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ABSTRACT This paper presents a deployment method of various test maneuver scenarios for 2 degree
of freedom (2 DoF) vehicle simulator by using feature extraction and neural networks (NN). A prototype
version has been set up for the 2 DoF vehicle simulator. Then, a hardware in the loop (HIL) model with
2 inputs (torque, τ1- τ2) and 3 outputs (acceleration, ax-ay-az) is created. System identification is performed
to obtain the training data of NNs to be used for the deployment of test maneuvers. In the system identification
process, 2 arbitrary sinusoidal torque signals (τ1- τ2) are generated by using the actuator specs of the 2 DoF
vehicle simulator. By applying the generated torque signals to the actuators, acceleration (ax-ay-az) data are
collected from the inertial measurement sensor (IMU) on the 2 DoF vehicle simulator. It is determined to
create 3 different NN models for the obtained data. The 1st NN model is trained with 3 inputs (ax-ay-az) and
2 targets (τ1- τ2) training data. The 2nd NNmodel is trained with 6 inputs (amplitudes and phases of ax-ay-az)
and 2 targets (τ1- τ2) training data. The input data features for the 2nd NN model is extracted by using the
Fast Fourier Transform (FFT). The 3rd NNmodel is trained with 6 inputs (amplitudes and phases of ax-ay-az)
and 4 targets (amplitudes and phases of τ1- τ2) training data. For the 3rd NNmodel, the features of input and
target data are extracted by using the FFT. The NN training process continues until acceptable performance
criteria are reached. Then, 3 NN models are run and analysed under various test scenarios such as Double
Lane Change, Constant Radius, Increase Steer, Fish Hook, Sine with Dwell and Swept Sine. Only for the
3rd NN, the actuator signals (τ1- τ2) are recomposed by applying an inverse FFT process to the 4 targets
(amplitudes and phases of τ1- τ2). Finally, the reference trajectory tracking performances are evaluated by
comparing the NN models that are run under the test scenarios.

INDEX TERMS Feature extraction, IoT, neural networks, system identification, vehicle simulator.

I. INTRODUCTION
The vehicle simulators are mechatronic systems designed to
replicate the experience of driving a real vehicle under various
driving scenarios or cycles [1]. They are commonly used for
purposes such as driver training and games. Simulators allow
for the realistic transfer of driving sensations to the driver,
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enabling measurement of their reactions and evaluation of
their performance [2]. Vehicle simulators typically utilize a
parallel manipulator structure, such as the Stewart platform
shown in Fig. 1 [3].

The orientation of the platforms is changed through
sequential movements of linear actuators, with feedback sig-
nals generated to keep the platform in the desired orientation,
including displacement, velocity, and acceleration informa-
tion [4], [5]. Realistic driving sensations are achieved by
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transferring the reference accelerations of the linear actuators,
fed with real driving information from the mobile platform
on which the driver sits, to the mobile platform itself. The
degree of freedom (DoF) over the connection points of the
mobile platform and the number of actuators used can vary
depending on the desired simulation [6]. However, transfer-
ring accelerations in the x-y-z axes through different struc-
tural connections, along with varying numbers of actuators,
can result in nonlinear controller requirements [7]. To address
this, neural network-based controller structures have been
developed for nonlinear problems, and have gained popular-
ity in the literature [8].

FIGURE 1. Stewart platform [3].

Neural networks have proven to be powerful tools for solv-
ing nonlinear problems, offering capabilities such as param-
eter fitting, classification, and estimation [9], [10], [11],
[12], [13]. By using a neural network approach to generate
reference signals for linear actuators based on acceleration
data in the x-y-z axes obtained from real driving scenarios,
a realistic driving experience can be created for the driver
on a vehicle simulator. It is of great importance to deploy
the data to the vehicle simulator with minimum loss in order
to create the real driving feeling. Therefore, the Internet of
Things (IoT) has the potential to greatly facilitate the transfer
and processing of data in this context. With the aid of servers
over the internet, high processing power can be harnessed to
analyse signals from sub-actuator and sensor units connected
to a central processor, and to generate the necessary control
signals for the vehicle simulator [14].

There are many studies on simulators in the literature.
These are studied on various software and hardware platforms
for air, sea and land vehicles. Since the main subject of
this study is a hardware-based simulator platform, hardware-
based simulator studies as a result of literature review have
been tried to be summarized as follows.

Simulator structures, which usually contain low-cost paral-
lel manipulators, are used within the scope of hardware in the

loop (HIL) [5]. Torque control algorithms of hybrid electric
vehicles of serial and parallel powertrain configurations on
simulators were tried to be evaluated within the scope of
human powered vehicles [15]. Similarly, the evaluation of the
drowsy driver’s lack of reaction during collision detection and
action was performed in the vehicle simulator [16]. Evalua-
tion of realistic responses and simulator skills on a hexapod
platform and improvement with washout filter were carried
out [17]. In another study, it describes the improvement of
the Human in the loop powertrain design by analysing it
with Unity-Matlab-Simulink
 and Driving Cycle in order to
increase the performance and range of electric vehicles [18].
The effects of neuromuscular dynamics on steering ability
were investigated, in which the behavioural tendency of the
driver was analysed both in the real environment and on
the simulator platform [19]. For train driver training, 3 DoF
(degree of freedom) dynamic simulator was studied. Driving
training is carried out under a structure in which the platform
is controlled with motion cueing [20]. How an autonomous
vehicle is affected by a real driver in order to change lanes
safely is analyses. By investigating the parameters of rela-
tive distance and relative speed, it has been observed that
relative distance plays an important role for a more comfort-
able driving [21]. With the scenario in the loop, the safety
performance of autonomous vehicles was tested with digital
twin and unity and tried to be verified with the real vehicle.
Vehicle behaviour is tried to be improved with realistic traffic
scenarios [22]. Error minimization was studied with adaptive
linear quadratic regulated motion cueing algorithm (MCA)
in order to create a realistic driving feeling on 8 DoF driving
simulators [23]. It has been studied to improve the technical
arguments by using genetic algorithm for the optimization
of 3 different motion systems on 7 DoF vehicle simulators
[24]. Sliding mode control and model predictive control were
studied on how to drive the motion cueing algorithm (MCA)
to the system on the 4DoF driving platform. Evaluations were
made on pitch, roll, sway, and surge, and it was observed
that the sliding mode control has a saturation function and
the model predictive controller (MPC) gave better results
[25]. Due to the high financial requirements of high-fidelity
driving simulator within the scope of human machine inter-
action, a platform was studied on a medium-fidelity flexible
and reusable platform that can provide testing of automotive
components by increasing the flexibility of existing systems
[26]. An algorithm that can detect the posture of the driver on
the motorcycle and correct the posture with various maneu-
vers while driving is studied [27]. Optimization with non-
linear scaling and genetic algorithm was studied to create a
more realistic driving feeling by working on the MPC-based
MCA algorithm [28]. The mechanical design and control of
the 6 DoF driving platform was studied. Lateral and longitu-
dinal directives are used to give acceleration and motion cues
(MC) [29]. With a HIL-based simulator, the development
of the driveline was studied by examining the anti-wind-
up effects on the driveline in different ground scenarios in
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off road conditions [30]. Motion cueing was studied on a
2-link driving simulator with 3 DoF and innovative structure
[31]. MPC based MCA and Classical Washout-based MCA
(CW-MCA) were handled comparatively and the control sig-
nals needed for real driving feeling were tried to be derived
by NN-MCA by working on Neural network-based MCA
(NN-MCA) [32]. Comparative analysis between a scaled
test vehicle and a software-based full-scale vehicle model
was performed. Longitudinal and lateral controllers were
designed and their effects on vehicle dynamics were inves-
tigated [33]. The electric powered assisted steering system
for 3 DoF vehicle models was tried to be analysed within
the scope of human driver interaction in terms of crosswind
effect [34]. Within the scope of human machine interaction,
a driving simulator was studied in order to investigate the
pedestrian collision situations, which are frequently experi-
enced during right turns, in 5 steps [35]. Yawmoment control
algorithm was tried to be developed by using Buckingham
II theory on a scaled vehicle [36]. A simulator was used to
improve efficiency-based shifting schedule and testing dif-
ferent gear shifting duration times for an electric vehicle [37].
It has been studied to develop design and control algorithms
on the light air bearing simulator [38]. A simulator with
Vehicle in the loop was studied for a realistic driving feeling
with haptic steering feedback in high speed applications [39].
Amotion cueing algorithm-based model predictive controller
has been studied for the hexapod with 9 DoF, which exhibits
non-linear behaviour [40]. On the 2 DoF driving simulator
platform capabilities and frequency response, controllability
for different variations and simulator sickness were investi-
gated [41]. A low-cost structure has been studied for a PC-
based 5 DoF driving simulator, and the performance of the
system under different road scenarios has been examined
and it has been observed that it achieves adequate respond
[42]. On the 5 DoF motorcycle riding platform, a training
tool was developed for new users under different scenarios,
and the behaviours and interactions of motorcycle drivers
under certain conditions were studied [43]. Human mechani-
cal impedance properties (HMIP) were investigated on 4 DoF
driving simulators. Adaptive steering control is based on
HMIP and its effectiveness has been tested on the double
lane change scenario [44]. For a compact and low-cost driv-
ing simulator, reduction of motion clearance and correction
of immersive virtual reality motion during convoy driving
were evaluated [45]. An optimal tuning procedure has been
tried to be developed in order to realize the expected driver
behaviours during model predictive controller autonomous
driving based on the motion cueing algorithm [46]. Here,
mechanical configurations and system identification were
studied on a new 2 DoF 3-legs driving simulator and
verified with a low cost experimental setup [47]. For 5 DoF
motion simulation, a new motion cueing algorithm was stud-
ied with 3 DoF motion simulators and parameter tuning
was tried to be performed adaptively with an online opti-
mization algorithm [48]. A sliding mode control based on

FIGURE 2. 2 DoF vehicle simulator conceptual design.

FIGURE 3. Hardware architecture of 2 DoF vehicle simulator.

FIGURE 4. 2 DoF vehicle simulator.

linear Newton-Euler dynamic equation has been developed
for 3 DoF flight simulator platforms [49]. Noticeable differ-
ence corresponds to differential perception threshold is an
appropriate measurement for evaluating power-train modi-
fications. Here the motion scaling effect is analysed on the
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FIGURE 5. Hardware in the loop (HIL) for 2 DoF vehicle simulator.

FIGURE 6. Model based system identification and training dataset generation for NN.

driving simulator. Here, it is aimed to explain the differ-
ence in perception between driving simulator and real road
tests [50].

The conceptual design and hardware architecture of 2 DoF
vehicle simulator as shown Fig. 2 and Fig. 3 are prototyped
as shown in Fig. 4.

In this study, it was studied to determine the optimal angles
of inverse kinematic-based hook joints in order to correct the
mechanical errors experienced on 6 DoF vibration platforms
that were previously designed [51]. Here, a spherical motion
platform with multiple degrees of freedom to be controlled
by sensor fusion has been studied. Since the orientation in the
spherical joint is not easy to measure, the fusion of the optical
sensor and IMU is used. Compensation is provided with load
cells in order to prevent unstable conditions as unbalanced
loads leads to the controller performance [52]. In this study,
a new motion planning algorithm for motion estimation is
studied on the 3 DoF foldable parallel compensation plat-
form. A motion planning algorithm based on target motion
estimation and non-uniform rational B spline has been tried
to be developed [53].

As it can be understood from the literature review, many
methods have been tried to deploy the real driving feeling.
It has been observed that the method with the best efficient
way is based on neural network. The aim of this study is the
different test maneuver deployment to the vehicle simulator
by using IoT and NN. This study is the first phase of a two-
stage project. It was carried out to verify the deployment
of 2 DoF vehicle simulators under different test scenarios.
In the second phase, the deep learning algorithms for obtained
test results will be studied on testing and observing in
terms of the behavioural differences between healthy persons
and post-operatively rehabilitated persons. In this study, the
method that will contribute to the literature will be the evalu-
ation of 3 different neural network models that will be trained
with system identification data. Moreover, the improvement
of the reference trajectory tracking performance will be anal-
ysed with the models to be trained with the data decomposed
and composed by feature extraction by applying Fast Fourier
Transform (FFT) and Inverse FFT (IFFT) of the training data.
To differentiate and observe the performance of 3 different
NN model besides to extract the feature of the data, FFT is
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FIGURE 7. Model based system identification and training dataset
generation for NN.

used for the training data set to assess the potential enhance-
ment the realistic driving during test maneuver. And FFT
provides extraction of the feature of the training data such
as its amplitude and phase. Therefore, it enables more data
as potential improvement. However, it has also more com-
puting time and it may cause more latency considering the
limited computing of the micro-controller hence the optimal
processing has to be determined. Finally, the trained neural
networks will be subjected to driving scenarios for validation
and assessment.

II. 2 DoF VEHICLE SIMULATOR
The vehicle simulator has generally various degree of free-
dom such as 2, 3 and more. The vehicle simulators with high
degrees of freedom have more complex mechanical systems
and need electronic control systems that require higher com-
putational power. In this study, 2 DoF was preferred due to
the limited project budget and low cost scope. In this section,
the 2 DoF vehicle simulator is presented, and the conceptual
design of 2 DoF vehicle simulator is shown in Fig. 2. In 2 DoF
vehicle simulator, the motion is generated using two linear
actuators that are attached to themobile platform representing
the driver’s seat. Acceleration data along the x-y-z axes is
obtained as feedback through the use of an Inertial Measure-
ment Unit (IMU). The control signals of the linear actuators
and the IMU are transmitted to the host computer via an

FIGURE 8. HIL responses for system identification inputs.

IoT. The hardware architecture of 2 DoF vehicle simulator
is shown in Fig. 3.
The prototype is constructed by stainless steel. And the

analysis of stress strain of the 2 DoF vehicle simulator are
capable of carrying up to a driver with 80 kg.
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A mathematical model for the 2-degree-of-freedom (DoF)
vehicle simulator is presented in equations (1) to (5), which
integrates both kinematic and dynamic models. The model
includes the positional mass matrix, M(q), the vector of non-
linear sets arising from the centripetal and Coriolis acceler-
ations, V(q, q̇), and the vector of gravitational terms, G(q).
The total kinetic energy of the system is denoted as K , the
total potential energy as U, and Gij represents the Lagrange

36222 VOLUME 11, 2023



U. Demir et al.: Feature Extraction and NN-Based Enhanced Test Maneuver Deployment

FIGURE 9. 3 Different types of NN structures.

multiplier. This model has been previously described in the
literature [54], [55], [56].

In the hardware architecture shown in Figure 3, a 12V
power supply, 500N force and 100mm stroke 2 linear
motors with 500N force and 100mm stroke, 2 motor drivers
(VNH2SP30) with 12V – 30A, ESP32-WROOM-32U as IoT,
MPU9250 as IMU and Snopy V5H USB Pro as throttle-
brake-steering-gear are used. The equipment cost is 4750$.

The controller block diagram as HIL with 2 inputs (Forces)
and 3 Outputs (Accelerations) is shown in Fig. 5. HIL con-
sists of 3 layer which are IoT based controller block, motor
driver block, 2 DoF vehicle simulator block. Here, IoT based
controller block receives the torque demand and calculates
required reference of PID block. Motor driver block receive
the control signal and provides feedback and motor drive sig-
nals. 2 DoF vehicle simulator is plant model and it provides

the desired acceleration. The PID Controller blocks, which
drives the linear actuators here, are tuned to meet the require-
ments of real time, considering the maximum accelerations
within the scope of actuator specifications and test scenarios.

III. MATERIALS AND METHODS
In this study, the results of the data to be used for Neural Net-
work training were used by the System identification. Here,
the model-based system identification process for obtaining
NN training data is shown in Fig. 6. The target data to be
used for NN training are shown in Fig.7 which are defined
by considering the linear actuator specifications of the linear
actuator used in 2DoF vehicle simulator andmaximum accel-
eration values that may occur, as well as the initial positions
of the linear actuators. The sinusoidal signals as shown in
Fig. 7 consist of frequencies ranging from 1 to 20Hz and 10V
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amplitudes with 5 V offset, and two-phase shift from 180 and
360 degrees are utilized. Fig. 7 shows the system identifi-
cation signals, which were used to characterize the vehicle
simulator system and generate the input reference signals for
neural network training. Fig. 8 shows the acceleration data
(ax, ay, az) obtained from the IMU on the vehicle simulator
during the system identification process on the hardware-
in-the-loop (HIL) setup.

The obtained accelerations (ax, ay, az) as shown in Fig. 8
change from −150mm/secII to 100mm/secII. And the max-
imum acceleration is observed on x-axis. On y-axis, the
acceleration changes from −22mm/secII to 10mm/secII,
is observed thatminimum acceleration comparisonwith x and
z axes due to the limited displacement of y-axis. On z-axis is
observed that the acceleration changes from −75mm/secII to
75mm/secII.

As the growth of the NN structure increases the processing
time, it directly causes the instantaneous data generation to
be delayed over NN. Besides the Neural Network fitting
algorithms are considered as the deployment problem of the
test maneuver is based on fitting problem. The pure NN
structure are preferred due to the limited computing of IoT
based micro-controller and real time requirements. There-
fore, 3 different neural network architectures are determined
as shown in Fig. 9. Here, the training data preparation are
given for all NN models. Fig. 10 shows the amplitude and
phase data of the acceleration data to extract more feature
for 2nd NN structure. Fig. 11 shows the amplitude and phase
data of the torque data to extract more feature for 3nd NN
structure. All determined NN structures consist of two layers.
These are the hidden layer and the output layer. And it has
been determined that 60 neurons are used in the hidden layer
for the optimal results in order to avoid delays and latency
due to processing time. The number of neurons in the output
layer is configured according to the required output number
depending on the NN structure. Here, it is considered to
differentiate the input – output numbers to create 3 different
NN structures. In order to achieve this, it was tried to extract
the features and analyse the possibility of better learning by
decomposing the data used in NN training by FFT.

All NN structures are created and trained in Matlab Tool-
box then exported to Simulink environment. In the hid-
den layer, the number of neuron is determined by design
of experiment with BBD (Box-Behnken Design) consider-
ing the minimization of the processing time of NN. The
propagation time of NN is preferred lower than 1 millisec-
ond according to the sampling time and micro-controller
speed to avoid latency of the deployment process. Therefore,
the maximum neuron is calculated as 80 according to the
micro-controller processing cycle. According to the design
constraint, structure and parameter, a BBD is performed.
In BBD, the hidden layer neuron number (40,60,80), training
algorithm (Bayesian Regularization, Scaled Conjugate Gra-
dient, Levenberg-Marquardt) and NN structure (3 in-2 out,
6 in-2 out, 6 in-4 out) as the design parameters are deter-
mined for BBD. After the BBD, NN performance, MSE and

FIGURE 10. FFT results for HIL responses as training input data of NN.

FIGURE 11. FFT results for system identification inputs as training target
data of NN.

Processing Cycle are observed as results of the experiments.
According to the results, 60 neurons for hidden layer and
Levenberg-Marquardt for training algorithm are determined.
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FIGURE 12. Driving scenarios.

The 1st NN structure (Fig. 9) consists of 3 inputs (ax, ay,
az) and 2 outputs (τ1, τ2). It comprises two layers called
hidden and output, with 60 and 2 neurons, respectively. The
activation function employed in the hidden layer is Tansig,
while Purelin is utilized in the output layer. The 1st NN
structure is trained with the input data (Fig. 8) and target data
(Fig. 7) by using the Levenberg-Marquardt algorithm.

The 2nd NN structure (Fig. 9) consists of 6 inputs (ampli-
tudes and phases of ax, ay, and az as shown in Fig. 10) and
2 outputs (τ1, τ2), where the activation functions and training
algorithm are the same as the 1st NN structure. In 2nd NN
structure, 6 input data are obtained as amplitudes and phases
of ax, ay, and az by FFT. The 2nd NN structure is trained with
the input data (Fig. 10) and target data (Fig. 7) by using the
Levenberg-Marquardt algorithm.

The 3rd NN structure (Fig. 9) consists of 6 inputs (ampli-
tudes and phases of ax, ay, and az as shown in Fig. 10)
and 4 outputs (amplitudes and phases of τ1, τ2 as shown in
Fig. 11). In 3rd NN structure, 6 inputs data are obtained as
amplitudes and phases of ax, ay, and az by FFT, and 4 outputs
data are obtained as amplitudes and phases of τ1, τ2 by
FFT. It has 60 neurons in the hidden layer and 4 neurons in
the output layer. Tansig and Purelin are used as activation
functions in the hidden and output layers, respectively. The
3rd NN structure is trained with the input data (Fig. 10)

and target data (Fig. 11) by using the Levenberg-Marquardt
algorithm.

After the training of the NN structures met the desired
criteria, driving scenarios are reviewed in the literature for
testing and validation. Driving scenarios are often designed
to measure vehicle response in different dynamic conditions.
Therefore, driving scenarios consist of various maneuvering
movements including acceleration, deceleration, cruise, idle
mode, right and left turn. These maneuvers are typically
designed to evaluate the effect of individual components or
subsystems on the overall performance and handling of the
vehicle. In this study, it is aimed to test the real driving feeling
by transferring the vehicle responses to the driver via the
2 DoF vehicle simulator. In the literature, commonly used
test procedures are determined to test and validate the trained
NN structures. These test procedures are Constant Radius
(CR) (SAE J266_199601 and ISO 4138:2012), Double Lane
Change (DLC) (ISO 3888-2), Fishhook (FH) (NHTSA stan-
dard), Increasing Steer (IST) (SAE J266), Sine with Dwell
(SwD) (NHTSA standard), and Swept Sine (SS) which are
shown in Fig. 12 [57], [58], [59], [60]. The lateral and longi-
tudinal movement of the driving scenarios as shown in Fig. 12
are used for test of all trained NN model.

To test and evaluate the NN structure performances, all
driving scenarios as shown in Fig. 12 are run on reference
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FIGURE 13. Acceleration on x-y-z axes for each driving scenarios.

application to create the test data for the NN structures.
To avoid ethical permission and other undesirable situa-
tions such as sitting position, posture alignment and different
weight, it is preferred maximum bulk mass (80 kg) during
the tests due to the 2 DoF vehicle simulator has capable of
carrying up to 80 kg.

The obtained acceleration data under the driving scenarios
simulated in the reference application is presented in Fig. 13
for the x, y, and z axes. The trained neural network models are
subsequently evaluated using acceleration data obtained from
the test scenarios as shown in Figure 14. The test scenarios

include Double Lane Change (DLC), Constant Radius (CR),
Fishhook (FH), Increase Steer (IST), Sine with Dwell (SwD),
and Swept Sine (SS), all of which were recorded and analysed
for their respective acceleration data (ax, ay, az). After obtain-
ing the relevant test data, the evaluation process is tested
separately for each NN structure as shown in Fig. 14. Since
the test data of the driving scenarios is in the time domain, the
input data for the 2nd and 3rdNN structures are obtained after
the FFT process and applied to the NN input.

In addition, as the output of the 3rd NN structure includes
the amplitudes and phases of the control signals, these signals
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FIGURE 14. Deployment procedure to 2 DoF vehicle simulator.

are recomposed with IFFT and converted into control signals
then applied to HIL.

IV. RESULTS AND DISCUSSION
The trained neural networks undergo a validation process,
as illustrated in Fig. 14. In this process, the acceleration data
(ax, ay, az) obtained from various test maneuvers serve as
the reference signal for DLC, CR, IST, FH SwD, and SS test
cases. During the testing of the reference test maneuvers on a
vehicle, the acceleration data is recorded as time series. The
recorded test data is then scaled according to the constraints
of the vehicle simulator. The performance of the trained neu-
ral network is evaluated by separately applying the recorded
acceleration data as time series to the neural network input for
each test scenario. During the test phase of all NN structures,
the results and reference signals obtained on each axis (x-y-z)
and each NN structure (1st, 2nd, 3rd) are shown separately in
Fig. 15.

The training results of NN structures indicate a perfor-
mance of 87.1% and MSE = 9.2 for the 1st NN, 91.2% and

MSE = 7.8 for the 2nd NN, and 89.8% and MSE = 8.4 for
the 3rd NN.

The obtained results in Fig. 15 are considered as refer-
ence and measured signals and are evaluated using the mean
absolute percentage error, which is presented in Table 1.
As shown in Table 1, the system verification is achieved with
an average error of 13%. Since the vehicle simulator used in
this study has 2 degrees of freedom, it is observed that the
acceleration error on the z-axis is relatively higher compared
to the acceleration errors on the x and y-axes. Moreover, the
minimum and maximum errors are found to be 7% and 19%,
respectively.

The results of this study indicate that the neural network
structures trained using the Levenberg-Marquardt algorithm
are highly effective in predicting the behaviour of vehi-
cles under different test scenarios. The validation process
produced a relatively low mean absolute percentage error,
suggesting that the trained neural networks can accurately
estimate the acceleration data of vehicles.

To achieve a realistic driving experience, it is imperative
that the neural network is capable of computing appropriate
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FIGURE 15. Test results of 2 DoF vehicle simulator under driving scenarios.
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TABLE 1. MAPE (mean absolute percentage error) (%).

control signals. However, the limited processing capacity
of the micro-controller on the vehicle simulator can lead
to delays and a diminished driving sensation. In order to
overcome this challenge, the acquired data is transmitted to
the main server via the Internet of Things (IoT) for processing
in the neural network. The resulting reference signals are
then transmitted back to the actuators via IoT to generate the
necessary accelerations and achieve a more realistic driving
experience. This approach leverages the power of cloud com-
puting to overcome the limitations of the micro-controller
and enables the neural network to compute more complex
control signals with greater accuracy and precision. Such an
approach has the potential to enhance the driving experience
and provide more realistic testing scenarios for researchers
and practitioners in the field of vehicle dynamics.

Overall, the results of this study demonstrate the potential
of neural network structures for predicting the behaviour
of vehicles in various test scenarios, and suggest promising
avenues for further research and development in this area.

V. CONCLUSION
This study presents enhanced test maneuver deployment with
feature extraction and NN for a 2 DoF vehicle simulator.
The simulator must convey a realistic driving experience to
the driver for different driving scenarios. This is achieved by
transferring the acceleration of the axis set, which is adjusted
based on the driving scenario of the relevant manipulators,
to the mobile platform. To transfer the reference accelerations
on the three main axes to the driver, two linear actuators on
the 2 DoF vehicle simulators must be excited. To address
this nonlinear problem with three inputs and two outputs,
the PID controller are powered by NN-based reference signal
generator is a necessary solution.Where, NN structure is used
rather than inverse kinematics to derive the torque demand
from accelerations.

In order to ensure a realistic driving experience, the neu-
ral network must be capable of computing suitable control
signals. However, the micro-controller on the vehicle sim-
ulator has limited processing capacity, which can result in
delays and a reduced driving sensation. To overcome this,

the acquired data is transmitted to the main server via IoT
for processing in the neural network. The resulting reference
signals are then sent back to the actuators via IoT to generate
the appropriate accelerations and achieve a realistic driving
experience.

Once the IoT and neural network-based simulator has been
set up and the neural network trained using data acquisition
and system identification techniques, the system’s perfor-
mance is verified through various driving maneuvers such as
DLC, CR, IST, FH, SwD, and SS.

To train the neural network, the vehicle simulator is
exposed to two different combination signals with frequen-
cies ranging from 1 to 20 Hz, as well as two different
combinations of phase shifts (180 and 360 degrees). The
resulting accelerations on the driver’s seat are recorded, with
the applied control signals serving as target data for the neural
network, and the acceleration data serving as input data.

To evaluate the convergence of different neural network
structures to the reference input, three different types of
structures are used in this study. The 1st NN structure has
three inputs (the accelerations) and two outputs (the force
demands). The 2nd NN structure has six inputs (the phase
angle and amplitude of the accelerations obtained via FFT)
and two outputs (the force demands). The 3rd NN structure
also has six inputs (the phase angle and amplitude of the
accelerations) and four outputs (the phase angle and ampli-
tude of the force demands obtained via FFT). In the 3rd NN
structure, the outputs are re-composed by IFFT to obtain the
force demands for the actuators.

The neural network structures used in this study consist
of 3-6-6 inputs (1st NN - 2nd NN - 3rd NN), 2-2-4 outputs
(1st NN - 2nd NN - 3rd NN), and 2 layers. Tansig activation
function with 60 neurons in the hidden layer is preferred
for the neural network, while purelin activation functions
are preferred with 2-2-4 neurons (1st NN - 2nd NN - 3rd

NN) in the output layer. The neural network is trained using
the Levenberg-Marquardt training algorithm with the logged
data. The performances of the 1st, 2nd, and 3rd NN structures
are evaluated, and the results show that the 2nd NN structure
has the best performance, achieving 91.2% accuracy and an
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MSE of 7.8, while the 1st and 3rd NN structures achieve
87.1% accuracy with anMSE of 9.2 and 89.8% accuracy with
an MSE of 8.4, respectively.

During the test phase, the recorded acceleration data from
real vehicle driving maneuvers such as DLC, CR, IST, FH,
SwD, and SS are scaled and processed, then applied to the
neural network as input. The output control signals generated
by the neural network are transferred to the actuators of the
vehicle simulators via IoT. The performance of the system
is evaluated by transferring the measured acceleration data
from the IMU on the driver’s seat to the main server via
IoT. The results show that the vehicle simulator can track the
reference accelerations with an average error of 13%, 8.73%,
and 10.14%, which is acceptable for this type of system. The
maximum error observed during the assessments is 19%.

The 2nd NN structure outperforms the 1st and 3rd NN
structures due to its ability to better train for reference inputs
such as amplitude and phase angle. On the other hand, the 3rd
NN structure shows better convergence compared to the 1st
NN structure. A summary of theMAPE results for the applied
reference accelerations and the measured accelerations is
presented in Table 1.

The finding is significant for researchers and practitioners
in the field of vehicle dynamics, as it provides a promising
approach for predicting a vehicle’s behaviour under various
test scenarios.

Moreover, this study provides a foundation for further
exploration of the performance of trained neural networks
on different vehicle simulators. Future studies could inves-
tigate the robustness of the proposed approach and evaluate
its potential for predicting vehicle behaviour under various
conditions. Additionally, incorporating additional features,
such as road conditions or the vehicle’s speed, could further
enhance the accuracy of the trained neural networks.
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