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ABSTRACT This paper considers the problem of stabilizing and energy-efficient torque vectoring for
electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors,
four electric motors are separately attached to the four wheels without an extra drive shaft. The mechanical
and structural nature enables reduction of energy loss during power transmission and securing extra interior
space. In addition, independent control of wheel torques can provide better yaw motion stability and
improved energy efficiency. This paper proposes two model predictive control (MPC) methods for stability-
constrained energy-efficient torque vectoring of four in-wheel motor electric vehicles. For the adaptive
weighting factors of multiple objective functions of reference tracking and energy saving, we use exponential
functions that vary with the lateral motion and steering input. Depending on the optimal control problem
formulation with different dynamical system equations and constraints, the associated predictive controller
can be represented as either a linear parameter-varying MPC (LPV-MPC) or nonlinear MPC (NMPC). For
LPV-MPC, longitudinal and lateral motions are decoupled, whereas the coupled dynamics of the two-track
model are exploited in NMPC. For comparisons and demonstrations of LPV-MPC and NMPC in the
MPC of torque vectoring, three driving scenarios are simulated with a high-fidelity vehicle simulation
solution, CarMaker (IPGAutomotive). In comparison with the built-in IPG driver implemented in CarMaker,
we demonstrate fuel efficiency improvements of over 2–3 % on average with guaranteed yaw stability.

INDEX TERMS Four in-wheel motor electric vehicles, torque vectoring, fuel efficiency, EV range extension,
yaw stability, optimal control, linear parameter-varying model predictive control, nonlinear model predictive
control.

I. INTRODUCTION
In accordance with the increased environmental concerns
and enhanced governmental regulations worldwide, many
automobile original equipment manufacturer have spurred
the development of electric vehicles (EVs) and are gradu-
ally reducing the production of engine vehicles [2]. Energy
efficiency and range extension are important factors in the
development and widespread adoption of EVs. Various meth-
ods for extending the EV maximum driving range have
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been proposed from both hardware and software perspec-
tives. One of which is to adopt in-wheel motor vehicles,
in which the wheels are mechanically combined with elec-
tric machines. Development of four in-wheel-motor electric
vehicles (4IWMEVs) has been considered as a useful strategy
for the current electric vehicle trend that places importance on
the utilization of interior space and energy efficiency [3].

Recently, in the automobile industry, torque vectoring (TV)
systems have been used to improve driving stability and
energy efficiency [4]. TV systems generate the vehicle’s yaw
moment directly through torque distribution among the four
wheels, on which the four independent electric machines
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are mounted [5]. Various TV methods have been applied
to improve the driving stability and energy efficiency of
4IWMEVs [6], [7]. In 4IWMEVs, four independent forces
generated from the wheels produce a combined torque such
that the resulting control system is over-actuated. Many tech-
niques have been studied in both industry and academia
to determine the optimal torque distribution by vectorizing
forces or toques.

The TV control system of 4IWMEVs can be used to
improve the robustness, energy efficiency, and driving stabil-
ity of electric vehicles. In particular, various optimal control
techniques are used to improve fuel efficiency by minimizing
fuel or energy consumption while imposing constraints on
the actuation limits and vehicle stability. In [8], a classical
linear quadratic regulator (LQR) feedback controller method
was used to improve the energy efficiency of battery elec-
tric vehicles (BEVs). In [9], an LQR-based low-level TV
controller was combined with a high-level TV controller
based on nonlinear model predictive control (NMPC) to
achieve the driving stability and energy efficiency improve-
ment of 4IWMEVs. In [9], a fuzzy logic-based weight-tuning
method was integrated into a multi-objective NMPC frame-
work, and a real-time implementation using the rapid con-
trol prototyping equipment, dSPACE MicroAutoBoxII, was
also presented. The authors of [10] proposed an integrated
controller based on NMPC, in which torque vectoring and
vertical movement were considered for energy efficiency
improvement.

In [11], a yaw moment controller was designed based on
a Lyapunov stability condition. The authors of [12] verified
the energy efficiency improvement in the cornering state
through direct yaw moment control of 4IWMEVs. In [13],
a fuzzy control method was proposed for corner-driving of
4IWMEVs to guarantee driving stability and derive energy
efficiency improvement by switching among the three corner-
ing modes. The authors of [14] proposed a method for deter-
mining the yaw rate reference model using a lookup table
to improve the energy efficiency in the direct yaw moment
control of 4IWMEVs. Fuzzy and PID controlmethods are dif-
ficult to improve energy-efficiency from an optimal control
perspective. Recently, MPC and LQR-based torque vectoring
system controllers have been proposed and it is important for
tuning optimal controllers adapted to the driving conditions
and situations of the vehicle.

In [15], optimal torque vectoring for two yaw-rate con-
trollers was applied to four wheel drive (4WD) formal type
vehicles. One isH∞-based optimal control and the other is an
linear parameter varying (LPV) controller. The author of [16]
presents a torque vectoring control strategy for rear-wheel
steering vehicles using NMPC for which the Pontryagin’s
minimum principle (PMP) is used to reduce NMPC’s com-
putational burden and validate controller performance in real
time in hardware-in-the-loop (HIL) environment.

In this paper, we propose intelligent torque vectoring
predictive controllers that optimize energy-efficiency and
vehicle stability by the adaptation of the optimal control

parameters to driving conditions. The primary contributions
of this paper can be summarized as follows:

• Different from [1], we consider the objective function
that is dependent of the driver’s steering angle. In addi-
tion, for better evaluation of control performances,
MPC-based controller is executed within a high-fidelity
vehicle simulator, IPG CarMaker.

• We propose two predictive control methods using linear
and nonlinearmodels for stabilizing and energy-efficient
TV of 4IWMEVs. While existing work [15], [16] con-
siders predictive control with a linear or nonlinear
model, our work investigates performances of predictive
controllers with LPV and nonlinear models that reflect
the change of vehicle speed as an endogenous variable.
In the case of predictive control using a linear model,
the existing lateral dynamics model and the longitudinal
dynamics model are combined to consider vehicle speed
as an additional state variable. In addition, the con-
troller is designedwith a linear parameter varying-model
predictive control (LPV-MPC) using a speed-dependent
LPV model. For energy efficiency, the total mechanical
energy of the motors is considered so that the result-
ing optimal control problem can be represented as a
quadratic program (QP). For the NMPC formulation,
the total electric energy consumed by the four motors is
considered as an objective function and modeled using
appropriate polynomial regressors.

• The cost function of the proposed optimal control prob-
lems is designed to minimize the multiple objectives
considering driving stability and energy consumption.
The weights for the multiple objective functions are
adaptively determined by considering the vehiclemotion
and the steering requirement. To deliver the motion
required by the driver’s steering commands, the tires are
steered to change the vehicle’s heading angle accord-
ingly. Aggressive cornering requires higher weight in
yaw stability whereas energy efficiency is a dominant
factor for straight driving. To reflect tradeoffs between
different requirements, theweights are set as exponential
functions of the steering angle.

• We validate and verify the performances of the pro-
posed LPV-MPC and NMPC methods for the TV of
4IWMEVs with comparisons to the existing IPG Driver
available in a vehicle simulator, CarMaker. The degree
of improvement in driving stability and energy effi-
ciency is compared and analyzed by applying the TV
controller designed with the LPV-MPC and NMPC to
the actual driving cycle. Four model predictive con-
trollers are designed for the case where the weight of
the objective function changes and the case where it
does not change according to the driving situation of the
vehicle and various driving cycles. For the four designed
TV controllers, the performances of the driving stability
and energy efficiency improvement according to each
driving scenario are investigated with comparisons of
each other and the built-in IPG Driver in CarMaker.
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This paper is organized as follows: Section II discusses the
modeling and yaw stability of in-wheel motors and presents
the background required for energy-efficient TV controller
design. Section III discusses the system model, reference
input model, and objective function constraints for applying
the model predictive control method. An objective function
in continuous time is then introduced to improve the driving
stability and energy efficiency of the 4IWMEVs through the
TV controller. Section IV defines the optimal control problem
by applying the LPV-MPC and NMPC to the TV controller.
Subsequently, a method of determining the weighting param-
eters for optimal control is discussed. Section V analyzes the
results of vehicle simulation using a TV controller designed
with LPV-MPC and NMPC and compares the performance of
the controller.

II. BACKGROUND
A. IN-WHEEL MOTOR MODELING
An in-wheel motor is a combination of an electric machine
and an inverter and is directly mounted inside the wheel.
The driving method of a vehicle equipped with an in-wheel
motor is more advanced than that for all-wheel driving.
Currently, 4IWMEVs are not yet commercially available,
but research is being conducted to improve driving stability,
energy efficiency, and commercialization potential by mak-
ing 4IWMEVs in-house at research facilities [17], [18].

In this study, modeling of powertrain was carried out using
a permanent magnet synchronous motor (PMSM)-based in-
wheel motor. PMSMs have the advantages of good energy
efficiency in power conversion, low heat generation, optimal
control within the maximum torque range of the motor, and
smooth and fast response to continuous changes. However,
it also has disadvantages such as high cost, a complicated
motor setup, and complexity in control. EVs equipped with
in-wheel motors can independently apply wheel-torques,
which enables the quick responses in acceleration, decelera-
tion, and turning motion control. In addition, driving stability
and energy efficiency can be improved by applying an appro-
priate TV system.

The longitudinal dynamics representing the relationship
between the longitudinal force and torque of the in-wheel
motor is considered as:

Jmω̇ij = Tij − FijReff (1)

where ωij is the wheel angular speed, Reff is the effective
radius of the tire and Jm is the combined rotational inertia
of the wheel and motor. The variables Tij and Fij (i ∈

{f(ront), r(ear)}, j ∈ {l(eft), r(ight)}) are the torques and
longitudinal forces applied to the four wheels, respectively.
One of the characteristics of in-wheel motor vehicles is that
torque can be independently applied to each of the four
wheels. Therefore, there are four inputs to control the three
state variables, which can take advantage of the over-actuated
system.

At the time of this research, some companies such as
Protein Electric [19] and Elaphe [20] are developing in-wheel

FIGURE 1. Motor efficiency map (PRIUS-JPN30) generated from the data
available in CarSim [21].

motors and specific hardware specifications are being pro-
posed. In this study, the existing commercial electric motor,
PRIUS-JPN30, is considered as an in-wheel motor and its
CarSim data is used for modeling in optimal control and
closed-loop simulations. Fig. 1 shows the efficiency map for
PRIUS-JPN30. The continuous quasi-static motor model of
power-conversion efficiency and constant torque and power
limits are used for optimal control problem formulations
to reflect realistic applications. In addition, the numerical
data associated with Fig. 1 are also used for building a
polynomial-based regression model of the electric motor
power in terms of the wheel torques and rotation speed.
In Section III-E, the torque and angular velocity data ofmotor
experiments are used for training the model by least-squares
methods.

B. FACTORS FOR CONSIDERING DRIVING STABILITY
The most important factor in a vehicle’s cornering is stability.
When the driver applies the steering angle, the yaw of the
vehicle and the speed yaw required by the driver are generated
according to the vehicle model [22]. To consider the yaw
stability, the difference between the yaw rate requested by the
driver and the actual yaw rate of the vehicle are considered.
In this study, the driving stability improvement was derived
by utilizing the advantages of the in-wheel motor. Inminimiz-
ing the objective function, the difference between the actual
rate of the vehicle and the rate requested by the driver is
considered as the objective function.

In the single-track model, as shown in Fig. 2, consider the
understeering gradient Kv as in (2).

Kv =
lrm

Cα,f (lf + lr )
−

lfm
Cα,r (lf + lr )

(2)

where m is the vehicle mass, Cα,f and Cα,r are the front and
rear cornering stiffnesses of the vehicle, respectively, and lf
and lr are the distance from the vehicle’s center of gravity to
the front and rear axles, respectively. The cornering stiffness
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FIGURE 2. Lateral motion schematic for oversteering (Kv < 0),
understeering (Kv > 0) and neutral steering (Kv = 0) for corner-driving.

is a variable representing the relationship between the tire slip
angle αi and the lateral force Fy,i of the tire:

Fy,i = Cα,iαi (3)

where the tire slip angles are approximated as

αf ≈ β − δ +
lfψ
v

and αr ≈ β −
lrψ
v
. (4)

where v is the vehicle speed, δ is the steering angle, and
ψ is the yaw angle of the vehicle-body. The cornering stiff-
ness Cα,i tends to remain constant when the slip angle is
smaller than 5◦. If the side slip angle becomes excessively
large, the tire loses linearity in (3) and the driver may not
be able to drive in the required direction with respect to
the required steering angle [23]. Therefore, the body side
slip angle β should remain in certain bounds, as discussed
in Section III-D.

III. OPTIMAL CONTROL FORMULATION
When the IPG driver applies the required speed vdes through
the steering angle δ and APS or BPS input according to the
driving situation in Fig. 3, the reference input is calculated
from the reference model block accordingly. The steering
angle δ is applied as the wheel steering angle through the
electrical power steering (EPS) system after considering the
maximum and minimum steering angles of the wheels with
respect to the steering angle applied by the IPG driver [24].
When the calculated reference input is applied to the MPC
controller, the optimal input required for motor torque is
derived through LPV-MPC or NMPC in consideration of the
constraints. This is transmitted to each of the four motors of
the vehicle, and the resulting actual motor torque Tactual,ij
is generated, directly producing a yaw moment, and TV is
applied. Using Tactual,ij andωij, the energy usage is calculated
from the powertrain and the battery SoC is calculated based
on it. The lateral accelerations ay, ψ̇ , and v can be used as
measurement data while the vehicle is driving. Based on this,
through the state estimator, the yaw rate ψ̇ , side slip angle β,
and vehicle speed v of the next state are determined by the
LPV-MPC or NMPC-applied controller. It is applied as an
initial value for the prediction.

A. REFERENCE MODEL
The driver’s requested state variable ψ̇des by the driver’s
requested steering angle δ, speed v, and Kv of (2) can be
derived as follows [9]:

ψ̇des =
v/l

1 + Kvv2
δ (5)

where l = lf + lr is the length of the vehicle-body. To prevent
oversteering and understeering, we consider the reference
input of the yaw-rate defined as

ψ̇ref = min
{
|ψ̇des|, |ψ̇max |

}
· sgn(δ) (6)

where ψ̇max is the allowable maximum yaw-rate that is
defined later in (25) and sign(δ) is the sign of the current
steering angle δ. In addition, the reference side slip angle βref
is considered from the viewpoint of the driving stability of
Section II-B and is typically set to zero [25], [26].

FIGURE 3. Schematic diagram of an integrated TV controller of 4IWMEVs.

The reference input for vehicle speed vref is determined
by the maximum/minimum values ax,max and ax,min of the
vehicle’s longitudinal acceleration using vdes, the maximum
values of the lateral acceleration ay,max , and the curve κ of
the driving course as follows. If the radius of curvature of the
driving course is R, then κ is obtained as

κ =
1
R

=
ψ̇des

vdes
. (7)

Using the above data, vref is obtained through the built-in
function in IPG CarMaker as follows:

vref = h(vdes, ax,max , ax,min, ay,max , κ). (8)

where the closed-form of the function h is not explicitly given
here due to an intellectual property issue.

B. LONGITUDINAL VEHICLE DYNAMICS MODEL
For LPV model of vehicle dynamics, the lateral dynam-
ics model and the longitudinal dynamics model can be
combined. We consider the following longitudinal vehicle
dynamics:

mv̇ = Fxf + Fxr − Faero − Rxf − Rxr − mg sin θ (9)

where Fxf and Fxr are the longitudinal forces of the front
and rear tires, respectively, and Rxf and Rxr are the forward
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and rearward forces, respectively, that depend on road grades.
Additionally, Faero can be considered as follows:

Faero = caeroAL
ρ

2
(v+ vwind )2 (10)

where caero, AL , and ρ are the aerodynamic drag coefficient,
front area, and air density, respectively. In this study, the load
forces induced by the inclination angle of the road grade θ
and wind speed vwind were not considered. They can be incor-
porated as measurable or estimated external disturbances in
predictive models, which implies that the methods of MPC
proposed in this paper can be straightforwardly extended to
consider the road grade θ and wind speed vwind as well.
Expressing Fxf and Fxr with the power of the four wheels
is as follows:

mv̇ =

∑
i∈{f ,r}, j∈{r,l}

Fij − caeroAL
ρ

2
v2 (11)

For linearization of (11) the truncated first-order Taylor
series is used:

mv̇ =

∑
i∈{f ,r}, j∈{r,l}

Fij − (ρcaeroAL v̄)v+
(ρcaeroAL v̄2)

2
(12)

that scan be rewritten as a state space model

v̇ = Alonv+ Blongu (13)

where the system parameters are given as

Alon = −
ρcaeroAL v̄

m
, Blong =

1
mrw

[
1 1 1 1

]
, (14)

and u = [Tfl Tfr Trl Trr ]⊤ is the control input vector.

C. LATERAL VEHICLE DYNAMICS MODEL
In this paper, the lateral motion of the vehicle was modeled
considering the following assumptions:

• The cornering stiffness Cα,ij for each of the four wheels
had a constant value for each side slip angle.

• The rear wheel steering angle, δr , was set to 0. That is,
it is only steered by the front wheels.

• The left and right steering angles of the front wheels are
the same: δ = δfl = δfr .

• Roll and pitch motion are not taken into account.

1) DOUBLE TRACK MODEL
In Fig 4, the lateral motion equation considering the
change in vehicle speed, yaw rate, and side slip angle is
as follows [27]:

v̇ =
1
m

{
(Ffl + Ffr ) cos(δ − β))

+

(
Frl + Frr − caeroAL

ρ

2
v2

)
cosβ

− (Cα,fl + Cα,fr )
(
δ − β −

lf ψ̇
v

)
sin(δ − β)

+ (Cα,fl + Cα,fr )
(

− β +
lr ψ̇
v

)
sinβ

}
(15)

FIGURE 4. Double track model used as a nonlinear predictive model
for NMPC.

FIGURE 5. Single track model used as a linear predictive model
for LPV-MPC.

ψ̈ =
1
Jz

{
lf (Ffl + Ffr ) sin δ

+ lf (Cα,fl + Cα,fr )
(
δ − β −

lf ψ̇
v

)
cos δ

+
bf
2
(Ffr − Ffl) cos δ

−
bf
2
(Cα,fr − Cα,fl)

(
δ − β −

lf ψ̇
v

)
sin δ

− lr (Cα,rl + Cα,rr )
(
β +

lr ψ̇
v

)
+

br
2
(Frr − Frl)

}
(16)

β̇ =
1
mv

{
(Cα,fl + Cα,fr )

(
δ−β−

lf ψ̇
v

)
cos(δ−β)

+ (Ffl + Ffr ) sin(δ − β)

−

(
Frl + Frr − caeroAL

ρ

2
v2

)
sinβ

+ (Cα,rl + Cα,rr )
(

− β +
lr ψ̇
v

)
cosβ

}
− ψ̇, (17)

where Jz is the amount of energy that the vehicle tries to
maintain when cornering. The double-track model is used as
a predictive model when designing a TV controller to which
an NMPC is applied.

2) SINGLE TRACK MODEL
To make (15), (16), and (17) into state space matrices, it is
necessary to introduce a single-track model, shown in Fig. 5.
This single-track model is valid when compared to the real
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model when the lateral acceleration is less than 0.4g [m/s2].
Therefore, it is less accurate than the double-track model,
but it has the advantage of being an easy to design lin-
ear model predictive controller. For the single-track model,
the cornering stiffness of the two wheels is considered as
follows:

Cα,f =
Cα,fl + Cα,fr

2
and Cα,r =

Cα,rl + Cα,rr
2

. (18)

To satisfy the validity of the single-track model, the lateral
dynamics model is simplified based on the following small
angle assumptions: sin δ ≈ 0, cos δ ≈ 1, sinβ ≈ 0,
cosβ ≈ 1. By adding the linearized dynamics (12), repre-
senting the force in the longitudinal direction, to the single-
track state space model above, the system state equations can
be expressed as

ẋlat = Alat (v)xlat + Blatu+ Dlat (v)δ (19)

where the matrices are defined as

Alat (v) =

−
l2f Cα,f + l2rCα,r

Jzv
−
lf Cα,f − lrCα,r

Jz
lα,rCα,r − lf Cα,f

mv2
−
Cα,f + Cα,r

mv

 , (20)

Blat =

−
b

2Jzrw

b
2Jzrw

−
b

2Jzrw

b
2Jzrw

0 0 0 0

 , (21)

Dlat (v) =


lf Cα,f
Jz
Cα,f
mv

 , (22)

and xlat = [ψ̇ β]⊤ is the reduced state vector of the lateral
motion. By combining the above lateral dynamics with the
state-space model in (13), the overall state-space model can
be represented as follows:

ẋ = A(v)x+ Bu+ D(v)δ + E (23)

where x = [ψ̇ β v]⊤ is the extended state vector, u =

[Tfl Tfr Trl Trr ]⊤ is the control input vector, and the system
parameters are defined as

A(v) =

[
Alat (v) 0

0 Alon

]
, B =

[
Blat
Blong

]
,

D(v) =

[
Dlat (v)

0

]
, E =

 0
0

1
2m

(ρcaeroAL v̄2)

 . (24)

The above state space model is an LPV model that changes
depending on the vehicle speed v and is used as a predictive
model for LPV-MPC.

D. CONSTRAINTS FOR STABILITY GUARANTEE
When the driver demands a high yaw rate from the vehicle,
if the road friction coefficient cannot withstand the force
of the tire, driving may become unstable owing to under-
steering or oversteering; therefore, the lateral acceleration of

the vehicle must be limited by the friction coefficient of the
road, and the maximum allowable yaw rate is given as the
following [22]:

ψ̇max(v) =
µg
v

(25)

where µ is the road friction coefficient and g is the gravi-
tational acceleration. µ ∈ [0, 1] changes depending on the
road condition. Typically,µ has a value of 0.1∼0.3 on snowy
roads, 0.5∼0.7 on wet roads, and 0.8∼1.0 on normal asphalt
roads [28]. Therefore, the maximum allowable side slip angle
is limited by considering µ as follows:

βmax = arctan(0.02µg) (26)

which is an experimentally obtained equation that ranges
from 4◦ to 10◦ depending on the road friction coefficient µ.

E. ELECTRIC ENERGY CONSUMPTION MODELING
In this study, energy optimization is considered by minimiz-
ing the mechanical or electrical energy consumed (+ sign)
and regenerated (− sign) the four electric machines mounted
on the wheels.

a: MECHANICAL POWER OF THE MOTOR
When applying the linear model predictive control method,
it should be composed of a quadratic form of the objective
function. It is difficult to express the electric energy of amotor
in a quadratic form. Therefore, in this study, when applying
the LPV-MPC, an objective function is set that considers the
energy consumption by utilizing the mechanical energy of
the motor. The mechanical power of the motor is obtained
as follows:

Pmech =

∑
i∈{f ,r}, j∈{r,l}

Tijωij. (27)

In consideration of the numerical stability, a strictly convex
function can be utilized instead:

Pmech =

∑
i∈{f ,r}, j∈{r,l}

γT 2
ij + Tijωij (28)

where the coefficient γ > 0 of the quadratic term is set
to a small positive number. This makes the cost function
Pmech strongly positive definite with respect to the torque-
vector u = [Tfl Tfr Trl Trr ]⊤. The mechanical power
of the motor Pmech to which the quadratic term is added
is a general quadratic form for motor torque, and it is
convenient to apply QP. This implies that considering the
quadratic terms allows the Hessian of the cost function with
respect to control inputs to be strictly positive in the pro-
cess of numerical optimization so that numerical stability of
underlying numerical linear algebra in QP or SQP can be
improved.
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b: ELECTRICAL POWER OF THE MOTOR
The electric power of the motor is obtained as follows:

Pelec =



∑
i∈{f ,r}, j∈{r,l}

Tijωij
ηij

(for Tij > 0)

∑
i∈{f ,r}, j∈{r,l}

Tijωijηij (for Tij < 0)

(29)

which is the electric energy calculation of the motor for the
driving mode (Tij > 0) and the regenerative braking mode
(Tij < 0). The factor ηij ∈ (0, 1) is the efficiency of the motor
of each wheel. When the motors independently mounted on
the four wheels are physically the same and the electrical
power is Pelec,ij, a regression model is used to approximate
Pelec,ij as follows:

Pelec,ij ≈ c1ωij + c2ωijTij + c3ωijT 2
ij

+ c4ω2
ijT

2
ij + c5ω3

ijT
2
ij (30)

where there are five regressors ωij, ωijTij, ωijT 2
ij , ω

2
ijT

2
ij , and

ω3
ijT

2
ij , and the corresponding ci coefficients are determined

as a least-squares solution.
The approximated Pelec,ij in (30) is the result of estimating

Pelec,ij as a polynomial function composed of the torque and
angular velocity of the motor using the efficiency information
on the torque and angular velocity of the motor from the
efficiency map of the motor. The root mean square error
(RMSE) between the calculated actual Pelec,ij and the esti-
mated Pelec,ij was 344.375 [W], which was set as the basis of
the torque and angular velocity of the motor with the smallest
RMSE value. The relative RMSE was calculated as 0.3672.
Because NMPC solves the optimal control problem using
nonlinear programming (NLP), it is suitable to consider
the higher-order polynomial form of (30) as the objective
function.

In this study, energy is considered as the objective func-
tion to consider the energy optimization of a TV system as
follows:

Emotor (t) =

∫ t

0
Pmotor (τ ) dτ (31)

where Pmotor can be either the mechanical or electrical power
of the motor. When LPV-MPC is applied, Pmech is considered
whereas Pelec is considered for NMPC.

F. COST FUNCTIONS
In this study, as objective functions in the optimal con-
trol algorithm corresponding to predictive control, both the
tracking problem considering driving stability and the motor
energy consumption considering energy efficiency are con-
sidered. The two objective functions to be minimized are
defined as follows:

• Reference tracking error of a quadratic form

J1 =

∫ tf

0
(xref − x)⊤Q(xref − x)dt (32)

TABLE 1. Motor specifications (PRIUS-JPN30).

where the weighting matrix is set to be diagonal:

W =

w1 0 0
0 w2 0
0 0 w3

 . (33)

• Energy consumption over the traveling time

J2 = Emotor (tf ). (34)

The energy consumption of the motor Emotor is considered
as in (31), and the cost function in continuous time can be
considered by using J1 and J2, as follows:

minimize J = λJ1 + (1 − λ)J2
subject to x(0) = x0

dx
dt

= F(x(t),u(t), δ(t))

Tmin1 ≤ u(t) ≤ Tmax1

ψ̇min ≤ ψ̇(t) ≤ ψ̇max

βmin ≤ β(t) ≤ βmax

vmin ≤ v(t) ≤ vmax (35)

where 1 = [1 1 1 1]⊤ is the all-ones vector and the vector
field F(x(t),u(t), δ(t)) corresponds to the dynamical system
used for a prediction model that is either LPV or nonlinear
dynamical system equations.When applying LPV-MPC, (23)
is used, and when applying NMPC, (15), (16), and (17) are
used. The torque constraint conditions of the motor Tmin and
Tmax are determined using TABLE 1 as the specifications of
the motor and are considered as Tmin = −Tmax . Similarly,
the yaw-rate bounds and the side slip-angle bounds are con-
sidered as ψ̇min = −ψ̇max and βmin = −βmax. The speed
limits vmin and vmax can be considered differently depending
on the driving situation, and in this study, it is determined
by the speed set by the IPG driver. The cost function J con-
sists of weighted objective functions, the reference tracking
error function J1 and energy-consumption function J2. In this
study, using the objective function in (35), it is approximately
transformed to apply MPC. Section IV deals with the method
of determining the objective function of the MPC and the
weight of the objective function as the control algorithm
of the energy-efficient TV system that guarantees driving
stability.

IV. MPC FOR TORQUE VECTORING SYSTEM
A. LPV-MPC METHOD
To control the TV system of four in-wheel motor electric
vehicles, the controller is presumed to be designed based
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on the nonlinear model owing to the nonlinearity of the
lateral vehicle dynamics, and the optimal solution of pre-
dictive control should be derived through the NLP method
in an optimization view point. However, it may be difficult
to implement in real time because of its high computational
complexity. In this study, as an alternative to this, we propose
an LPV-MPC method that uses a linear predictive model to
achieve a performance similar to that of a nonlinear model.
Many nonlinear models can be expressed as LPVmodels, and
because LPV models maintain linear properties, a relatively
fast computation can be expected [29]. In this study, consider-
ing an LPVmodel, the change in vehicle speed v is considered
and reflected in the predictive model. Therefore, in predicting
the state and input, the vehicle speed v in that state is reflected
in the prediction model at every step. To apply the model pre-
dictive control method, a time discretization model assuming
a zero-order holder (ZoH) control input is used as follows:

Ad (v) == exp(A(v)1t), Bd (v)=A−1(v)(Ad (v)−I )B,

Dd = A−1(v)(Ad (v)−I )D(v), Ed (v)=A−1(v)(Ad (v)−I )E

where exp(A(v)1t) =
∑

∞

ℓ=0(A(v)1t)
ℓ/ℓ! denotes an expo-

nential matrix. In LPV-MPC, the following time-discretized
system model is used for prediction:

x(k) = fd,lpv(x(k),u(k), δ(k)),

= Ad (v)x(k)+Bd (v)u(k)+Dd (v)δ(k)+Ed (v) (36)

where δ(k) is the steering angle that is controlled by the driver
and can be treated as a known or measurable disturbance in
predictive control.

For optimality control of the LPV-MPC, the following two
objective functions are considered:

J1,lpv =

Np∑
k=1

(x(k) − xref (k))⊤W (x(k) − xref (k)) (37)

and

J2,lpv =

Np−1∑
k=0

Pmech(k) + Pmech(k + 1)
2

1t (38)

where Np is the prediction horizon. For implementation of
LPV-MPC, it is assumed that the vehicle speed is not varying
over the prediction horizon. The mechanical power of the
motor Pmech in (38) is determined by (28). Using the cost
functions given in (37) and (38), the optimal control problem
for applying LPV-MPC can be defined as follows:

minimize Jlpv = λJ1,lpv + (1 − λ)J2,lpv
subject to x(0) = x0

x(k + 1) = fd,lpv(x(k),u(k), δ(k))

Tmin1 ≤ u(k) ≤ Tmax1

ψ̇min ≤ ψ̇(k) ≤ ψ̇max

βmin ≤ β(k) ≤ βmax

vmin ≤ v(k) ≤ vmax (39)

where u(·) is a set of solutions obtained by applying themodel
prediction control method within the prediction interval Np.
Considering the LPV model, the optimal input that mini-
mizes (39) within the prediction interval and the resulting
state variables can be predicted as follows:

Up(k) =


uv(k|k)

uv(k + 1|k)
...

uv(k + Np − 1|k)

, Xp(k) =


xv(k + 1|k)
xv(k + 2|k)

...

xv(k + Np|k)


(40)

where uv(·) and xv(·) are the inputs obtained as a solution by
applying the prediction technique using the model consider-
ing the change in v in (36) and the predicted state variables
based on it. In this study, to compare and verify the perfor-
mance of the model predictive controller designed with the
LPV model, the performance of the controller designed with
the LPV-MPC method and the controller designed with the
NMPC method are compared in terms of computation time
and optimality.

B. NMPC METHOD
Because the lateral dynamics linear model of a vehicle is a
model established with a small lateral acceleration, it may
become inaccurate depending on the curve situation of the
vehicle. However, the nonlinear model has a high accuracy in
reflecting the actual dynamics of the vehicle; therefore, more
accurate results can be obtained by designing a controller
based on the nonlinear model. When applying the NMPC,
using the dynamical system equations (15), (16), and (17),
the nonlinear system model in continuous time can be repre-
sented as

ẋ(t) = f (x(t),u(t), δ(t)) (41)

where x = [ψ̇ β v]⊤ and u = [Tfl Tfr Trl Trr ]⊤.
Here, δ is the steering angle of the vehicle that is assumed
to be known over the prediction horizon. To consider this as a
predictive model of NMPC, when the discretizedmodel using
the Euler forward approximation of the equations (15), (16),
and (17) is computed, it is considered as a predictive model
for applying NMPC:

x(k + 1) = fd,nmpc(x(k),u(k), δ(k)) . (42)

The objective function is set considering driving stability
and energy consumption, as in (39):

J1,nmpc =

Np∑
k=1

(x(k) − xref (k))⊤W (x(k) − xref (k)), (43)

J2,nmpc =

Np−1∑
k=0

Pelec(k) + Pelec(k + 1)
2

1t (44)

where (44) is a non-quadratic function composed of polyno-
mials that are linearly regressed with the torque and angular
velocity of the motor, as in (30). Therefore, it is necessary to
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solve this problem using the NLP method. In this study, the
NLP problem was defined as follows:

minimize Jnmpc = λJ1,nmpc + (1 − λ)J2,nmpc

subject to x(0) = x0
x(k + 1) = fd,nmpc(x(k),u(k), δ(k))

Tmin1 ≤ u(k) ≤ Tmax1

ψ̇min ≤ ψ̇(k) ≤ ψ̇max

βmin ≤ β(k) ≤ βmax

vmin ≤ v(k) ≤ vmax. (45)

C. DEPENDENCE OF COST WEIGHT ON VEHICLE MOTION
In this study, the control of the TV system has two objectives:
driving stability and energy efficiency improvement. The
weight matrix W in (37) and (43) is a 3 × 3 diagonal matrix
with the weights w1, w2, and w3, and the weight of the motor
energy consumption costs in (38) and (44) is defined as the
fourth factor w4. These values should change according to
the different driving conditions of vehicle maneuvering. For
example, if the vehicle is cornering, driving stability may be
more important than improving energy efficiency as opposed
to driving straight ahead. Therefore, it is important to deter-
mine proper weights of the cost functions of the model-based
predictive optimal control.

For adaptively changing the weights in multiple objectives
of optimal control, the exponential function of the steering
angle is used to depend on the driving situation of the vehi-
cle in determining the weights. The weight factors w1 and
w2 consider yaw rate tracking and side slip angle tracking
and are increased when driving stability is considered, and
w3 and w4 consider the required speed tracking and energy
efficiency. w3 and w4 are increased when maintaining a
constant speed on a straight road and improve the energy
efficiency. The weights w1, w2, w3, and w4 are considered
as the following functions:

w1=K1e|δ|, w2=K2e|δ|, w3=K3e−|δ|, w4=K4e−|δ|. (46)

Notice that the weights in (46) are set to be determined
according to the steering angle δ in real time. When the
steering angle is increased using the characteristics of the
exponential function, w1 and w2 increase accordingly. This
is to ensure driving stability by assigning weight to the
objective function that considers the difference between the
yaw rate and side slip angle. Conversely, when the steering
angle is closing to 0◦ (straight driving), the weights w3 and
w4 increase. This is because when the steering angle is close
to 0◦, the values of the yaw rate and side slip angle are equal
or close to zero, so that higher weight is given to the speed
tracking and energy efficiency improvement requested by
the driver. The weights are selected as exponential functions
of the steering angle. The nonlinear characteristics of such
weight adaptation to driving conditions help to improve driv-
ing stability in cornering and energy efficiency in straight-
driving. The parameters K1, K2, K3, and K4 are appropriate
constants that are pre-computed via numerical experiments.

FIGURE 6. A schematic flowchart diagram for two predictive control
methods with simulation-based implementations.

FIGURE 7. Simulation of TV control system for 4IWMEVs in a virtual
environment using IPG CarMaker. Simulation videos for the driving
scenarios in Sections V-A, V-B, and V-C can be found at:
https://www.youtube.com/playlist?list.

FIGURE 8. Simulink model for the closed-loop control system simulations
of predictive control-based torque vectoring.

V. SIMULATION RESULTS
In the previous section, we presented two methods of pre-
dictive control for optimal torque vectoring. Fig. 6 shows a
flowchart of two predictive control methods, LPV-MPC and
NMPC, for torque vectoring and a simulation-based imple-
mentation. For real vehicle implementations, Driving Sim
will be replaced by an actual in-wheel motor EV and a human
driver.

Four controllers were designed using LPV-MPC and
NMPC, and the performances of the four controllers were
verified through simulation with IPG CarMaker and MAT-
LAB/Simulink in Fig 7. The details of Simulink model for
closed-loop simulations are presented in Fig. 8. The four
types of designed controllers are as follows:
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• VW LPV that applies the LPV-MPC where the weights
of the multiple objective functions change according to
the vehicle motion and steering command.

• NVWLPV that applies the LPV-MPCwhere theweights
of the multiple objective functions are set as constants.

• VWNMPCA that applies the NMPC where the weights
of the multiple objective functions change according to
the vehicle motion and steering command.

• NVWNMPC that applies the NMPC where the weights
of the multiple objective functions are set as constants.

The RMSE for reference input, energy consumption, and
computation timewere used as performance comparison indi-
cators to compare the performance of the above controller.
For the LPV-MPC method, the problem was solved by using
the FORCESPRO QP solver with a dense QP formulation
and an interior-point method (IPM), and simulation with
IPG CarMaker was performed using the S-function of
Simulink. FORCESPRO makes the design of embedded pre-
dictive controllers simple and the computation time is fast and
accurate [30], [31].

The NMPC method solves the NLP problem using the
nonlinear primal-dual interior point method (PD-IPM) of
the solver, FORCESNLP, available at FORCESPRO. Note
that all predictive controllers (linear, nonlinear, and LTV)
are computed by the PD-IPM with warm-start, which could
reduce a lot of the online computation time. The driving
scenario consisted of three scenarios, and the driving track
Nurbuergring Grandprix Course and FS Germany 2015 were
considered to compare the energy consumption of the actual
vehicle with the slalom lane change.

The IPG CarMaker’s Demo car was selected as the vehicle
model. When simulating four predictive controllers in IPG
CarMaker, all vehicle parameters including motor specifica-
tions are set to be the same. In addition, the driver’s steering
angle and required speed in each scenario are set to be the
same. For all four model prediction control methods, the
prediction horizon Np was set to 10, and the step size1t was
set to 0.02 sec. This implies that the optimal control input
in MPC was calculated by predicting the future of 0.2 sec
driving. In addition, it was assumed that the road friction
coefficient µ is 0.9 for a general asphalt road in all three
scenarios. To verify the performance of the TV controller in
which the model predictive control method is applied, the
results of improved driving stability and energy efficiency
are demonstrated by applying the TV system by comparing
it with the driving results of the IPG driver in CarMaker. It is
assumed that the state can be estimated from measurements
and we use the data obtained through the side slip angle
sensor model available in IPG CarMaker.

A. SLALOM CHANGE SIMULATION
Scenario 1 considers the slalom lane-change situation. The
steering angle and speed were applied according to the sit-
uation using the IPG driver model. The total distance was
set at 600 m. When the steering angle and speed are deter-
mined by the IPG driver, the yaw rate reference input is

TABLE 2. <Scenario 1> Comparison of RMSE according to yaw rate
reference input when driving with TV controller designed with four
different predictive control methods and utilizing IPG driver.

TABLE 3. <Scenario 1> Comparison of RMSE according to each reference
input of side slip angle (βref = 0) when driving with the TV controller
designed with four predictive control methods and driving of the IPG
driver.

FIGURE 9. <Scenario 1> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW LPV-MPC applied.

determined accordingly, and the tracking problem is con-
structed by considering this in the objective function. To com-
pare the performance of the controller, the RMSE between the
reference input and the actual yaw rate of the vehicle is com-
pared in TABLE 2. The smallest RMSE value occurred when
NVW NMPC was applied, and the largest RMSE occurred
when LPV MPC was applied, regardless of weight change.
This is because the model accuracy was not guaranteed
owing to the frequent steering angle application. As shown in
Scenarios 1 and 3, the frequent steering angle application
shows a smaller RMSE value when the nonlinear model
is used as a predictive model. The RMSE considering the
difference from the actual data for the reference input of the
side slip angle is shown in TABLE 3. The controller designed
by the NVWNMPC showed the highest RMSE value and the
lowest RMSE value was shown when driving with the IPG
CarMaker’s built-in controller (IPG Driver).

As one can observe the demanded torques of four different
controllers in Figs. 9∼12, a phenomenon occurred in that
the solution of the predictive control method designed with a
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FIGURE 10. <Scenario 1> Motor demand torque applied to four in-wheel
motors as a result of TV with VW LPV-MPC applied.

FIGURE 11. <Scenario 1> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW NMPC applied.

FIGURE 12. <Scenario 1> Motor demand torque applied to four in-wheel
motors as a result of TV with VW NMPC applied.

nonlinear model resulted in a relatively conservative solution
compared with the solution of the LPV-model based predic-
tive control method. In addition, whenever the driver applies
a large steering angle value, the maximum torque is applied
to the wheels on both sides of the vehicle and the maximum
yaw moment is generated. This shows the same tendency in
Scenarios 2 and 3 in Figs. 16∼19, 23∼26. In TABLE 4,
the lowest energy consumption was observed when VW
LPV-MPC was applied among the five results. In addition,

TABLE 4. <Scenario 1> Comparison of energy consumption of four wheel
motors when driving with the TV controller designed with four predictive
control methods using motor power data of IPG CarMaker and driving
with the IPG driver.

TABLE 5. <Scenario 1> Comparison of fuel efficiency when driving with
the TV controller designed with four predictive control methods and
driving with the IPG driver.

FIGURE 13. <Scenario 2> Nurbuergring Grandprix course.

both VW LPV and VWNMPC show lower energy consump-
tion than NVWLPV and NVWNMPC because of the weight
of the objective function considering the driving situation.

By using themotor energy data from the results of applying
each control method, the fuel efficiency was calculated based
on the assumption that there is no energy used in the air
conditioning system or lamp. The results of calculating the
average fuel efficiency when driving to the final destination
are shown in TABLE 5. In TABLE 6, the fuel efficiency is
improved by approximately 2.11 % in the VW LPV-MPC,
and it shows the best performance in terms of fuel efficiency
improvement. The final SOC showed a similar pattern for all
the five methods.

B. VIRTUAL DRIVING SIMULATION FOCUSING ON
STRAIGHT DRIVING
Scenario 2 compares and verifies the performance of the TV
system on a real driving track in Fig. 13. The total distance
was set to 2000 m. The Nurbuergring Grandprix Course
is a track with a lot of straight-line driving, so the weight
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FIGURE 14. <Scenario 2> Actual vehicle yaw rate for yaw rate reference
input when driving with the TV controller designed with four predictive
control methods and driving of the IPG driver where the road friction
coefficient and the reference vehicle speed are set as µ = 0.9 and
vref = 60 km/h, respectively.

FIGURE 15. <Scenario 2> The actual vehicle side slip angle for side slip
angle reference input (βref = 0) when driving with the TV controller
designed with four predictive control methods and driving of the IPG
driver where the road friction coefficient and the reference vehicle speed
are set as µ = 0.9 and vref = 60 km/h, respectively.

TABLE 6. <Scenario 2> Comparison of RMSE according to yaw rate
reference input when driving with the TV controller designed with four
predictive control methods and driving of the IPG driver.

that considers the speed tracking (w3) and the weight that
considers the energy consumption (w4) is increased.
In Scenario 2, the controller designed with LPV-MPC

exhibited better performance in terms of yaw rate reference
tracking. The reason for this is that the driving track in Sce-
nario 2 has fewer cornering driving than in scenario 1, so the
lateral acceleration, which is a condition for the single-track
model to be accurate, was less than 0.4g, and thus the

TABLE 7. <Scenario 2> Comparison of RMSE according to each reference
input of side slip angle (βref = 0) when driving with the TV controller
designed with four predictive control methods and driving of the IPG
driver.

FIGURE 16. <Scenario 2> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW LPV-MPC applied.

FIGURE 17. <Scenario 2> Motor demand torque applied to four in-wheel
motors as a result of TV with VW LPV-MPC applied.

accuracy of the model was guaranteed. The TV system
applied with NVW NMPC shows similar performance to the
controller designed as a linear model, but the TV system
with VW NMPC showed a higher RMSE than the other four
methods. In addition, considering whether there is a change in
the weight of the objective function, if the weight changes, the
yaw rate RMSE increases as the weights w1 and w2 decrease.
When comparing the RMSE as shown in TABLE 7, they are
in the range of 0.0023∼0.0024, and the reference tracking
performance for each side slip was similar. However, when
comparing the side-slip angles in Fig. 15, LPV-MPC shows
a value closer to zero than the other methods, regardless of
whether weight changes.

In Scenario 2, in the case of the controller whose weight of
the objective function changes, less energy is used because
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FIGURE 18. <Scenario 2> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW NMPC applied.

FIGURE 19. <Scenario 2> Motor demand torque applied to four in-wheel
motors as a result of TV with VW NMPC applied.

TABLE 8. <Scenario 2> Comparison of energy consumption of four wheel
motors when driving with the TV controller designed with four predictive
control methods using motor power data of IPG CarMaker and driving
with the IPG driver.

TABLE 9. <Scenario 2> Comparison of fuel efficiency when driving with
the TV controller designed with four predictive control methods and
driving with the IPG driver.

the change in weight according to the repetition of straight
driving in Scenario 2 is reflected. Table 9 shows a relatively
small ascent rate of 1 %, but in the case of a controller
designed using the NMPC method with variable weights, the
fuel efficiency increased by 1.9 % as w4 increased.

FIGURE 20. <Scenario 3> FS Germany 2006.

FIGURE 21. <Scenario 3> Actual vehicle yaw rate for yaw rate reference
input when driving with the TV controller designed with four predictive
control methods and driving of the IPG driver where the road friction
coefficient and the reference vehicle speed are set as µ = 0.9 and
vref = 60 km/h, respectively.

C. VIRTUAL DRIVING SIMULATION FOCUSING ON
CORNER-DRIVING
In Scenario 3, a simulation was performed on a driving track
different from that of Scenario 2 in order to observe the effect
of the changing weights. The total distance was set to 2000m.
FS Germany 2006 has frequent cornering in contrast to Sce-
nario 2, which has a lot of straight driving, and the steering
angle changes frequently and has a large value in Fig. 20.
In addition, more generous side slip angle constraints than
Scenarios 1 and 2 were set. Therefore, w1 and w2 increase as
the steering angle increases, which affects the tracking of the
reference input of the yaw rate and side slip angle. In Fig. 21,
the reference input also changed frequently according to the
frequent change in the steering angle, and consequently, the
change in the vehicle yaw rate is also affected.

TABLE 10 shows the lowest RMSE when the predictive
control method using the nonlinear model was applied, as in
Scenario 1. On the other hand, when the linear model was
used, the RMSE value was higher than that of the nonlinear
model. Scenario 3 is a more complex track than Scenar-
ios 1 and 2 so that there are more frequent cornering driving
situations in Scenario 3, and accordingly, the driver some-
times requests a large steering angle value. As a result, both
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TABLE 10. <Scenario 3> Comparison of RMSE according to yaw rate
reference input when driving with the TV controller designed with four
predictive control methods and driving of the IPG driver.

FIGURE 22. <Scenario 3> The actual vehicle side slip angle for the side
slip angle reference input (βref = 0) when driving with the TV controller
designed with four predictive control methods and driving of the IPG
driver where µ = 0.9, vref = 60 km/h.

TABLE 11. <Scenario 3> Comparison of RMSE according to each
reference input of the side slip angle (βref = 0) when driving with
the TV controller designed with four predictive control methods
and driving of the IPG driver.

the RMSE for the reference input of the yaw rate and side slip
angle show a lower tendency when the weight changes, as the
weights w1 and w2 increase. In Fig. 22, unstable side slip
angles occur on tracks requiring frequent cornering and large
steering angle values, such as in Scenario 3. In TABLE 11,
the LPV-MPC design using a linear model showed the lowest
RMSE, and the IPG Driver showed the highest RMSE.

In Scenario 3, the controller whose weights did not change
showed the lowest energy consumption and good perfor-
mance in terms of energy efficiency, and VWNMPC showed
the lowest energy efficiency. The reason for this is the change
in weight, considering the motion of the vehicle. In Table 13,
the controller designed with NVW LPV-MPC and NVW
NMPC showed a 3.7 % improvement in fuel efficiency com-
pared with the IPG Driver, whereas the controller designed
with VWNMPC showed the lowest fuel efficiency. Thus, the
weight variable controller may not show good performance in
terms of energy efficiency on roads with frequent cornering

FIGURE 23. <Scenario 3> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW LPV-MPC applied.

FIGURE 24. <Scenario 3> Motor demand torque applied to four in-wheel
motors as a result of TV with VW LPV-MPC applied.

FIGURE 25. <Scenario 3> Motor demand torque applied to four in-wheel
motors as a result of TV with NVW NMPC applied.

driving. As in the case of NMPC, VW LPV-MPC does not
perform better than NVW LPV-MPC. The average computa-
tion time in optimization of control inputs over the prediction
horizon was 0.0025 sec for LPV-MPC and 0.0035 sec for
NMPC, where the computation time is calculated by mea-
suring the time difference between calling the solver and
obtaining optimal solutions in the CPU clock. Considering
that the sampling-time used for simulation was 0.02 sec, the
average computation time for both methods is an order of
magnitude faster than sampling time-interval.
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FIGURE 26. <Scenario 3> Motor demand torque applied to four in-wheel
motors as a result of TV with VW NMPC applied.

TABLE 12. <Scenario 3> Comparison of energy consumption of four
wheel motors when driving with the TV controller designed with four
predictive control methods using motor power data of IPG CarMaker
and driving with the IPG driver.

TABLE 13. <Scenario 3> Comparison of fuel efficiency when driving with
the TV controller designed with four predictive control methods and
driving with the IPG driver.

From simulation results obtained from using Car-
Maker, one might conclude that in terms of tradeoff
between energy-efficiency and driving stability, the adaptive
weighting predictive controller may be worse than the fixed
weighting one when driving Scenarios 1 and 3 where there
are frequent cornering segments. Using the adaptive weight
parameter, the operating mode of the vehicle is explicitly
considered so that there could be increased stability in com-
pensation for a decrease in energy-efficiency. The weights
of tracking the desired yaw rate and the side slip angle
increase with larger steering angles. The weights of track-
ing the desired longitudinal speed and maximizing motor
energy-efficiency increase with smaller steering angles.
We compared and verified the performances of four dif-
ferent MPC controllers in three different driving scenarios.
MPCwith varyingweightsmight outperform the counterparts
with fixed weights in performance indices, as adaptation to
dynamic driving conditions can provide more flexibility in
controller design.

VI. CONCLUSION
This paper presented model predictive control methods for
energy-efficient and stability-guaranteed torque vectoring for
electric vehicles with four in-wheel motors. When com-
pared with the existing IPG driver in high-fidelity Car-
Maker simulations, the proposed LPV-MPC and NMPC
methods achieved an energy efficiency improvement of
over 2–3 % on average with similar yaw stability per-
formance. In LPV-MPC, the reduced single-track model
was applied with decoupled linearized longitudinal dynam-
ics, whereas the full-order double-track model was applied
in NMPC. In terms of computation time, LPV-MPC showed
approximately 30 % faster computational speed than NMPC.
In addition to the comparisons of two predictive control meth-
ods, LPV-MPC and NMPC, varying weights were applied
in the cost functions to adapt to different driving condi-
tions and requirements. Both LPV-MPC and NMPC with
adaptive weights showed slightly lower energy efficiencies
in cornering, whereas they showed higher energy efficiency
improvements in straight driving. In NMPC, the change in
the demand torque of the motor tends to be more extreme,
compared to LPV-MPC. Such jerks in motor torque may
cause a failure due to a large load on the motor and LPV-MPC
can bemore attractive in practical applications. In conclusion,
it is important to design an energy-efficient TV controller
with guaranteed driving stability by adopting an appropriate
predictive model and weight parameters under different driv-
ing conditions and requirements. In our future work, we will
implement the proposed TV systems in hardware-in-the-loop
simulations to validate and verify the methods.
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