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ABSTRACT Ongoing advancements in the design and fabrication of soft robots are creating new challenges
in modeling and control. This paper presents a dynamic Cosserat rod model for a single-section 3D-
printed pneumatic soft robotic arm capable of combined stretching and bending. The model captures the
manufacturing variability of the actuators by tuning the pressure-strain relation for each actuator. Moreover,
it includes a simple model of the pneumatic actuation system that incorporates the transient response of
proportional pressure-controlled electronic valves. The model was validated experimentally for several
quasi-static and dynamic motion patterns with actuation frequencies ranging from 0.2 Hz to 20 Hz. The
model reproduced the quasi-static experiments with an average tip error of 4.83% of the arm length.
In dynamic conditions, the average tip error was 4.33% for stretching and bending motions, 5.64% for five
motor babbling experiments, and 22.53% for three challenging sinusoidal patterns. An ablation study of the
model components found that the most influential factors for the average accuracy were gravity and strain
gains, followed by damping and pressure transient. This work could assist researchers in focusing on the
most significant aspects for closing the real-to-sim gap when modeling pneumatic soft robotic arms.

INDEX TERMS Soft robot model, Cosserat rod, pneumatic actuators.

I. INTRODUCTION
Continuum and soft robotic arms manufactured using com-
pliant materials can bend, twist, stretch, and shear while
safely interacting with unstructured environments [1]. Recent
progress in design and manufacturing technologies (e.g.,
3D-printing) enabled the rapid prototyping of complex soft
robotic systems [2]. However, the elastic deformations of
the soft materials cause extreme hyper-redundancy. Soft
materials also exhibit nonlinear behaviors like hysteresis,
viscoelasticity, and stress softening. As a result, traditional
modeling and control methods that assume rigid links
are not directly applicable [3]. These challenges led to
the development of alternative modeling [4] and control
strategies [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

Data-driven models for soft robots do not require physical
considerations but rely on experimental or synthetic data
typically collected performing pseudo-random motions (i.e.,
motor babbling). Then, artificial neural networks trained
with machine learning algorithms map actuation to task
space [6]. This platform-independent approach effectively
derived computationally efficient static [7] and dynamic
models [8], [9]. However, the limitations might be the need
for representative data, extensive optimization time, and over-
fitting.

Discrete material models discretize continuous bodies
a priori. For example, pseudo-rigid models represent them
with a chain of rigid links connected by joints. While these
provide satisfactory results for hyper-redundant arms [10],
they poorly approximate elastic structures. In addition,
lumped-mass models employ an array of masses, springs,
and dampers [11]. This modularity can model complex
phenomena but could require intensive system identification.
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Geometrical models utilize geometrical assumptions on
the deformed shape of the soft body. For instance, functional
models describe the deformations using polynomials [12].
In addition, piecewise constant curvature (PCC) models
discretize continuous bodies in circular arcs with constant
curvature [13]. Most continuum arms present actuators
parallel to the centerline producing constant-curvature defor-
mations, making PCC viable for uniform and lightweight
robots [14]. However, the suitability of these approximations
could degrade when the robot is subject to significant external
forces and unpredictable interaction with the environment.

Continuum mechanics models characterize soft robots
with continuous configuration spaces and define deforma-
tions in physical terms. These enable the simulation of the
interactionwith the environment and the study of themechan-
ics of the robotic platforms. The classical three-dimensional
(3D) finite element method (FEM) accurately represents
complex geometries to the extent of high computational
costs and involved mathematical formulations [15]. Since
such models would be difficult to interface with controllers
in real-time applications, their use is usually limited to
designing and simulating soft robotic components [16] or
benchmarking other methods. Nonetheless, ad-hoc FEM
techniques targeting soft robotics are making 3D mechanical
models more appealing [17], [18]. Other viable approaches
employ reduced-order models like Cosseat rods [19], which
effectively describe slender bodies undergoing large deflec-
tions in all deformation modes, striking a good balance
between the computational efficiency of data-driven models
and the accuracy of 3D mechanical models.

Cosserat theory was applied to compute in real-time the
kinematics of tendon-actuated robots subject to external
loads, modeling the tendon actuation as a single point
moment applied to the backbone where each tendon is
attached [20]. This approach was extended by including
the attachment point force and the distributed wrench that
tendons apply along the backbone [21]. The authors modeled
the statics and dynamics of robots with general tendon routing
paths by coupling the classical Cosserat rod and Cosserat
stringmodels. They validated themodel on static experiments
performing planar and 3D movements with various tendon
routings. In another work, [22] presented a geometrically
exact static Cosserat rod model of a tendon-driven soft
robotic arm made of silicone inspired by the octopus arm.
They modeled the cable tension as a pure tension element
neglecting friction between the cable and the silicone. After
a theoretical validation of the algebraic correctness of the
equations using a FEM model, the Cosserat model was
validated experimentally in static conditions by actuating one
cable resulting in a planar motion. The approach was later
expanded in [23] to investigate the dynamic interaction with
a densemedium and the coupled tendon condition, addressing
all the hydrodynamic forces like gravity, buoyancy, drag,
added mass, and cable load. The dynamic experiments
validated how the prototype and the model performed
characteristic octopus movements. An ablation study of the

model components suggested that minimal internal viscosity
guaranteed solution stability and minimized computational
costs and that the environment drag load most significantly
contributed to the arm dynamics.

Recently, it was introduced a dynamic Cosserat model for
concentric tube robots [24]. The model described the coupled
inertial dynamics of a collection of pre-curved concentric
tubes considering linear and rotational tube inertia, material
damping, Coulomb and viscous friction, and the inertia of a
rigid body held at the end-effector. Experiments validated the
snapping phenomenon and a tissue grasping task.

For electric soft robots, [25] presented a dynamic Cosserat
model for a hydrogel-based planar cantilever arm composed
of a 3D-printed elastic backbone and orthogonal plates
supporting cubical soft voxel actuators (SVA), which bend the
centerline when a voltage is applied. They identified the map
between an input voltage and the tensile force for a single
voxel, while vibration tests estimated elastic modulus and
damping coefficient. The experimental dynamic validation
consisted of planar movements obtained by actuating subsets
of SVAs with square signals.

In the context of pneumatic soft robotic arms,
Trivedi et al. [26] proposed a dynamic model for the
OctArm V continuum arm based on a geometrically exact
Cosserat rod and a fiber-reinforced model of the air muscle
actuators. The model was experimentally validated statically
for planar movements with vertical and horizontal base
orientation. Recently, Uppalapati et al. [27] presented a
dynamic Cosserat rod model to capture the deformations
of a soft robotic arm composed of two asymmetric
pneumatic actuators, which respectively bend and rotate.
They optimized the flexural and torsional rigidity and
the spontaneous curvature and torsion for a set of quasi-
static arm positions. The experimental validation of the
model assessed its ability to reproduce the workspace
with an end-point load. Gilbert and Godage [28] used
the classical Cosserat rod approach to model a variable-
length pneumatic soft robotic arm. After optimizing the
cross-sectional area and a parameter relating stiffness and
damping in the constitutive law, the model was validated on
dynamic bending movements obtained by pressurizing the
actuators with alternating square pulses. Eugster et al. [29]
described the kinematics of a three-chamber soft pneumatic
actuator that can stretch and bend. They derived a Cosserat
rod theory with a nonlinear pressure-dependent constitutive
law using the principle of virtual work and modeled the
actuator with strain energy functions. They accounted for
manufacturing imperfections by scaling the relations of
extensional and bending stiffness and by repositioning the
chambers on the cross-section. A static validation consisted
of stretching and bending motions in vertical and horizontal
setups.

Previous Cosserat rod models for pneumatic soft robotic
arms considered instantaneous pressure changes ignoring
the transient behavior of the pneumatic actuation system.
In practice, the contribution of the pressure transient can be
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significant to model accuracy. Detailed dynamic descriptions
of pneumatic systems were included in models of soft
robotic arms based on lumped mass [30], [31], black-box
system identification [32] and PCC [33]. We provide a
functional approximation of the pneumatic system dynamics
and integrate it into a Cosserat rod model of a pneumatic soft
robotic arm.

This paper presents a dynamic Cosserat rod model
of a 3D-printed pneumatic soft robotic arm capable of
stretching and bending.Wemodel pressure-induced strains as
spontaneous stretching and bending. The model captures the
manufacturing irregularities of the pneumatic chambers using
strain gains that tune the pressure-strain relation for each
actuator. Moreover, we include a practical analytical approx-
imation of the pneumatic actuation system that captures
the transient response of proportional pressure-controlled
electronic valves. We perform an extensive experimental
validation in quasi-static and dynamic conditions for a
wide range of motion patterns: (i) stretching, (ii) bending
with one chamber, (iii) bending with two chambers, (iv)
quasi-static workspace, (v) five motor babbling experiments
at various actuation frequencies, and (vi) three sinusoidal
motions at different frequencies. In addition, we conduct an
ablation study to evaluate how different model components
contribute to the accuracy. Specifically, the four analyzed
model features are gravity, damping, actuator strain gains,
and pressure transient. As soft robots are frequently subject
to perturbations from the interaction with the environment,
we assess the impact of gravity as an instance of distributed
external force. Moreover, the ablation of the strain gains of
the actuators measures the effect of actuator asymmetries,
which could arise from manufacturing variability or material
degradation. Finally, we evaluate the dynamic behavior of
the soft material and the pneumatic actuation system by
ablating the damping mechanism and the pressure transient.
We compare the performance of the comprehensive model
against ablated model variations on eight dynamic motion
patterns. This study contributes to a better understanding of
how physical phenomena affect models of pneumatic soft
robotic arms. Therefore, this work could form a guideline
for directing the focus of researchers intending to design,
manufacture, model, and control pneumatic soft robotic arms.

Section II describes the soft robotic platform. Section III
describes the Cosserat rod model. Section IV reports the
experimental materials and protocols. Section V discusses
the performance results of the experimental validation,
while section VI studies the ablation of the main model
components. Finally, section VII summarizes the main
findings and concludes with an insight into future works.

II. ROBOTIC PLATFORM: THE AM I-SUPPORT
The AM I-Support is a 3D-printed soft robotic arm with
three elliptical pneumatic chambers that generate large
deformations by combining stretching and bending [34].
As shown in Fig. 1, two terminal plates (top and bottom)
confine the modules, and six rings distributed along the body

FIGURE 1. One module of the AM I-Support robotic arm.

constrain the chambers, while nuts and bolts assemble the
parts.

The soft robotic arm has a circular cross-section of a radius
of 30 mm, an overall length of∼202 mm, and∼183 g overall
weight. The pneumatic chambers are ∼180 mm long, while
the top and bottom terminals are ∼20 mm and ∼5 mm long,
respectively. The actuators are distributed axially, at a radial
distance of δ=20 mm from the cross-section centroid, and
equally spaced by θ=120◦ around the center (see Fig. 2).
In addition, both terminals have seats to insert the chambers.
The wall thickness of the chambers is tw=1.4 mm.

The pneumatic chambers and disks of the soft robotic
arm were fabricated using the soft material thermoplastic
polyurethane with 80 Shore A hardness (TPU 80 A LF,
BASF). The terminals were printed using TPU 95A, Ulti-
maker. The specifics on actuator design and manufacturing
process (e.g., 3D printing parameters) are reported in [34].

Note that the three chambers share the same design but
could exhibit different stretching when subject to equal
pressure due to manufacturing irregularities. The proposed
model captures this feature. Moreover, it could describe
other soft robotic arms employing linear pneumatic actuators
having similar geometries and different materials [35].

III. MATHEMATICAL MODEL
We model the soft robotic arm as a Cosserat rod with
a constant cross-section (see Fig. 2) and homogeneous
material properties, leveraging and extending the Cosserat
theory in [36] and [37]. A rod is described by a center-
line r(s, t) ∈ R3 and a local oriented reference frame
Q(s, t) ∈ SO(3), defined by the orthonormal triad of
vectors Q = {d1, d2, d3}. Here, t ∈ R+ is time,
s ∈ [0,L] is the center-line arc-length coordinate in its current
configuration, while the reference quantity is denoted by ŝ.
Vectors x are expressed either in the global reference frame
or in the local reference frame

global: x = x̄1i+ x̄2j + x̄3k (1)

local: xL = x1d1 + x2d2 + x3d3, (2)

where {i, j, k} is the canonical basis and {d1, d2, d3} is
the body-convected director basis. The orthogonal matrix Q
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FIGURE 2. View of (a) the cross-section and (b) the free-end of the robot and model. Refer to [34] for additional information on the actuators
design.

transforms vectors from one representation into another via
xL = Qx, and vice versa x = Q⊺xL. The local frame
describes the orientation of the rod, where (d1, d2) span the
normal-binormal plane of the cross-section, and d3 points
along the center-line tangent (∂sr = t) when there is no shear.
The deformations that the rod can undergo are expressed by
the shear/stretch vector σL(s, t) and the bend/twist vector
κL(s, t)

σL = (σ1d1 + σ2d2 + σ3d3) = Q(et − d3) (3)

κL = (κ1d1 + κ2d2 + κ3d3). (4)

In particular, (σ1, σ2) are the shear strains along (d1, d2),
and σ3 is the axial strain along d3. Likewise, (κ1, κ2)
characterize bending about (d1, d2), and κ3 is the torsion
about d3. The scalar e(ŝ, t) = ds/dŝ is the stretching ratio.

A. GOVERNING EQUATIONS
The rod dynamics is governed by the following set of non
linear differential equations:

∂tr = v (5)

∂td j =
(
Q⊺ωL

)
× d j, j = 1, 2, 3 (6)

∂t (ρAv) = ∂s
(
Q⊺ñL

)
+ f (7)

∂t (ρIωL) = ∂sm̃L + κL × m̃L
+ Q∂sr× ñL + (ρIωL)× ωL
+ cL, (8)

where v is the linear velocity, ωL is the angular velocity, ρ is
the constant material density, A is the cross-sectional area, I
is the second area moment of inertia, f is the external force,
and cL is the external couple. We define ñL = nL − np and

m̃L = mL−mp as the effective internal forces and moments
respectively, where np and mp express the active force and
moments due to actuation, while nL andmL are the resultant
internal forces and moments. The complete kinematics and
dynamics of the Cosserat rod are finally obtained by defining
the constitutive laws, the initial and boundary conditions.

B. CONSTITUTIVE LAWS
The relation between effective internal forces ñL and
internal torques m̃L with deformations are described by the
constitutive laws. The rod is assumed to be composed of a
linearly elastic material, so that the constitutive laws read

ñL = S
(
σL − σ0

L
)

(9)

m̃L = B
(
κL − κ0

L
)

, (10)

where S is the shear/stretch stiffness matrix, B is the
bend/twist stiffness matrix, while σ0L and κ0L represent
spontaneous strains of the rod. For an isotropic material, the
stiffness matrices read

S = diag (GA,GA,EA ) (11)

B = diag (EI1,EI2,GI3) , (12)

where Ii is the second area moment of inertia about the
director d i, A is the cross-sectional area, E is the elastic
modulus, and G is the shear modulus.
In addition, when the rod undergoes axial stretching

the infinitesimal material elements deform accordingly.
Assuming material incompressibility and that the cross-
section remain circular, the related geometric quantities are
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rescaled

A =
Â
e
, I =

Î
e2

, B =
B̂
e2

, S =
Ŝ
e
, κL =

κ̂L
e

. (13)

C. PRESSURE-INDUCED STRAINS
To describe the deformations of the robot, we modelled
pressure-induced strains as spontaneous stretching and bend-
ing, modifying dynamically the rest configuration of the
arm encoded in σ0L and κ0L. The pressurization of the
pneumatic chambers produces an internal force component
along the local director d3, which is normal to the rod cross-
section (see Fig. 2). The active internal force and moment due
to actuation of N pneumatic chambers are

np =
N∑
i=1

Fid3 (14)

mp =

N∑
i=1

ri × Fid3, (15)

where Fi = piAi is the force magnitude caused by
pressurizing the i-th actuator with area of the interior of the
actuator’s cross-section Ai and pressure pi, while ri is the
position of the centre of the actuator with respect to the local
reference frame on the cross-section

ri = δi cos θid1 + δi sin θid2, (16)

where δi is the distance of the actuator centre from the
centre of the cross-section, and θi is the angular position of
the actuator with respect to the director d1. By combining
equations (9)-(10) and (14)-(16), the following relations hold

σ 0
L3 =

1
EA

np · d3 (17)

κ0
L1 =

1
EI1

mp · d1 (18)

κ0
L2 = −

1
EI2

mp · d2, (19)

where

σ 0
L3 =

1
EA

N∑
i=1

Fi (20)

κ0
L1 =

1
EI1

N∑
i=1

Fiδi sin θi (21)

κ0
L2 = −

1
EI2

N∑
i=1

Fiδi cos θi. (22)

Observe that the axial strain σ 0
L3 is given by averaging the

axial strains ϵi of the actuators, i.e.

1
EA

N∑
i=1

Fi =
1
N

N∑
i=1

ϵi. (23)

FIGURE 3. Analytical pressure-strain relation ϵ(p) vs experimental
stretching data. Gains γ =

(
1.0133, 1.0035, 1.1092

)
tune the actuators

axial strain.

From (23) we derive the pressure-strain relation for a single
actuator

ϵi(pi) = N
Ai
EA

pi. (24)

As shown in Fig. 3, the analytical pressure-strain relation
matches experimental data fairly well when E is used as a
fitting parameter for a single actuator. Finally, we express the
spontaneous stretching and bending deformations of the rod
as a function of the strains of the actuators

σ 0
L =

(
0 0 1

N

∑N
i=1 ϵi

)⊺
(25)

κ0
L =

 1
I1

∑N
i=1 ϵiaiδi sin θi

−
1
I2

∑N
i=1 ϵiaiδi cos θi

0

 . (26)

D. STRAIN GAINS
Each module of the AM I-Support robot is composed of N
pneumatic chambers. These actuators exhibit different axial
strains when subject to the same input pressure. This behavior
emerges from several factors, including irregularities in the
manufacturing process. To account for this, we scaled the
collection ϵ = (ϵ1, . . . , ϵN )⊺ of the strains of the actuators
by the strain gain matrix 0 = diag (γ1, . . . , γN ) such that the
effective strains of the actuators become

ϵ ← 0ϵ =
(
γ1ϵ1 . . . γN ϵN

)⊺
. (27)

Fig. 3 shows how 0 tunes the stress-strain response.

E. PNEUMATIC ACTUATION MODEL
To better describe the dynamics of the arm, we also included
an approximation of the pneumatic actuation system. Rather
than assuming instantaneous pressure changes, we captured
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FIGURE 4. Pneumatic actuation model vs instantaneous actuation.
Example of two commands pdes with actuation frequency νa=2 Hz, from
initial pressure pini =0 bar. First actuation: pdes=2 bar (1p=2 bar).
Second actuation: pdes=1 bar (1p=1 bar). The model captures the
pressure transient more realistically than the instantaneous actuation
considering loading and unloading times. Parameters used for the figure:
p0=0.2 bar, trise=0.2, tdrop=0.56, tdelay =0 s.

the transient pressure response within the chambers through a
parameterized, third-order smooth step polynomial function

p(t̃) =


pini, t̃ ≤ 0(
3t̃2 − 2t̃3

)
1p+ pini, 0 ≤ t̃ ≤ 1

pdes, t̃ ≥ 1

(28)

where pini and pdes are the initial and desired valve pressures
respectively, while 1p = pdes − pini is the pressure change.
The variable t̃ is the normalized time for the current actuation,
obtained by scaling and clipping the time-step t between
0 and 1, as

t̃ = min
(
1,max

(
0,

t − tdelay
tmax − tdelay

))
. (29)

Here tdelay captures actuation delays caused by communi-
cation protocols and electronics, while tmax accounts for the
time needed to reach the desired pressure

tmax =

{
dt + |1p|trise, 1p ≥ 0
dt + |1p|tdrop, 1p < 0

(30)

where we defined trise and tdrop to be the loading and
unloading times respectively for 1p=1 bar. We add the
integration time-step dt to avoid division by zero when
1p=0 and tdelay=0. Finally, we modelled the minimum
pressure command p0 that prompts an actuation as p ← p ·[
p ≥ p0

]
, so that there is no strain if p is less than the threshold

p0.1 To summarize, the proposed model of the pneumatic
actuation system has four parameters: tdelay, trise, tdrop and p0.
Note that the instantaneous actuation case can be reproduced
by setting trise=tdrop=tdelay=0 and p0=0 (see Fig. 4).

1Iverson bracket notation: [C] = 1 if condition C is true, 0 otherwise.

F. BOUNDARY CONDITIONS
The robot is subject to boundary conditions describing its
position and orientation in the environment. The robot base
is fixed at the origin of the laboratory frame, r(0, t) = 0, and
oriented vertically downward, Q(0, t) = {−i, j,−k}.

G. INITIAL CONDITIONS
The simulations begin at time t=0 with the arm at rest in a
straight configuration, unactuated and undeformed, so that
σ0L = κ0L = 0 and σL = κL = 0.

H. DAMPING
The viscoelastic properties of materials are usually modeled
with constitutive relations that are a function of both strain
and strain rate, which increase the computational cost. Here
we use an analytical linear damper, which uses the following
equations to damp translational and rotational velocities

vt+1 = vt · exp (−λtdt) (31)

ωt+1 = ωt · exp
(
−

λrρAdt
J

)
, (32)

where λt and λr are the (constant) translational and rotational
damping constants, respectively. This approach does not
accurately model viscoelastic phenomena but it captures the
overall material friction effects dissipating energy.

I. GRAVITY
The simulated environment also accounts for the self-weight
of the soft arm through a uniformly distributed gravitational
force f g = −ρAgk, where g is the gravitational acceleration.

J. NUMERICS
The continuous Cosserat rod model is discretized into
n + 1 nodes connected by n cylindrical segments [36]. The
rod dynamics is then computed by integrating in time the
discretized set of equations via a symplectic, second-order,
position Verlet scheme. This numerical integrator offers a
good tradeoff between computational cost and numerical
accuracy, which complies with our aim to use the model
within data-driven control schemes. Rather than enforcing
a rigorous Courant-Friedrichs-Levy stability condition [38],
typically used with explicit time integrators, the integration
time-stepwas selected empirically considering the arm length
L, such that dt ∼ 0.01 dl, with dl = L/n [36].

K. MODEL PARAMETERS
The soft robotic arm was modeled as a single Cosserat
rod, for which several geometrical, material and numerical
parameters were measured, estimated, or fitted (see Table 1).

1) GEOMETRICAL
We measured from the physical prototype the rest length of
the rod L and the radial distance δ between the center of
each actuator’s cross-section and the centroid of the cross-
section. In particular, we set L=190 mm to account for the
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TABLE 1. Model parameters used in numerical simulation.

length of the pneumatic chamber (180 mm) plus the height of
the bottom terminal and the lower part of the top terminal.
As shown in Fig. 2, the cross-section of each pneumatic
chamber is elliptical. For simplicity, we approximated it
with an annulus. The outer radius of the actuator ro was
approximated as the average of the outer radii of the external
and internal ellipses constituting the chambers (see Fig. 2).
Idem for the inner actuator radius, which is equivalent to
subtracting the wall thickness of the chambers from the outer
radius (i.e., ri = ro − tw). The area of the interior of the
actuator’s cross-section was computed as Ai = πr2i . The
cross-sectional area of the actuator was calculated as the area
of the annulus, a = π (r2o − r2i ). The effective cross-section
area of the rod was then defined as A = Na, thus ignoring
the constraining disks. We computed the second moment of
area about the local axes d1 and d2 as the sum of the second
moments of area of each actuator

I1 =
N∑
j=1

π

4

(
r4o − r

4
i

)
+ a

(
δ sin θj

)2 (33)

I2 =
N∑
j=1

π

4

(
r4o − r

4
i

)
+ a

(
δ cos θj

)2
. (34)

The polar moment of area is then I3 = I1 + I2.
The actuators are disposed at angular positions

θj ∈ {90, 210, 330} degrees (see Fig. 2) measured from
director d1. This approach considers that only the chambers
resist bending and stretching, assuming no contribution from
the disks.

2) MATERIAL
The total mass m of the rod was determined from the
weight of the robot’s components. This mass was distributed
uniformly on the rod nodes so that m =

∑n
i=0mi, with

mi the node mass. The material density ρ=1104 kg/m3 was
taken from the datasheet of the TPU 80 A LF by BASFTM .
The elastic modulus of the arm, E=1.646439 · 106 Pa, was
found by fitting experimental stretching data and leveraging
the analytical pressure-strain relation (24). We describe the
stretching experiment in section IV and show the data in
Fig. 7. Under the assumption of an incompressible material,
we set the Poisson ratio to ν=0.5. The shear modulus was
computed from the estimates of the elastic modulus and the
Poisson ratio as G = E/2(ν + 1). Finally, the components
of the strain gain matrix 0, as well as the translational and
rotational damping constants, λt and λr , were found by
solving an optimization problem as discussed below.

3) NUMERICAL
To achieve a good tradeoff between computational cost and
fidelity to the continuum model and numerical stability,
we discretized the rod in n=20 equal segments so that
dl=9.5 mm. The integration time-step was set to dt=2 ·
10−4 s. This set of values allowed simulating the rod
dynamics about 2.5 times faster than in real-time on a laptop
(Intel i7-1165G7 @ 2.80 GHz Processor, 8 GB RAM).

4) PNEUMATIC SYSTEM
For the parameters of the pneumatic actuation system,
we empirically found using a manometer that the minimum
pressure to activate the valves is p0=0.2 bar. The delay
of the communication protocols and electronic signals was
assumed to be negligible, hence tdelay=0 s. To determine
the load time trise and unload time tdrop, we used data
obtained from a test performed by the manufacturer of the
pressure control system. The test measured the response
time to go from 0 bar to 5 bar (1p=5 bar) for a vol-
ume Vtest=10−5 m3 using proportional pressure-controlled
electronic valves (Mod. K8P-0-D522-0, Working pressure:
0-10 bar by Camozzi Automation) with input pressure 11 bar.
The results obtained were approximately 0.5 s and 1.4 s for
loading and unloading, respectively. We assumed a linear
relationship between 1p and load/unload time and a linear
relationship between controlled volume and load/unload
time. Note that the internal volume of the pneumatic chamber,
V ∼ AiL=πr2i L=2.44 · 10

−5 m3, is approximately
twice as Vtest=10−5 m3. Therefore, we set trise=0.2 s and
tdrop=0.56 s.

L. MODEL OPTIMIZATION
To jointly estimate the actuator strain gains, γ = (γ1, γ2, γ3),
and the damping constants λt and λr , the following
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FIGURE 5. Experimental setup.

constrained optimization problem was formulated and solved

min
γ ,λt ,λr

∑
Di∈D

1
|Di|

Ti∑
t=0

||e(t; γ , λt , λr )||2

subject to γ1 − γ3 < 0

γ2 − γ3 < 0

2γ1 − γ2 − γ3 < 0

0.9 ≤ γi ≤ 1.2 i = 1,2,3

0 ≤ λt ≤ 2 · 103

0 ≤ λr ≤ 10−2. (35)

Here D is the collection of datasets used to optimize the
decision variables, Ti is the duration of each time series,
and e(t) = rdata(t) − r (t,L) is the difference between the
measured and simulated position of the free end of the robot.
The optimization was conducted on three datasets (stretching,
bending 1, bending 2) described in section IV. The constraints
on the strain gains were obtained by observing the stretching
and bending experimental data. The optimization problem
was solved with a Trust Region method implemented in
scipy.optimize. An analytical expression of the gradient of
the cost function with respect to the decision variables was
not readily available, so it was estimated with a 2-point finite
difference. The Hessian was approximated via the BFGS
strategy. The initial solution of the optimization was set to
(γ , λt , λr ) =

(
1, 103, 10−3

)
. Optimization for 30 iterations

resulted in γ = (1.0133, 1.0035, 1.1092), λt=806 s−1 and
λr=1.9416 · 10−4 m2 s−1.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
The AM I-Support robotic platform was oriented vertically
downward with the top terminal fixed to a plexiglass frame
and placed upon a rectangular support (see Fig. 5). Three
proportional pressure-controlled electronic valves (Mod.
K8P-0-D522-0 by Camozzi Automation, Working pressure:

0−10 bar) actuated the pneumatic chambers. A stand-alone
air compressor set at 6 bar pressure provided the air source
to the valves. An Arduino Due board and a custom electronic
board controlled the valves. TheViconmotion capture system
with eight infrared cameras (100 fps) collected the position
trajectories of six reflective markers. Three markers on top of
the support defined the global reference frame with the origin
at the support center. The other three markers were attached
to the end-effector aligned with the pneumatic chambers.

B. EXPERIMENTAL PROTOCOL
First, the pneumatic chambers were subject to the same
load-unload cycle for pressure inputs from pmin=0 bar to
pmax=3.5 bar, with steps of 1p=0.5 bar, to mitigate the
Mullins effect. Then, the soft robotic arm collected motion
data in various conditions to validate the model experi-
mentally. The input pressures were varied with actuation
frequency νa, while the markers’ positions were read from
the motion capture system with sampling frequency νs. The
actuation patterns are the following:

1) Stretching: Actuate three chambers simultaneously
with equal increasing pressure values, from pmin to pmax
with 1p=0.5 bar; νa=0.2 Hz, νs=100 Hz.

2) Bending with 1 chamber: Actuate one chamber with
increasing pressure values, from pmin to pmax with
1p=0.5 bar; repeat for the other two chambers in
sequence; νa=0.2 Hz, νs=100 Hz.

3) Bending with 2 chambers: Actuate two chambers
simultaneously with equal increasing pressure values,
from pmin to pmax with 1p=0.5 bar; repeat for the
other two combinations of two chambers in sequence;
νa=0.2 Hz, νs=100 Hz.

4) Workspace: Actuate three chambers with all 512 dis-
positions with repetitions of pressure values in the
interval [pmin, pmax] with 1p=0.5 bar; νa=0.2 Hz,
νs=0.2 Hz (i.e., only the quasi-static position is saved).

5) Motor Babbling: Actuate three chambers for 5 min-
utes with pseudo-random commands generated by a
random walk in the three-dimensional pressure space,
with 1p ∈ {−0.05, 0, 0.05} bar uniformly sampled.
Formally, p(t) = p(t − 1) + 1p, with p(0)=0.
Five different actuation patterns were generated with
νa ∈ {1, 2, 5, 10, 20} Hz, νs=100 Hz (see Fig. 6).

6) Sinusoids: Actuate three chambers for 20 seconds
with three sinusoidal inputs shifted by phases φi =

{0, 2/3π, 4/3π}. Three datasets were generated with
ordinary frequency f ∈ {0.05, 0.1, 0.2} Hz, νa=20 Hz,
νs=100 Hz. The sinusoids had amplitude Ap=1.5 bar
and offset by poff=2 bar. Formally, pi(t) = poff + Ap ·
sin(2π ft + φi).

Each experiment consisted of three trials to capture the
variability of the actuation system and the material response.
Interleaving the trials with rest periods proportional to the
trial duration allowed the soft material to restore the original
rest configuration. In this way, the standard deviation of
the experimental data was less than a millimeter and, for
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FIGURE 6. Pressure commands for motor babbling motion at different actuation frequency νa. (a) 1 Hz, (b) 2 Hz, (c) 5 Hz, (d) 10 Hz, (e) 20 Hz. Pressure
threshold p0=0.2 bar is shown. (f) Distribution of pressure commands highlights how the tasks differ in terms of actuations explored.

TABLE 2. Quasi-static model validation.

simplicity, is not reported. Text files stored the pressure
commands and markers’ trajectories after each trial.

Then, the trajectories of the three markers attached to the
tip were post-processed. The centroid of the three markers
reconstructed the centerline of the end-effector, rdata(t).
Subsequently, the data were translated so that the rest position
of the end-effector was (x, y, z) = (0, 0,−L). Finally, the
data were rotated around the z-axis so that one actuator aligns
with the positive y-axis (director d2). After post-processing,
each dataset consisted of a sequence of commands p(t) and
tip positions rdata(t) for the model validation.

V. EXPERIMENTAL VALIDATION
An extensive experimental validation conducted in quasi-
static and dynamic conditions assessed how well the model
describes the mechanics of the soft robot. The real and the
simulated robots were subject to the same input pressures
with actuation frequency νa depending on the experiment.
Then, the end-effector trajectories of the soft robotic arm and
the model, respectively rdata and r (L), were collected with
sampling frequency νs=100 Hz. Subsequently, we computed
the Euclidean distance between the end-effector positions
at each time step, e(t) = rdata(t) − r (L, t). The used
performance metric was the mean and standard deviation of
the norm of the tip error normalized to the arm length, e/L.
In addition, to better analyze the pros and limitations of the
model, we reported the mean component-wise absolute error

FIGURE 7. Robot vs model tip trajectories for the stretching experiment.
The x-y displacements caused by actuators irregularities are captured by
tuning the strain gains γi .

on each axis, |ex |, |ey|, and |ez|. The error calculation omits
the sub-millimeter fluctuations of the motion capture system.

A. QUASI-STATIC VALIDATION
The model reproduced the experimental data of the four
quasi-static actuation patterns with a mean tip error of
4.83%L (about 9.2 mm). In particular, the model achieved an
average tip error of 1.6%L, 4.8%L, and 5.5%L on the main
motion patterns (i.e., stretching, bending 1, bending 2); and
7.4%L on the quasi-static workspace (see Table 2).

As shown in Fig. 7, the stretching motion produces
non-negligible bending displacements in the x-y plane.
The displacements result from unequal elongations of the
chambers and increase with higher pressure values. Thanks
to the strain gains of the actuators introduced in section III-D,
the model was able to obtain minimal average quasi-static
errors (i.e., |ex |=1.4 mm, |ey|=0.6 mm in Table 2). Without
strain grains, the errors would rise to about 20 mm on the
x-axis and about 10 mm on the y-axis for high-pressure
values.

The model reproduced the overall bending deformations
successfully. In particular, the strain gains contributed to
capturing the different peak displacements along the z-axis
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FIGURE 8. Robot vs model tip trajectories for the bending experiments. (a) Single chambers are actuated in sequence (I; II; III); (b) Pairs of chambers
are actuated in sequence (II&III; I&III; I&II). At two relaxation periods at t=40 and t=80, the pressure command vanishes, pi =0, and the actuated
chambers change. The strain gains γi help to adjust the peaks on the z-axis.

FIGURE 9. Robot vs model quasi-static workspace. Robot range:
312 mm × 319 mm × 210 mm; model range: 293 mm × 315 mm ×

205 mm. Combining damping and strain gains reproduces the workspace
asymmetries.

when single chambers were actuated (see Fig. 8a). However,
as shown in Fig. 8b, capturing the different bending peaks
actuating two chambers is more challenging.

Finally, the simulated and experimental data had more
pronounced discrepancies in the quasi-static workspace
experiment. This result was mainly due to the slow viscoelas-
tic relaxation of the TPU and hysteresis effects, which keep
the chamber deformed during long trials. Indeed, after a
workspace exploration, several hours were required between
successive trials for the robot to return to its resting position.
Nonetheless, Fig. 9 shows that the model reproduced the
overall shape of the robot workspace.

B. DYNAMIC VALIDATION
For the principal stretching and bending motions, the
model achieved an average dynamic tip error of 4.33%L,
respectively 2.3%L, 4.4%L, and 6.3%L (see Table 3). Despite
the low average error, as shown in Fig. 7, the model did
not perfectly capture the transient behavior on the z-axis
in the stretching experiment. The time series of the tip

TABLE 3. Dynamic model validation.

error presented spikes in the time steps corresponding to
the pressure changes (see supplementary material). This
problem could be mitigated by considering dynamics effects
more comprehensively, for example, by employing non-linear
constitutive laws in conjunction with more precise pressure-
transient models. Future work could address this to reduce
the real-to-sim gap. For the damping mechanism adopted, the
dynamic response depends on the damping constants λt and
λr . The model could achieve a qualitatively finer dynamic
behavior on the stretching motion by setting large transla-
tional damping constants (e.g., λt∼5000 found empirically).
However, such high values of λt would negatively affect the
bending deformation of the rod and the accuracy attained
on the bending patterns. Therefore, optimizing the damping
constants jointly on the stretching and bending motions was
a reasonable tradeoff for an adequate average performance.

The average dynamic tip error in the motor babbling
experiments was 5.64%L, ranging from 3.5%L to 7.2%L
(see Table 3). Although the actuation frequency was
approximately doubled from one experiment to another,
the average tip error did not follow a strictly increasing
trend. Moreover, the solutions for γ , λt and λr found
by optimizing on the principal motions of stretching and
bending, with actuation frequency νa=0.2 Hz, generalized
to the rest of the experimental motor babbling data, which
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FIGURE 10. Robot vs model tip trajectories for the motor babbling experiments with actuation frequencies (a) 1 Hz, (b) 2 Hz, (c) 5 Hz, (d) 10 Hz, and
(e) 20 Hz. The pressure threshold p0 helps in capturing the first few seconds of inactivity as visible in experiments (a) and (b).

have actuation frequencies between 5 and 100 times higher.
Therefore, the model is robust to a wide range of actuation
frequencies, while the performance difference in the motor
babbling patterns is mainly due to the different actuation
distributions (see Fig. 6) and how well the pressure-strain
relation ϵ(p) matches experimental data in different pressure
intervals (see Fig. 3). Overall, the model tracked the complex
pseudo-random motions of the soft robot satisfactorily,
as shown in Fig. 10.

For the sinusoidal motions, the average tip error was
22.53%L, ranging between 18.4%L and 25.9%L (see
Table 3). Big error spikes at the beginning of the experiments
contributed to the high average error in the sinusoidal pattern.
The error spikes were due to initial pressure commands
greater than 2 bar as a result of the high offset and amplitude

parameters (poff=2 bar,Ap=1.5 bar). Qualitatively, themodel
reproduced the first slow sinusoidal motion well but could
not capture the sine amplitudes as accurately for faster move-
ments. The same argument about the damping coefficients
made for the bending patterns applies. Nonetheless, the
model could achieve greater accuracy on all motion patterns
using a finer spatiotemporal discretization (e.g., n∼100) and
optimizing more parameters on all datasets. See more details
on these experiments in the supplementary material.

VI. ABLATION STUDY: FULL MODEL VS VARIATIONS
To understand how different model components contribute
to the overall performance, we conducted an ablation study
evaluating four model variations obtained by removing or
degrading a feature of the proposed model (i.e., the Full
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FIGURE 11. Ablation study: Full model vs ablated models. Each box plot
was created from the tip error collection obtained by the corresponding
model variation evaluated in the eight dynamic experiments. Whiskers
show the minimum and maximum errors over time.

model). We tested the ablated models on eight dynamic
motion patterns and compared their performance against
the Full model. As a metric, we computed the difference
of the average tip errors 1e = (ẽ − e)/L, where ẽ is
the average tip error of the degraded model. In addition,
for each model version, we measured the spread of the tip
errors with the interquartile range (IQR) and the maximum
error.

In particular, we evaluated the impact of the strain gains
by setting γ = 1, which is equivalent to assuming that
the pneumatic chambers have the same behavior when
pressurized. Another test evaluated the effect of degraded
damping (λt=10, λr=10−6), which reduced energy dissi-
pation. Note that we could not thoroughly assess the zero-
damping case (λt=λr=0) because the oscillations of the
undamped system caused numerical instability in several
experiments. The ablation of the pneumatic actuation model
(p0=0, trise=dt , tdrop=dt , tdelay=0) resulted in instantaneous
pressure changes. Finally, setting the gravitational accelera-
tion to g=0 neglected the effects of self-weight.

As reported in Fig. 11 and Table 4, the Full model
outperformed all the ablated models in every performance
metric. In particular, the model without strain gains presented
the highest error dispersion around the median. Moreover,
the models with degraded damping and instantaneous
pressure changes produced very high maximum tip errors
(above 40%L). In terms of differences in the average
tip error, the most influential component was gravity
(1e=1.88%L), followed by the strain gains (1e=1.18%L)
and damping (1e=1.11%L), and finally the pressure tran-
sient (1e=0.27%L) (see Table 4).

A. EFFECT OF ACTUATOR STRAIN GAINS
The contribution of the strain gains was more pronounced in
the motions that generated severe stretching (e.g., in stretch-
ing pattern 1e=3.13%L), where capturing the deviations on
the x-y plane is crucial. Moreover, the strain gains contributed

TABLE 4. Ablation study: average tip error difference 1e (%) between the
ablated models and the full model.

significantly in the experiments that actuate high pressures
in the most stretchable chamber (i.e., the actuator with the
highest γi). Indeed, as shown in Fig. 6d (motor babbling
at 10 Hz), the third actuator with γ3=1.1092 is very solicited
compared to the others, so that 1e=5.15%L when omitting
the strain gains. The few negative 1e for the no strain gains
case are perhaps due to the low contribution of the third
actuator and minor unmodeled effects.

B. EFFECT OF PRESSURE TRANSIENT
The effect of the pneumatic actuation model was sensible
in terms of 1e only in the principal bending experiments,
with 1e=1.03%L and 1e=1.42%L, respectively. As shown
in Fig. 8, this was because these patterns included two
unloading phases characterized by a significant pressure drop
of 1p=3.5 bar when switching the pressurized chamber.
For the pseudo-random experiments, the pneumatic actuation
model was useful to capture the first few seconds of inactivity
thanks to the actuation threshold p0 (see motor babbling
at 1 Hz and 2Hz in Fig. 10). However, the overall contribution
in these experiments was less visible because the pressure
steps of 1p=0.05 bar were small enough to be approximated
as instantaneous. Nonetheless, relative to the motor babbling
experiments, the pressure transient contribution was higher in
the case of 5 Hz and 10 Hz. As shown in Fig. 6c and Fig. 6d,
the input pressure profiles are characterized by long series
of pressure decreases. Our simplified model of pneumatic
actuation can capture this phenomenon through the tdrop
parameter, which is greater than the time of pressure build-
up trise. Therefore, we conclude that the pressure transient
component is significant for big negative pressure changes.

C. EFFECT OF DAMPING
The damping component, similar to the pneumatic actuation
model, contributes to the overall system dynamics. However,
the damping component is significant for fast actuation
changes regardless of the sign of 1p. As shown in Table 4,
also the contribution of damping was higher in the bending
experiments, which presented significant negative pressure
changes, as discussed before. Damping had a non-negligible
effect also on the motor babbling experiment at 20 Hz.
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As shown in Fig. 6e, there are some time-step intervals in
which the derivative of the actuation profile is high.

D. EFFECT OF GRAVITY
The removal of gravity had a more severe effect when the
bending deformation of the arm was significant, as in the
case of the bending experiments and the motor babbling
at 20 Hz, because bending moments generated by self-weight
were neglected by this ablated model. Conversely, the effect
of gravity was negligible in the stretching experiment. Notice
that for the motor babbling at 5 Hz the ablated model
performed better than the full model. The reason for this
unexpected result is not very clear by observing the pressure
profile and distribution in Fig. 6.

VII. CONCLUSION
This paper presented a dynamic Cosserat rod model for a
3D-printed pneumatic soft robotic arm. The model considers
actuators’ irregularities by tuning the pressure-strain relation
for each pneumatic chamber. In addition, it includes a
simplified model of the pneumatic actuation system that cap-
tures the time-dependent response of proportional pressure-
controlled electronic valves. A comprehensive experimental
validation on several actuation patterns characterized by
different pressure profiles and actuation frequencies resulted
in a mean quasi-static tip error of 9.2 mm (4.83% of the
arm length) and a mean dynamic tip error of 18.8 mm
(9.9% of the arm length). From an ablation study of the
model components, it emerged that the most influential
factors are gravity and the strain gains, followed by damping
and pressure transient. In addition, the specific contribu-
tion varies from experiment to experiment. In particular,
tuning the pressure-strain relation of the actuators using
strain gains is most effective when the actuator with
relatively higher stretching capability is subject to higher
pressures; damping and the pressure transient are most
effective when the derivative of the input actuation has
a high magnitude; whereas gravitational effects are more
pronounced when the deflection caused by bending is
significant.

Future work will include the modeling and experimental
validation of a multi-section AM I-Support, described by a
sequence of Cosserat rods connected by fixed joints. Careful
calibration of the single-section model could likely result in
satisfactory performance in the multi-section case [39]. Other
extensions could explore more refined damping mechanisms
and a more comprehensive validation of the pneumatic
system model. Decoupling the transient response of the
actuation systems from the viscoelastic behavior of soft
materials could enable a better characterization of both
components to develop more accurate dynamic soft robot
models. Finally, a further investigation of strain gains in soft
actuators could capture, in addition to manufacturing irregu-
larities, material deterioration, and damage. This ability could
soon serve the next generation of soft robots incorporating
self-healing [40].

ACKNOWLEDGMENT
The authors would like to thank Diego Bianchi and Luca
Arleo from The BioRobotics Institute for the helpful
discussions.

REFERENCES
[1] C. Laschi, B. Mazzolai, and M. Cianchetti, ‘‘Soft robotics: Technologies

and systems pushing the boundaries of robot abilities,’’ Sci. Robot., vol. 1,
no. 1, Dec. 2016, Art. no. eaah3690.

[2] D. Rus and M. T. Tolley, ‘‘Design, fabrication and control of soft robots,’’
Nature, vol. 521, pp. 467–475, May 2015.

[3] C. Laschi and M. Cianchetti, ‘‘Soft robotics: New perspectives for
robot bodyware and control,’’ Frontiers Bioeng. Biotechnol., vol. 2, p. 3,
Jan. 2014.

[4] C. Armanini, F. Boyer, A. T.Mathew, C. Duriez, and F. Renda, ‘‘Soft robots
modeling: A structured overview,’’ IEEE Trans. Robot., early access,
Jan. 6, 2023, doi: 10.1109/TRO.2022.3231360.

[5] T. G. Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, ‘‘Control strategies
for soft robotic manipulators: A survey,’’ Soft Robot., vol. 5, no. 2,
pp. 149–163, Apr. 2018.

[6] K. Chin, T. Hellebrekers, and C. Majidi, ‘‘Machine learning for soft
robotic sensing and control,’’ Adv. Intell. Syst., vol. 2, no. 6, Jun. 2020,
Art. no. 1900171.

[7] A. Melingui, C. Escande, N. Benoudjit, R. Merzouki, and J. B. Mbede,
‘‘Qualitative approach for forward kinematic modeling of a compact
bionic handling assistant trunk,’’ IFAC Proc. Volumes, vol. 47, no. 3,
pp. 9353–9358, 2014.

[8] A. Centurelli, L. Arleo, A. Rizzo, S. Tolu, C. Laschi, and E. Falotico,
‘‘Closed-loop dynamic control of a soft manipulator using deep reinforce-
ment learning,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4741–4748,
Apr. 2022.

[9] F. Pique, H. T. Kalidindi, L. Fruzzetti, C. Laschi, A. Menciassi, and
E. Falotico, ‘‘Controlling soft robotic arms using continual learning,’’
IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5469–5476, Apr. 2022.

[10] V. K. Venkiteswaran, J. Sikorski, and S. Misra, ‘‘Shape and contact force
estimation of continuum manipulators using pseudo rigid body models,’’
Mechanism Mach. Theory, vol. 139, pp. 34–45, Sep. 2019.

[11] H. Habibi, C. Yang, I. S. Godage, R. Kang, I. D.Walker, and D. T. Branson,
‘‘A lumped-mass model for large deformation continuum surfaces actuated
by continuum robotic arms,’’ J. Mech. Robot., vol. 12, no. 1, Feb. 2020,
Art. no. 011014.

[12] C. D. Santina and D. Rus, ‘‘Control oriented modeling of soft robots:
The polynomial curvature case,’’ IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 290–298, Apr. 2020.

[13] Q. Xie, T. Wang, and S. Zhu, ‘‘Simplified dynamical model and
experimental verification of an underwater hydraulic soft robotic arm,’’
Smart Mater. Struct., vol. 31, no. 7, Jul. 2022, Art. no. 075011.

[14] R. J.Webster and B. A. Jones, ‘‘Design and kinematic modeling of constant
curvature continuum robots: A review,’’ Int. J. Robot. Res., vol. 29, no. 13,
pp. 1661–1683, Jun. 2010.

[15] E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry,
M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, and J. Dequidt,
‘‘Software toolkit for modeling, simulation, and control of soft robots,’’
Adv. Robot., vol. 31, no. 22, pp. 1208–1224, 2017.

[16] M. S. Xavier, A. J. Fleming, and Y. K. Yong, ‘‘Finite element modeling
of soft fluidic actuators: Overview and recent developments,’’ Adv. Intell.
Syst., vol. 3, no. 2, Feb. 2021, Art. no. 2000187.

[17] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,
H. Delingette, and L. Grisoni, ‘‘Sofa—An open source framework
for medical simulation,’’ in MMVR 15-Medicine Meets Virtual Reality,
vol. 125. Beijing, China: IOP Press, 2007, pp. 13–18.

[18] M. Dubied, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann, ‘‘Sim-
to-real for soft robots using differentiable FEM: Recipes for meshing,
damping, and actuation,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2,
pp. 5015–5022, Apr. 2022.

[19] J. Till, V. Aloi, and C. Rucker, ‘‘Real-time dynamics of soft and continuum
robots based on Cosserat rod models,’’ Int. J. Robot. Res., vol. 38, no. 6,
pp. 723–746, May 2019.

[20] B. A. Jones, R. L. Gray, and K. Turlapati, ‘‘Three dimensional statics for
continuum robotics,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2009, pp. 2659–2664.

37852 VOLUME 11, 2023

http://dx.doi.org/10.1109/TRO.2022.3231360


C. Alessi et al.: Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm

[21] D. C. Rucker and R. J. Webster, III, ‘‘Statics and dynamics of continuum
robots with general tendon routing and external loading,’’ IEEE Trans.
Robot., vol. 27, no. 6, pp. 1033–1044, Dec. 2011.

[22] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, ‘‘A 3D
steady-state model of a tendon-driven continuum soft manipulator inspired
by the octopus arm,’’ Bioinspiration Biomimetics, vol. 7, no. 2, Jun. 2012,
Art. no. 025006.

[23] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, ‘‘Dynamic
model of a multibending soft robot arm driven by cables,’’ IEEE Trans.
Robot., vol. 30, no. 5, pp. 1109–1122, Oct. 2014.

[24] J. Till, V. Aloi, K. E. Riojas, P. L. Anderson, R. J. Webster, III, and
C. Rucker, ‘‘A dynamic model for concentric tube robots,’’ IEEE Trans.
Robot., vol. 36, no. 6, pp. 1704–1718, Dec. 2020.

[25] A. Doroudchi, R. Khodambashi, A. S. Lafmejani, D. M. Aukes, and
S. Berman, ‘‘Dynamic modeling of a hydrogel-based continuum robotic
armwith experimental validation,’’ in Proc. 3rd IEEE Int. Conf. Soft Robot.
(RoboSoft), May 2020, pp. 695–701.

[26] D. Trivedi, A. Lotfi, and C. D. Rahn, ‘‘Geometrically exact models for soft
robotic manipulators,’’ IEEE Trans. Robot., vol. 24, no. 4, pp. 773–780,
Aug. 2008.

[27] N. K. Uppalapati, G. Singh, and G. Krishnan, ‘‘Parameter estimation and
modeling of a pneumatic continuummanipulator with asymmetric building
blocks,’’ in Proc. IEEE Int. Conf. Soft Robot. (RoboSoft), Apr. 2018,
pp. 528–533.

[28] H. B. Gilbert and I. S. Godage, ‘‘Validation of an extensible rod model for
soft continuum manipulators,’’ in Proc. 2nd IEEE Int. Conf. Soft Robot.
(RoboSoft), Apr. 2019, pp. 711–716.

[29] S. R. Eugster, J. Harsch, M. Bartholdt, M. Herrmann, M. Wiese, and
G. Capobianco, ‘‘Soft pneumatic actuator model based on a pressure-
dependent spatial nonlinear rod theory,’’ IEEE Robot. Autom. Lett., vol. 7,
no. 2, pp. 2471–2478, Apr. 2022.

[30] V. Falkenhahn, T. Mahl, A. Hildebrandt, R. Neumann, and O. Sawodny,
‘‘Dynamic modeling of bellows-actuated continuum robots using the
Euler–Lagrange formalism,’’ IEEE Trans. Robot., vol. 31, no. 6,
pp. 1483–1496, Dec. 2015.

[31] V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, ‘‘Dynamic
control of the bionic handling assistant,’’ IEEE/ASME Trans. Mechatron-
ics, vol. 22, no. 1, pp. 6–17, Feb. 2017.

[32] C. Chen,W. Tang, Y. Hu, Y. Lin, and J. Zou, ‘‘Fiber-reinforced soft bending
actuator control utilizing on/off valves,’’ IEEE Robot. Autom. Lett., vol. 5,
no. 4, pp. 6732–6739, Oct. 2020.

[33] M. Stolzle and C. D. Santina, ‘‘Piston-driven pneumatically-actuated soft
robots: Modeling and backstepping control,’’ IEEE Control Syst. Lett.,
vol. 6, pp. 1837–1842, 2022.

[34] L. Arleo, G. Stano, G. Percoco, and M. Cianchetti, ‘‘I-support soft arm
for assistance tasks: A new manufacturing approach based on 3D printing
and characterization,’’ Prog. Additive Manuf., vol. 6, no. 2, pp. 243–256,
May 2021.

[35] M. Manti, A. Pratesi, E. Falotico, M. Cianchetti, and C. Laschi, ‘‘Soft
assistive robot for personal care of elderly people,’’ in Proc. 6th IEEE Int.
Conf. Biomed. Robot. Biomechatronics (BioRob), Jun. 2016, pp. 833–838.

[36] M. Gazzola, L. H. Dudte, A. G. McCormick, and L. Mahadevan, ‘‘Forward
and inverse problems in the mechanics of soft filaments,’’ Roy. Soc. Open
Sci., vol. 5, no. 6, Jun. 2018, Art. no. 171628.

[37] X. Zhang, F. K. Chan, T. Parthasarathy, and M. Gazzola, ‘‘Modeling and
simulation of complex dynamic musculoskeletal architectures,’’ Nature
Commun., vol. 10, no. 1, p. 4825, Oct. 2019.

[38] R. Courant, K. Friedrichs, and H. Lewy, ‘‘On the partial difference
equations of mathematical physics,’’ IBM J. Res. Develop., vol. 11, no. 2,
pp. 215–234, Mar. 1967.

[39] M. Wiese, B.-H. Cao, and A. Raatz, ‘‘Towards accurate modeling of
modular soft pneumatic robots: From volume FEM to Cosserat rod,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 9371–9378.

[40] S. Terryn, J. Brancart, D. Lefeber, G. Van Assche, and B. Vanderborght,
‘‘Self-healing soft pneumatic robots,’’ Sci. Robot., vol. 2, no. 9, Aug. 2017,
Art. no. eaan4268.

CARLO ALESSI received the B.Sc. degree in
computer science and theM.Sc. degree in artificial
intelligence from the University of Pisa, Pisa,
Italy, in 2017 and 2019, respectively. He is
currently pursuing the Ph.D. degree in biorobotics
with The BioRobotics Institute, Scuola Superiore
Sant’Anna (SSSA), Pisa. He was Visiting Student
with the University of Bristol, U.K., in 2016;
the University of Barcelona, Spain, in 2018; and
the Technical University of Munich, Germany,

in 2019. He was an intern Software Engineer with Nokia, Bristol, in 2017;
a Research Assistant in soft robotics with SSSA, in 2020, and a visiting
Ph.D. student with the Bristol Robotics Laboratory, in 2022. His research
interest includes the application of machine learning algorithms to robotics,
including the modeling and control of soft manipulators.

EGIDIO FALOTICO (Member, IEEE) received
the M.Sc. degree in computer science from the
University of Pisa, Pisa, Italy, in 2008, and the
dual Ph.D. degree in innovative technologies from
Scuola Superiore Sant’Anna, Pisa, and in cognitive
science from Pierre et Marie Curie University
Paris, France, in 2013. He is currently a tenure-
track Assistant Professor with The BioRobotics
Institute, Scuola Superiore Sant’Anna. He is
also the Head of the BRAin-Inspired Robotics

(BRAIR) Laboratory, The BioRobotics Institute. Since his early studies,
he has developed a strong interest in the domain of neuroscience, and through
his double Ph.D. degree, he had the chance to explore the potential of
neuroscience knowledge applied to robotics. He has also put into practice
his deep expertise in artificial intelligence and computational neuroscience
for the control of soft and rigid robots. He serves as a PI for Scuola Superiore
Sant’Anna in some European projects, such as Proboscis, GrowBot, and
Human Brain Project.

ALESSANDRO LUCANTONIO received the
M.Sc. degree in space engineering and the Ph.D.
degree in theoretical and applied mechanics
from Sapienza Università di Roma. During the
Ph.D. study, he was a Visiting Student Research
Collaborator with the Complex Fluids Group,
Princeton University. After the Ph.D. study,
he was first a Postdoctoral Researcher with
the International School for Advanced Studies
(SISSA), Trieste, Italy, then an Assistant Professor

with The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy,
where he was later promoted to an Associate Professor. He is currently
an Associate Professor with the Department of Mechanical and Production
Engineering, Aarhus University, where he leads the Computational Physics
and Machine Learning Laboratory. His main research interests include the
theoretical and computational modeling of multi-physics systems, including
polymer-based smart materials, biological tissues, and soft robots, and
also using novel approaches with the intersection between mechanics,
(discrete) differential geometry, and machine learning. In 2022, he was
awarded the ERC Starting Grant with the project ‘‘AI-based Learning for
Physical Simulation (ALPS),’’ where he will develop new algorithms for
the mathematical modeling of physical systems starting from experimental
data.

Open Access funding provided by ‘Scuola Superiore "S.Anna" di Studi Universitari e di Perfezionamento’
within the CRUI CARE Agreement

VOLUME 11, 2023 37853


