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ABSTRACT The Internet of Medical Things (IoMT) paradigm provides pervasive healthcare services in-
home monitoring networks. Nowadays, these services play an imperative part in the life of human beings.
However, excessive requirements of health services result in insufficient spectrum resources and service
delays. In this study, a novel spectrum allocation scheme is proposed for the IoMT system platform. Themain
challenge of our scheme is to effectively share the limited spectrum resource while dynamically handling
different service requests. To achieve a mutually desirable solution for multiple IoMT devices, our proposed
scheme is designed as a bi-level control algorithm using the ideas of multi-agent reinforcement learning
(MARL) and the Balakrishnan-Gómez-Vohra (BGV) solution. At the first level, each IoMT device selects its
salient point according to theMARLmodel. At the second level, the spectrum resource is distributed through
theBGV solution, which is implemented by considering the selected salient point of each device. Through the
sequential interactions of intelligent devices, our bi-level control approach can effectively guide individual
IoMT devices to choose cooperation strategies while optimizing the spectrum allocation process. Finally,
numerical results show the effectiveness of our proposed scheme through the comparisons with benchmark
protocols. We demonstrate the performance improvement of our method in terms of the normalized device
payoff, IoMT system throughput and device fairness.

INDEX TERMS Internet of Medical Things, multi-agent reinforcement learning, Balakrishnan-Gómez-
Vohra solution, bi-level spectrum allocation, cooperative game theory.

I. INTRODUCTION
Over recent years, wireless technology has been one of the
fastest-growing technologies in the area of communications.
Today, it is agreed that wireless communication is becoming
one of the largest carriers of digital data around the globe.
Currently, smart mobile devices that exploit seamless con-
nectivity offered by mobile wireless networks are deployed
everywhere and impact the most various of contexts. Regard-
ing the potential use cases of wireless technology and smart
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devices, the Internet of Things (IoT) has gained widespread
attention and it is set to take a leading role in the future
networks. Originally, the concept of IoT was most interesting
in the business and industrial fields, but focus has shifted on
filling homes and workplaces with smart devices. It consti-
tutes an integral part of the future 6 generation (6G) network
and has received much attention due to its great potential to
deliver customer services in many aspects of modern condi-
tions of living [1], [2].

In the IoT paradigm, various applications play a vital role
to affect our daily life by connecting the physical environment
to the cyberspace of communication systems. By keeping
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these things in view, several applications are developed.
Recently, health industry is changing drastically in developed
countries as the life expectancy has abruptly raised. As the
population of older adults has rapidly increased, chronic
diseases are also increasingly pressuring these countries’
healthcare systems. The Internet of Medical Things (IoMT)
is an IoT branch dedicated to the healthcare industry. It com-
bines both the reliability and safety of traditional medical
devices and dynamicity, genericity and scalability capabili-
ties of traditional IoT. By deploying various medical smart
devices on numerous patients, IoMT is able to realize in-
homemonitoring remotely, and can satisfy a variety of health-
care requirements. In addition, pervasive health monitoring
systems allow patients to move freely indoors without being
restrained. The rapid evolution of IoMT technology has led
the research community to envision a wide range of smart
healthcare projects [2], [3]

In the IoMT system, wireless connected devices generate a
large amount of signals, including multimodal data. Because
of the huge, complex, and multidimensional nature of the
medical data generated by connected healthcare devices, how
to effectively transmit a huge amount of data becomes a
difficult problem. In addition, IoMT devices constitute 40%
of the IoT market at the end of 2020. It is expected to
expand in the next couple of years due to the IoMT devices’
potential contribution to provide ubiquitous health monitor-
ing services. Understandably, this rapid increase in the num-
ber of medical devices and excessive healthcare data limit
the development of IoMT. Especially, the scarcity of spec-
trum resources restricts the further implementation of IoMT
applications, since real-time performance is required while
satisfy the delay constraint of the time-sensitive tasks for
medical information analysis. Therefore, adaptive spectrum
sharing is a major challenge and key requirements for the
success of IoMT systems. Additional requirement is the coop-
eration among different medical devices; it is brought by the
interconnectivity of medical devices through the intelligent
management policy [1], [2], [3], [4].

Motivated by the above discussion, we propose a new
spectrum allocation scheme for the IoMT network system.
Usually, spectrum allocation is one of the most important
issues in network managements. To ensure the communica-
tion qualities, an effective dynamic spectrum sharing policy
is essential to design novel IoMT control algorithms. Until
now, many research efforts and mathematical methods have
been unfolded to deal with spectrum allocation problems.
Recently, reinforcement learning algorithms and game theory
have captured the attention of researches because of their
impressive abilities to model potential system dynamics as an
intelligent control mechanism. Some scientist and researchers
contribute comprehensive presentations of the relevant tech-
niques to design control mechanisms from both the game
theory and reinforcement learning concepts. The central idea
of game theory is to model strategic interactions as a game
between a set of players. This setting is often used as a

testbed for multi-agent reinforcement learning approaches.
In this study, we develop a learning based gamemodel, which
is an important part in formulating, design, and successful
operations for the IoMT spectrum allocation scenario.

Originally, game theory focused on purely strategic inter-
actions. Since then, it has developed into a general framework
for providing complex systems science with a systematic
approach for deciding a series of Pareto-efficient strategies in
cooperative situations or the best strategy in non-cooperative
situations. From the perspective of the timing of behavior,
games can be divided into static games and dynamic games.
In static games, all players make decisions simultaneously,
without knowledge of the strategies that are being chosen
by other players. Unlike static games, dynamic games define
the possible orders of the events and players iteratively play
a similar stage game. Therefore, the players observe the
outcome of the previous game round andmake their decisions
for the next game round. To maximize their profits, players
can react adaptively to other players’ decisions. Recently,
dynamic games have attracted interest from fields as diverse
as psychology, economics, biology, engineering and telecom-
munication fields [5].

Even though game theory is a prevalent tool of modeling
and analyzing decision-making problems, game players are
not smart in a decision-making process due to their lack
of ability to interact with the environment. Therefore, game
players cannot always be able to maximize their payoffs,
which are consistent with their preferences among differ-
ent alternative outcomes. Fortunately, the era of artificial
intelligence (AI) is coming; it has become a near-ubiquitous
technology in our communities, homes and workplaces that is
helping to improve our day-to-day lives. AI is a term applied
to computers, robots, or machines that exhibit aspects of
human intelligence, reasoning and decision-making. One of
the most popular AI technologies such as the reinforcement
learning methods are particularly attractive to addressing the
resource allocation issue. With the advent of reinforcement
learning, dynamic game models have also gained importance
within the AI community and computer science. In particular,
dynamic game paradigm provides both a means to describe
the problem setting formulti-agent learning algorithm and the
tools to analyze the outcome of reinforcement learning [6].

Although there has been a surging interest in studying
game theory and multi-agent reinforcement learning, no prior
work has particularly focused on the sophisticated combina-
tion of these two control paradigms. In this study, our major
goal is to develop a novel hybrid spectrum allocation scheme
for the IoMT network system. In the proposed scheme, each
IoMT device works simultaneously as a dynamic game player
and learning agent. Based on the complicated interactions
between game model and learning algorithm, we can get a
good performance balance among various IoMT devices for
different medical services.

The remainder of the paper is organized as follows.
In Section II, the technical background for game theory
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and multi-agent reinforcement learning are described. In
Section III, we review the related work. Section IV illustrates
the IoMT system platform, and formulates the spectrum allo-
cation problem. And then, our proposed scheme is designed
as a bi-level control algorithm to find an effective solu-
tion. In Section V, numerical results show the performance
improvement of our proposed scheme, and the comparisons
against the state-of-the-art benchmark protocols. Finally, con-
clusions and future expectations are drawn in Section VI.

II. TECHNICAL CONCEPTS AND MAIN CONTRIBUTIONS
As a subfield of game theory, cooperative games concern
with the game players forming alliances andworking together
to seek to achieve their common goals. At the 1950, the
classical model proposed by J. Nash has been one of the most
successful paradigms of cooperative game theory. It has been
the foundation stone of an extensive theoretical literature,
and the solution idea that Nash defined and characterized
has been widely applied. More broadly, Nash’s approach
has been deeply influential in demonstrating the power of
the cooperative game model in the search for well-behaved
solutions, and beyond that, it has been an important source of
inspiration in the development of different cooperative game
solutions. Until the present day, a number of game theory
researchers have enriched the Nash’s original idea through
the introduction of a salient point [7], [8].

Recently, Balakrishnan, Gómez, and Vohra developed a
new game solution concept, which is called as the BGV
solution in this paper, by introducing a new salient point into
bargaining problems. The BGV solution describes a coopera-
tive situation where the salience of the reference point mutes
or tempers the negotiators’ aspirations. Therefore, the context
of the cooperative bargain will affect the manner in which
the salience point influences the negotiated outcome. To put
it more concretely, the BGV solution employs two points;
disagreement point and aspiration point. The disagreement
point works as an anchor point, and the aspiration point is
referenced as a tempered utopia or modified utopia point. The
BGV solution is the intersection between a ray connecting
the disagreement point with the aspiration point, and the
bargaining set’s boundary. This is equivalent to saying that
the BGV solution chooses the maximum individually rational
utility profile at which each negotiator’s utility gain from
his disagreement point has the same proportion to the utility
difference between his aspiration point and his disagreement
point [8], [9].

A multi-agent system is defined as a group of smart agents
that sense and interact with an environment and act for pre-
defined goals. It brings a new paradigm to design various
control applications. Due to the dynamics and complexity of
environments, reinforcement learning techniques have been
developed for multi-agent systems in order to improve the
performance of each agent and the whole system. In recent
years, multi-agent reinforcement learning (MARL) has been
proposed as an extension of reinforcement learning in a
multi-agent domain. Current researches claim that MARL

can be treated as a fusion of policy search techniques on
feasible sets, dynamic programming and game theory. More
recently, the combination of game theory and MARL has
become a research hotspot to explore the coordination and
competition among multiple agents. The design of MARL
models often involves a game-theoretic approach, so-called
learning games, and demonstrate the existence of solutions
by game theory. Therefore, we should adopt an effective
learning technique to obtain a fair-efficient game solution in
the dynamically changing multi-agent environment [10].

In this study, we aim to optimize the IoMT system per-
formance by adopting the BGV solution and MARL model.
The objective of formulated optimization problem is to max-
imize the normalized device payoff and network throughput
while balancing the fairness of IoMT devices. The considered
control scheme is divided into two levels, i.e., learning-level
mechanism and bargaining-level mechanism. In the learning-
level mechanism, each IoMT device decides its salient point
through the MARL model. In the bargaining-level mecha-
nism, the limited spectrum resource is shared among IoMT
devices based on the fair-efficient manner; the BGV solution
is applied to solve the spectrum allocation problem. For the
efficient operation of IoMT system infrastructure, we guide
selfish IoMT devices toward a socially optimal outcome.
To satisfy this goal, the methodology adopted in our scheme
is a coordinative learning game. The significant major contri-
butions of the paper are summarized as follows:

• We construct a novel spectrum allocation scheme for
health monitoring applications. Based on the fundamen-
tal concepts of the BGV solution and MARL model,
we develop a bi-level control algorithm in the IoMT
network platform.

• For the learning-level mechanism, each individual IoMT
device intelligently learns the current system condition,
and selects its salient point for the health monitoring
applications. This process is operated in a parallel and
distributed manner.

• For the bargaining-level mechanism, a cooperative game
is considered to share the spectrum resource for individ-
ual IoMT devices. Considering the individual rational-
ity of devices, the idea of BGV solution is adopted to
reach a consensus with reciprocal advantage. By using
a dynamic control fashion, this allocation process is
operated in a centralized manner.

• Our jointly designed scheme enables the sequential
interactions among multiple IoMT devices to achieve
a mutually desirable solution. Our bi-level approach
sophisticatedly combines two control mechanisms,
which act iteratively and cooperatively to strike an
appropriate system performance.

• Performance evaluations demonstrate the effectiveness
of our proposed scheme in comparison with the existing
state-of-the-art spectrum allocation protocols. Simula-
tion analysis and numerical results show the efficiency
of our hybrid approach in terms of the normalized device
payoff, IoMT system throughput and device fairness.
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III. RELATED WORK
Many previous researches have investigated health-aware
application services. Since the concept of IoMT was first
introduced, one of the most important issues is to effec-
tively allocate the limited spectrum resource in the IoMT
platform. Therefore, a few research papers have been pub-
lished recently to solve the spectrum allocation problem
[3], [11], [12]. The paper [3] proposes the Health Monitoring
for IoMT (HMIoMT) scheme for in-home health monitoring
services. In this scheme, the IoMT system is divided into
intra-Wireless Body Area Networks (WBANs) and beyond-
WBANs. For intra-WBANs, the Nash bargaining solution
is adopted to optimally allocate the spectrum resource in
a centralized manner. In beyond-WBANs, patients compete
for channel and computation resources to process the health
monitoring packets. By considering individual rationality and
potential selfishness, the scheduling problem is formulated
effectively. To obtain the strategy profile, a potential game
is proposed in a decentralized manner to get the Nash equi-
librium. Finally, performance evaluations demonstrate the
effectiveness of the HMIoMT scheme with respect to the
system-wide cost and the benefit of patients [3].

In [11], the Resource Management for IoMT (RMIoMT)
scheme is designed to investigate the minimization problem
for healthcare services in the IoMT system by consider-
ing quality-of-service (QoS) requirement, power limit, and
wireless fronthaul constraint. Taking account of the distinct
time sensitivity of medical data, a low-complexity algo-
rithm is introduced to accelerate solution efficiency. Specifi-
cally, matching theory is adopted for the channel assignment
between APs and IoMT devices. When the match process
starts, each device first chooses the favorite channel accord-
ing to its preference sequence. After being refused by chan-
nels, the device will go on sending access request to the
following one in its preference sequence. When the set of
unmatched IoMT devices is empty, the channel matching is
finished. Finally, the simulation results reveal the effective-
ness of the RMIoMT scheme [11].
Y. Yang et al. develop the Distributed Learning for IoMT

(DLIoMT) scheme for the effective allocation of communica-
tion resource [12]. First, authors study the unique characters
of IoMT and construct a distributed resource allocation prob-
lem. Second, they form a repeat game model by specifying
the interactions of APs in the IoMT system. To reach a
Nash equilibrium, each AP performs the strategy selection
process based on probability learning algorithm, which is
called as a multi-criticality strategy learning algorithm. Given
the feature of medical data, medical criticality is divided
into several categories. Each AP learns the strategy selection
probabilities for different categories via the multi-criticality
strategy learning algorithm.Multiple IoMT devices can trans-
mit medical data to different APs, which treat these medical
data packets equally. This setting guarantees the cooperative
actions among IoMT devices. Finally, performance evalua-
tions indicate the effectiveness of the DLIoMT scheme in
terms of various aspects [12].

FIGURE 1. The infrastructure of IoMT system.

The earlier schemes in [3], [11], and [12] have been stud-
ied the spectrum allocation problem for the IoMT network
platform. Even though some researchers tackled the IoMT
resource allocation problem, they did not consider the com-
bination of cooperative bargaining game and MARL algo-
rithm for medical-aware application services. Compared to
the above existingHMIoMT,RMIoMT andDLIoMT schemes,
this article considers the ideas of BGV solution and dis-
tributed MARL model for controlling the activities of system
agents, and develop a twofold spectrum allocation algorithm
to ensure the performance of whole IoMT network system.
To the best of our knowledge, our proposed scheme is the
first in the literature to investigate the hybrid learning game
mechanism, and guides intelligent IoMT devices toward a
socially optimal outcome.

IV. HEALTHCARE-AWARE SPECTRUM ALLOCATION FOR
THE IoMT PLATFORM
In this section, we consider a bi-level control mechanism for
healthcare-aware application services in the IoMT platform.
First, we formulate a learning game model for the spec-
trum allocation problem. And then, the fundamental ideas of
the BGV solution and MARL model are introduced. Finally,
we describe our proposed algorithm in detail.

A. IoMT SYSTEM INFRASTRUCTURE AND A LEARNING
GAME MODEL
Based on the wearable technology, IoMT devices are always
used for the individual health monitoring in daily life.
In this subsection, we introduce the architecture of IoMT
platform and formulate a bi-level learning game model for
health-related application services. The architecture of het-
erogeneous IoMT network infrastructure is shown as Fig. 1.
It consists of n access points (APs), i.e., A = {A1, . . . ,An}

and m IoMT devices, i.e., D = {D1, . . . ,Dm}. With low
transmission power and cost, APs are envisioned to provide
resilient communication services for multiple IoMT devices,
which can gather, generate, fuse, analyze, and send medical
data to their corresponding APs. Each A1≤i≤n ∈ A has
its covering area, and DAi is the set of Ai’s corresponding
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IoMT devices where DAi ⊂ D; they are randomly dis-
tributed in a given geographical area, and require a lot of
spectrum resources for sending the medical data sensed from
the patients every day. The Ai has its wireless spectrum
capacity

(
MAi

)
, and dynamically allocate the MAi for its

corresponding IoMT devices. The IoMT device in the DAi ,

i.e., Dj ∈ DAi , generates its health-aware data
(
WDj

)
.

To transmit theWDj , it leads to the conflict situation to share
the MAi among the devices in the DAi .

In the proposed scheme, the first-level MARL learning
model M and the second-level cooperative game model G are
formulated. Through theM andG, multiple IoMT devices are
sequentially interacted with each other to reach a consensus.
Formally, we define the tuple entities in our dual-phase con-
trol scheme, such as

{M, G}

=

 A, D,
{
MDk |Dk ∈ D, a

Dj
1≤k≤l ∈ LDj ,R

Dj
a

}
,{

GAi | ,Ai ∈ A,Dj ∈ DAi , MAi ,SDj ,UDj (·)
}

,T

 .

• A and D represent the set of APs and the set of IoMT
devices, respectively.

• At the first-level, the MDk is developed as a MARL
model for the Dk ∈ D. It is operated in a distributed
manner to learn the best action of Dk .

• In the MDk , a
Dj
k is the Dj’s k th action, and LDj is the

Dj’s action set, which consists of total l actions. RDj
a is

the Dj’s reward function with the joint action a.
• At the second-level, each individual AP executes the

GA1≤i≤n in a centralized manner with its corresponding
devices Dj ∈ DAi .

• In the GAi , theAi’s spectrum resource
(
MAi

)
is shared

by devices in DAi . The Dj ∈ DAi is a game player,
and SDj and UDj (·) are his strategy and utility function,
respectively.

• The MDk and GAi are reciprocally interdependent, and
work together. It is noteworthy that we formulate the
Ai − DAi association in an iterative manner.

• Discrete time model T ∈ {t1, . . . ,tc, tc+1, . . .} is rep-
resented by a sequence of time steps. The length of tc
matches the event time-scale of MDk and GAi .

B. FUNDAMENTAL IDEAS OF BGV SOLUTION AND MARL
MODEL
To characterize the fundamental idea of BGV solution, the
following notations will be used. Let n > 1 be a fixed natural
number and define N = {1, . . . , n} and R, Rn denote the sets
of all real numbers and the n-fold Cartesian product of R,
respectively. For any x ∈ Rn, i ∈ N and l ∈ R, let (l, x−i)
represent the vector y ∈ Rn such that yi = l and yj = xj for
any j ̸= i. Vector inequalities are treated as follows. x ≥ y
mean that xi ≥ yi for all i ∈ N, x > y indicates that x ≥ y
and x ̸= y and x ≫ y means xi > yi. We denote x · y as the
scalar product of the vectors, that is x · y =

∑n
i=1 (xi × yi).

An n-person bargaining problem with a reference point is a

triple (S, d, r) where S denotes the set of feasible outcomes,
d is the disagreement point, and r is the reference point.
We assume that d, r ∈ S ⊂ Rn, and ∃x ∈ S with x > d and
r ≥ d . The assumption d ∈ S means that players are able
to agree to disagree, the assumption r ∈ S means that the
reference point is feasible, and the assumption r ≥ d means
that the reference point is individually rational [8], [9].

By assuming that there exists x ∈ S with x > d , we rule
out degenerate problems where no agreement can make all
agents better-off than the disagreement outcome. Letϒ (S, x)
denote the aspiration vector such that for every i ∈ N
and every x ∈ S: ϒi (S, x) ≡ max {l ∈ R | (l, x−i) ∈ S}.
Accordingly, ϒ (S, d) is the ideal point and ϒ (S, r) is the
tempered aspirations point. Let 6n be the class of all bar-
gaining problems with a reference point. A solution concept
for such problems is a function F : 6n

→ Rn that associates
each (S, d, r) ∈ 6n with a unique point of S. Finally, the
mathematical definition of BGV solution, i.e., BGV (S, d, r),
is given by [8] and [9]:

BGV (S, d, r) =
(
λ∗

· ϒ (S, r)
)
+

((
1 − λ∗

)
· d

)
s.t.,


∃ (S, d, r) ∈ 6n

λ∗
= max {λ ∈ [0, 1] | ((λ · ϒ (S, r))

+ ((1 − λ) · d)) ∈ S}

(1)

Geometrically, the BGV solution is the maximum point of
the bargaining set on the line segment connecting two points,
which are ϒ (S, r) and d . The BGV solution is characterized
by a collection of desirable axioms like as, weakly Pareto
optimal (WPO), respect of symmetry (RS), scale invari-
ance (SI), equal tempered aspirations conditional mono-
tonicity (ETACM), independence of trivial reference points
(LSCCP), and continuity (C). To explain these axioms, let
5n be the class of one-to-one mappings π : N → N. Given
x ∈ Rn, and π ∈ 5n, let π (x) denote the vector

(
xπ(i)

)
i∈N.

Given S ⊂ Rn, let π (S) ≡ {y ∈ Rn
| ∃x ∈ S, y = π (x)}.

And, we define a solution function is any function f :
∑n

→

Rn satisfying f (S, d, r) ∈ S for every (S, d, r) ∈
∑n, and

the f (S, d, r) is a solution point of the bargaining process
[8], [9].

• WPO : For every (S, d, r), its weakly Pareto optimal set
is defined asWPO (S) = {y ∈ S|x ≫ y implies x /∈ S}.

• RS : For each (S, d, r) ∈ 6n, if for each π ∈ 5n, S =

π (S), then f (S, d, r) has equal coordinates.
• SI: Let 3n denote the class of profiles of affine trans-
formations that act independently player by player.
For each (S, d, r) ∈ 6n, and each λ ∈ 3n, then
f (λ (S) , λ (d) , λ (r)) = λ (f (S, d, r)).

• ETACM : For each pair (S, d, r) and
(
S ′, d ′, r ′

)
in

the domain of d-comprehensive problems, if S ⊂

S ′, (d, r) =
(
d ′, r ′

)
and ϒ (S, r) = ϒ

(
S ′, r ′

)
then

f (S, d, r) ≤ f
(
S ′, d ′, r ′

)
.

• LSCCP : For each (S, d, r) in the domain of d-
comprehensive problem, such thatϒ (S, r) = ϒ (S, d),
then f (S, d, r) = f (S, d, d).
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• C : It says that the solution should be a continuous
function of the problem; there are no jumps in game
players’ preferences.

Multi-agent learning deals with the interaction between mul-
tiple agents, which are acting in a common dynamical envi-
ronment. One of the most popular solutions for MARL is
Q-learning. Main motivation of Q-learning based MARL is
to achieve an agreement to receive maximum reward; this
cooperative learning problem has attracted much interest in
the last decade. The job of MARL algorithm is to estimate Q
value for every action in every state. However, some cases,
the environment does not have to be represented by states,
only the action space; it becomes simpler while estimating an
expected value of a single reward for each action available to
the learning agent. In order to make the learning system fully
distributed and effectively model the behavior of intelligent
agents, the single state MARL has been introduced where
the Q values of actions are effectively the estimation of the
usefulness of the actions in the next step of the multi-agent
learning process [13], [14].

The single state MARL model M is a tuple ⟨N , {Ai}∈N,

{Ri}i∈N⟩, where N is a collection of agents, Ai is the set of
actions available to the agent i, and Ri is its payoff. Multiple
agents simultaneously choose their actions from their own
action sets and, receive their payoffs on the basis of the
actions performed by all the agents. Let at =

[
at1, a

t
2, . . . , a

t
n
]

be the joint action executed at iteration t , where at
−i is the

joint action of all the agents except the agent i. At each
learning stage, an agent’s experience is characterized not only
by its own action and payoff but also from all the actions
actually executed by other agents in the multi-agent environ-
ment. Therefore, agents can learn to coordinate their actions
through the environmental feedback. The desired outcome of
this process is to let themultiple agents collectively learn their
best actions that maximize the total system profit. Usually,
the Q-value is the expected cumulative reward for taking a
particular action. For each pair <joint-action, action >, the
agent i’s Q-value, i.e., Qi

(
at , ati

)
, is represented as follows

[13], [14].

Qi
(
at , ati

)
= (1 − α) · Qi

(
at−1, ati

)
+ α · max

at+1
i

{
Rt + γ · Qi

(
at , ati

)}
(2)

where α ∈ [0, 1] is the learning rate, and γ ∈ [0, 1) is
the discount factor. To jointly reach a consensus, multiple
intelligent agents should overcome the defect of selfishness
through the collaboration.

C. THE PROPOSED SPECTRUM ALLOCATION SCHEME
FOR THE IoMT PARADIGM
To develop our spectrum allocation scheme, we construct a
bi-level control algorithm for each IoMT device; the first
level is implemented as a learning model M, and the second

level is designed as a cooperative game model G. During
time steps, M and G are operated sequentially, and they
interactive with each other to reach a consensus. From the
traditional Q-learning function, it is clear that a state-action
pair is important. However, the state-action pair in Q learning
cannot effectively model the real-world IoMT network sys-
tem. In order tomake the learning system fully distributed and
effectively model the network’s physical behavior, we adopt
the single-state Q-learning mechanism. In this mechanism,
the formulation of state-action pairs is less of an issue. It is
originally proposed to solve stateless games in computer
science, and effectively carried out in a dynamically changing
environment. Based on each action’s Q value, an agent can
select his action, and the Q value of the selected action is
updated by receiving a reward. Comparing with the conven-
tional Q learning, the information of the successor state is
irrelevant. This approach dramatically reduces the complex-
ity of the learning model while enhancing the applicability of
MARL Q-learning in a distributed manner [16].
For the first control process, we design a single-state multi-

agent Q-learning model M. Since the agents in a single-state
environment is stateless, we need a simple reformulation of
the equation (2). In this formulation, each agent maintains
each action’s Q value, which is updated after each learning
step according to the reward received for the action. In our
stateless setting, we assume that each IoMT device has his
action set LD, which consists of device’s available salient
points. For example, the Q-value of Dj’s k th action, i.e.,

Q
Dj
k

(
a−Dj , a

Dj
k

)
, provides an estimate of the value of per-

forming the joint action a =

(
a−Dj , a

Dj
k

)
. The Dj updates

its estimate Q
Dj
k (·) value based on the experience sample

⟨a,RDj
a ⟩ where RDj

a is the Dj’s reward of a. Simply, RDj
a

is same as the Dj’s utility function UDj (·) in the second-
level cooperative game G; it is defined in the equation (4).
Finally, our single-state MARL function is defined as fol-
lows [15], [17]

Q
Dj
1≤k≤l

(
a−Dj ,A

Dj
k

)
= (1 − α) · Q

Dj
k

(
a−Dj , a

Dj
k

)
+ α ·Ra

= Q
Dj
k

(
a−Dj , a

Dj
k

)
+ α ·

(
Ra − Q

Dj
k

(
a−Dj , a

Dj
k

))
(3)

A major challenge for the selection of actions is to strike a
balance between exploring and exploiting. In our scheme,
we have chosen the Boltzmann strategy; each agent chooses
an action to perform in the next iteration with a probability
that is based on its current estimate of the usefulness of that
action [15], [17].

For the second control process, we develop a cooperative
game model G. In the GAi , individual devices in the DAi

share the MAi in a centralized manner. In this game, the
spectrum allocation process is operated based on the concept
of BGV solution. In the viewpoint of Dj ∈ DAi , the utility
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functions, i.e., UDj (·), is defined as follows:

UDj

(
0ADj ,SDj ,JDj

)
= exp

µ × log

min
(
WDj ,SDj

)
WDj

 ×
1
JDj

s.t.,
∑

Dj∈DAi

SDj ≤ MAi (4)

where µ is an adjustment parameter for the UDj (·), and JDj

is the service sensitivity of Dj’s application. WDj and SDj

are the requested spectrum amount and allocated spectrum
amount, respectively. According to (1) and (4), the spectrum
resource MAi is shared based on the BGV solution idea.
For the Dj, the allocated spectrum amount, i.e., BGVDj (·),
is given by:

BGVDj

(
Dj ∈ DAi | U, dDAi , ra

)
=

(
λ∗

· ϒ (U, ra)
)
+

((
1 − λ∗

)
· dDAi

)
s.t.,λ∗

=



U =
〈
Dk ∈ DAi

∣∣ . . . ,UDk , . . .
〉

ϒ (U, ra) = ϒDj∈DAi
= max

{
rDj ,max

{
t ∈ R |

(
t, r−Dj

)
∈U

}}
max

{
λ ∈ [0, 1] |

(
(λ·ϒ (U, ra))+

(
(1−λ)· dDAi

))
∈U

}
(5)

where ra is a reference point to temper the IoMT devices’
aspirations. In our proposed scheme, the ra is defined as
devices’ actions where ra =

〈
Dk ∈ DAi

∣∣∣ . . . , rDj , . . .
〉
and

rDj is theDj’s selected action, i.e., a
Dj
1≤k≤l . The r−Dj is the all

devices’ selected actions except the Dj.

D. MAIN STEPS OF OUR BI-LEVEL SPECTRUM
ALLOCATION ALGORITHM
The coordination of multi-agents has become increasingly
popular in the reinforcement learning and game theory.
Because of its generality and robustness, the combination
of learning algorithm and game theory has attracted recent
attention. However, how to integrate the learning model and
game solution has not yet been tackled in depth. In this
study, we focus our attention on a learning game to solve the
spectrum allocation problem in the IoMT system platform.
Our main interest is in the application ofMARL to the sequen-
tial decision problem, which is being controlled by multiple
intelligent IoMT devices. For the computation simplicity,
we focus on the single stateMARLmodel [15]. It is a little dif-
ferent approach compared to the straightforward application
of traditional MARL. Multiple IoMT devices repeatedly play
a cooperative game in which they independently select their
individual actions based on the MARL. The chosen actions

at any point constitute a joint coordinated action. Based on
these actions, IoMT devices play a cooperative repeated game
based on the BGV solution. Our proposed bi-level control
paradigm sophisticatedly combines theMARLmodel and the
BGV solution; they mutually dependent and act cooperatively
to obtain a fair-efficient system performance. In addition,
we can provide the ability to practically respond to current
IoMT system conditions while keeping the computation com-
plexity under the control. It is a suitable approach for real-
world network operations. The primary steps of our proposed
scheme are described as follows, and they are described by
the following flowchart:

Step 1: Based on the experimental settings in the Section V
and Table 1, control factors and parameter values are
determined to carry out the numerical experiments.

Step 2: At a sequence of time steps, individual IoMT
devices in the D generate their medical-aware data
(WD), which are transmitted to their corresponding
APs.

Step 3: At the first control process, each IoMT device
selects his salient point based on the Q-value.
According to (3), the Q-value is updated based on
the experience sample of joint action and reward.

Step 4: To decide the best salient point of each device, the
learningMARLmodel M is operated in a distributed
manner.

Step 5: At the second control process, each AP distributes
its spectrum resource (MA) for the corresponding
devices. Each device has its utility function accord-
ing to (4); it is also used as the device’s reward.

Step 6: At the first control process, each IoMT device
selects his salient point based on the distributed
MARL process. According to this decision, the
second control process distributes the spectrum
resource based on the idea of BGV solution.

Step 7: Each device obtains his spectrum by using (5). For
the spectrum sharing problem in the IoMT platform,
the cooperative game G is executed in a centralized
manner.

Step 8: In our proposed scheme, the M and G are sophis-
ticatedly combined based on the reward and utility
functions. Therefore, the M and G work together to
reach an efficient system performance.

Step 9: During a sequence of time steps, individual system
agents are constantly self-monitoring the current
IoMT platform environment, and sequentially inter-
act with each other in the both distributed and cen-
tralized fashions. For the next iteration, it proceeds
to Step 2.

V. PERFORMANCE EVALUATION
In this section, we present the simulation results and discuss
the performance of our proposed bi-level spectrum allocation
algorithm. By using the MATLAB software, we model our
system, and simulations are run. To outline the benefits of
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FLOWCHART 1. Flowchart of the proposed algorithm.

our approach, we show a detailed comparative analysis with
other competing protocols of HMIoMT [3], RMIoMT [11]
andDLIoMT [12]. Simulation parameters and their values are
summarized in Table 1, and the simulation environment and
system scenario are given as follows:

• Simulated the AP assisted IoMT system platform con-
sists of ten APs and hundred IoMT devices, i.e., |A| =

10, and |D| = 100.
• Ten APs are deployed in the network coverage area, and
individual IoMT devices are randomly distributed over
there.

• Each IoMT device D1≤j≤100 generates different health-

aware application data
(
WDj

)
where the arrival process

of WDj is the rate of Poisson process (ρ). The offered
range is varied from 0 to 3.0.

• Individual IoMT devices can directly contact with their
corresponding APs; they communicate with the APs
through wireless spectrum links.

• The total spectrum resource of each AP (MA) is
100 Gbps.

• TheLD is the set of each device’s available salient points
where it consist of 6%, 8%, 10%, 12% and 14% ofWD.

• The disagreement points for bargaining process, i.e.,
dDA , are zeros.

• We assume the absence of physical obstacles in the AP’s
coverage area.

• The spectrum allocation process is specified in terms of
basic spectrum units (BSUs) where one BSU is 64Mbps
in this study. Therefore, each AS has 1600 BSUs.

• The AP assisted IoMT system performance measures
obtained on the basis of 100 simulation runs are plotted
as functions of the Poisson process (ρ).

TABLE 1. System parameters used in the simulation experiments.

FIGURE 2. The normalized device payoff in the IoMT platform.

To evaluate the proposed solution, we compare its perfor-
mance in terms of normalized device payoff, IoMT system
throughput and device fairness. Table 1 shows the control
parameters and system factors used in the simulation.

The normalized device payoff in the IoMT Platform is
illustrated in Fig. 2. The results reflect the trend of device
payoff when implementing the different spectrum allocation
protocols. In the viewpoint of end users, the device payoff is
a key factor to evaluate the service quality. For low average
health-aware workload rates, the device payoff is virtually
the same as for all protocols. However, as the workload
rate increases, the device payoff of our proposed scheme is
better than the HMIoMT, RMIoMT and DLIoMT schemes.
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FIGURE 3. System throughput in the IoMT network platform.

The reason may be the fact that IoMT devices in our approach
dynamically adjust their salient points to share the limited AP
spectrum resource. Based on theMARLmechanism, multiple
IoMT devices get the current learning information, and work
together in a step-by-step interactive manner to achieve a
mutually desirable solution. Under the dynamic changing
IoMT system environments, our single state MARL method
gains a significant advantage for the spectrum allocation
problem.

Fig. 3 demonstrates the effectiveness of our proposed
scheme with respect to the IoMT system throughput. In the
viewpoint of system operators, system throughput is a main
performance criterion to evaluate the system efficiency. With
the rise of workload rate in the IoMT device, the system
throughput increases. It is intuitive correct. As the workload
rate increases, the system throughput of our scheme is much
higher than that of other schemes. In our proposed scheme,
IoMT devices select their actions in a distributed manner, but
actual spectrum allocation process is operated in a centralized
manner. By a sophisticated combination of the MARL model
and the BGV solution, our bi-level control approach is quite
adaptable to maximize the system throughput while adapting
dynamic network changes.

Fig.4 reveals the comparison of device fairness in the IoMT
platform. To verify the device fairness for different schemes,
we compare its normalized fairness index. Simulation results
show the excellency of our proposed scheme for the fairness
issue. To allocate the available spectrum, the major goal
of BGV solution is to get a fair-efficient solution. Through
the BGV solution, we investigate the fairness issue while
generating maximum system efficiency. Therefore, the MA
is efficiently allocated while ensuring the fairness among
IoMT devices. Due to this reason, our proposed scheme can
maintain an excellent device fairness.

Simulation analysis in Fig.2 to Fig.4 can confirm the supe-
riority of our proposed scheme than the existing HMIoMT,
RMIoMT and DLIoMT schemes. By employing the bi-level
control paradigm, the learningMARLmethod and cooperative

FIGURE 4. Device fairness in the IoMT platform.

game model are mutually dependent and act cooperatively
to capture dynamic interactions among IoMT devices and
APs. Therefore, we can achieve a desirable solution between
conflicting requirements.

VI. SUMMARY AND CONCLUSION
In this paper, we have investigated the IoMT-assisted health
monitoring system with limited spectrum resource, and pro-
pose a new spectrum allocation scheme based on a bi-level
control approach. In our method, we include aMARL process
to select each device’s salient point, and employ a cooper-
ative game process to share the spectrum resource. For the
MARL process, individual IoMT devices intelligently learn
their best salient points under the dynamic IoMT network
environment. Learning process is operated in parallel and
distributed manner. For the cooperative game process, the
BGV solution is implemented to share the spectrum resource
among multiple IoMT devices. Sharing process is operated in
a centralized fashion. These two control processes are sophis-
ticatedly combined, and work together and act iteratively to
strike an appropriate system performance. Taking accounting
of contradictory service requirements, the major challenge of
our bi-level approach is to reach a consensus with reciprocal
advantages. In addition, we adopt the single state MARL
model to significantly reduce the computation complexity
compared to a classicalMARL method. Finally, performance
evaluations demonstrate the effectiveness of our proposed
scheme for the IoMT system platform, and we can get posi-
tive benefits for health-aware application services than other
existing HMIoMT, RMIoMT and DLIoMT methods.

As a future work, we plan to incorporate the security issue
in the IoMT system when IoMT devices send data packets
to APs. Usually, the information related to IoMT devices is
strictly private and confidential. The lack of security aware-
ness among IoMT devices and the risk of several intermediary
attacks for accessing health information severely endanger
the use of IoMT system. Therefore, we should guarantee
IoMT devices’ security and privacy. Furthermore, blockchain
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and smart contract technologies can be explored to improve
the health monitoring services. In addition, we will propose
a new distributed learning algorithm for the MARL process.
By using new learning methods, the reliability and robustness
of each agent can be improved.
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