposed technique. This implies that it is
not necessary to increase parameters (bigger computational
burden) in the proposed technique since the accuracies do not
change much.

However, the accuracy is decreased significantly when
parameters are reduced. This suggests that the parameter size
of the proposed technique should not be reduced, otherwise,
the optimal accuracy may not be achieved.

G. LIMITATIONS AND FUTURE DIRECTION
Even though the proposed technique outperforms other exist-
ing techniques significantly, it is not without its limitations.

Since the proposed technique is designed to be used on
skeleton data, in particular joint coordinates, special devices
such as Kinect cameras or other devices or programs that can
provide joint data are needed. The proposed technique cannot
be used directly on clips from typical security cameras. Extra
steps are needed.

Secondly, two out of three major components of the
proposed technique (ViewNet and IdenNet) are deep neural
networks. They require computational power and time to
process. Consequently, at the current state, the proposed tech-
nique may not be suitable for real-time human identification.

To address these two limitations, we are planning on
improving our work in two main directions. First, we will
improve our technique such that it can be used with images
and video from typical security cameras directly without
special sensors or special cameras such as Kinects. Second,
we are also planning on modifying our technique to use less
computational time and, hence, can be used to identify a
person in real time.
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VI. CONCLUSION

This paper proposes a new model-based gait recognition tech-
nique suitable for short walking videos (2 seconds) obtained
from different observation angles (the viewpoint issue). The
proposed technique consists of three major components: the
sliding window, the ViewNet and the IdenNet. The proposed
method works as follows.

First, a sliding window technique is applied to a 2-second
walking video to generate shorter walking sequences. Next,
the ViewNet finds an optimal viewpoint, where the sum of
the displacements of core body joints over all walks and all
frames are minimized. The ViewNer finds a different way
to transform a shorter walking sequence into the optimal
viewpoint. These transformations are different for different
walking sequences. Finally, the /denNet identifies a person’s
identity based on an output of the ViewNet.

We conduct experiments using the 10-fold cross-validation
techniques. We also employ popular evaluation tools for
biometric recognition techniques, namely the top k accuracy
test, the Precision-Recall (PR) curves, the cumulative match-
ing characteristic (CMC) curves, and the gallery-size test,
to assess the proposed technique against existing techniques
by [20], [21], [23], [25], and [31]. The experimental results
show that the proposed technique with 10 frames achieves
the highest accuracies in all top 5 ranks (82.50% in rank 1,
90.34% in rank 2, 93.21% in rank 3, 94.85% in rank 4 and
95.76% in rank 5) and these accuracies are significantly
higher than existing techniques. The top k accuracy test indi-
cates that the proposed technique is more suitable for short
walking videos from multiple observation angles than exist-
ing techniques. Moreover, the proposed technique performs
well with the CMC curves, the PR curves and the gallery-
size test. These show that the proposed technique can provide
a small group of people with high accuracy that a person
of interest is in the group (CMC curves), and the proposed
technique can provide high accuracies even when used with
a larger population (the gallery size test). In layman’s terms,
the proposed technique can provide a group of 5 candidates
with above 95% chance that one of five is the person of
interest from a short 2-second walking video obtained from
any observation angle.
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