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ABSTRACT Cloud computing is a promising platform for running massive workflow applications based
on a pay-per-use model. In cloud computing, the reduction of energy consumption and providing security to
workflow scheduling are the key research areas. The primary focus of the existing algorithms, viz., particle
swarm optimization (PSO), crow Search optimization (CSO) and other non-metaheuristic algorithms like
Round Robbin (RR), SJF, Min-Min, Min-Max etc., is based on the execution time and cost of the workflow
applications as a budget constraint. However, these algorithms failed to adequately determine energy con-
sumption, resource utilization, and security in workflow scheduling. To address this issue, a multi-objective
scheduling framework is proposed. In this paper, the framework performs dynamic workflow scheduling
using universal unique identification- Blake (UUID-Blake), Manhattan Distance-Partition around algorithm
(MD-PAM), Linear Scaling-Crow Search Optimization (LS-CSO), Anova-Recurrent Neural Network. The
implementation of this framework was achieved in three phases (Phase 1, Phase 2, and Phase 3). Phase
1 is about user registration and authentication using UUID-Blake, which enhances security by allowing
legitimate users into the cloud environment. Phase 2 deals with clustering and resource monitoring using
MD-PAM and A-RNN, to reduce makespan the similar tasks are clustered using task length and maximize
the resource utilization by predicting the resource availability. Phase 3 deals with the scheduling of dynamic
workflows using LS-CSO by selecting suitable virtual machines. We have considered the heterogeneous
computing scheduling problem (HCSP) and grid workload archive (GWA)-T-12 Bitbrains datasets for
comparing our proposed framework with existing works. Based on the result analysis, the proposed LS-SCO
outperformed when compared with the algorithms CSO, PSO and RR has achieved better performance.

INDEX TERMS Crow swarm optimization, linear scaling, Manhattan distance, partitioning around medoid,
recurrent neural network, workflow scheduling.

I. INTRODUCTION
Cloud computing is transforming into a high-performance
computing environment with enormous computational
resources such as storage, networking, databases, and appli-
cations. These resources are allocated to users from the
collective resource pool with reduced management or inter-
action [1]. The three major services delivered by the
cloud technology include Software-as-a-Service (SaaS),
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Platform-as-a-Service (PaaS), along with Infrastructure-as-a-
Service (IaaS) [2] out of which the most prominent modelis
IaaS. This model provides pre-configured virtual machines
(VMs) to the user from the cloud framework [3], [4]. An infi-
nite quantity of computational resources and storage facilities
can be attained by using VMs [5].With the increased demand
for such cloud services, the number of users is expanding
day by day [6]. Because of this, the unpredictable resource
usage of VMs has increased, due to which the servers of
cloud data centers get either over-utilized or under-utilized,
thereby resulting in an imbalanced state [7], [8]. As a result,
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it degrades the total performance and usage of resources
among the cloud servers. To utilize resources for maximum
potential and to accomplish the tasks in minimum time, the
development of efficient workflow algorithms is required [9].

The prominent approach in modelling high data processing
applications is the workflow, which is performed in cloud
computing (CC) domains [10]. The Direct Acyclic Graph
(DAG) denotes the workflow where the computational works
are illustrated by graph nodes and dependencies among the
graph’s tasks are illustrated by graph edges [11]. The scien-
tific application has a huge impact on theDAG size [12]. If the
scientific application is simple together less complicated, the
workflow size is tiny, or else it is taken as large [13]. The
methodology, which performs workflow tasks mapping on
the heterogeneous together with distributed resources of a
computing system is termed Workflow Scheduling (WFS).
To satisfy the user-defined constraints, a suitable quantity of
resources is allotted for the workflow tasks execution [14].

A. SCIENTIFICAPPLICATIONS
A set of application criteria must be identified in or- der to
better model scientific applications, identify the appropriate
leased resources for execution, and define a better scheduling
strategy, such as:

1) Parallel model: specifies whether the application is
defined as a single sequential task or as multiple parallel
tasks that may be executed on multiprocessor machines
or distributed processing nodes.

2) Task dependency: relating to the I/O flow between tasks;
indicating that a task cannot begin execution until the
output data of studies on which it depends are available.

3) Resource Usage: it specifies the applications are
I/O – Intensive, Data-Intensive and CPU-Intensive.

The majority of scientific applications have a highly depen-
dent task structure that is intended to be executed in a dis-
tributed computing environment. This form of a collection
of tasks in these applications refers to scientific workflows.
Figure 1-5 shows a collection of popular scientific workflows
that simulate real- world scientific applications. Cybershake
Figure.1 and Broad Band Figure.2 for earthquake science,
Montage Figure.3 for astronomy research, LIGO Figure.5 for
gravitational wave detection, and Epigenomics Figure.4 for
biological concerns. Each scientific workflow type will be
resolved by carrying out a specific set of tasks, as denoted
by colors in Fig. 1, depending on the related application.
Additionally, a single task or several parallel tasks may be
used to complete each task. As a result, a collection of tasks
arranged in a specific dependency structure and grouped into
a set of particular jobs produces the scientific workflows.

CPU intensive foundation and Memory-bound base appli-
cations requiremore physicalmemory for executing the tasks,
and I/O-intensive workflows consist of tasks that consume
and generate huge quantities of data, and hence spend the
majority of their time executing I/O operations.

FIGURE 1. Cybershake.

FIGURE 2. Broadband.

In workflow scheduling, various workflow models are
there, viz., i)Workflow in parallel, ii) fork-join workflow, and
iii) random workflow.

Workflows are used in many scientific fields to describe
complex computational problems that can be solved effi-
ciently in a distributed environment. Cyber Shake, Epige-
nomics, LIGO, broad bond, and montage workflow are some
of the example workflows. Several methodologies have been
proposed for elevating the efficacy of the WFS process.

Although the basic principles of cloud computing
(CC)such as elasticity and the heterogeneity of cloud
resources are not considered in the existing works [15].
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FIGURE 3. Montage.

A focus on a single workflow is made on most of the
scheduling procedures in cloud environments and the issue
of inconsistent arrivals in large-scale WFS is ignored [16].
Additionally, some important constraints such as energy con-
sumption (EC),Resource utilization, and Security are not
considered by most works [17]. Securely hiring the tasks
to suitable machines with reduced EC is a crucial task in
the distributed data-intensive computing environment. The
existing works failed to solve these problems [18].

In this paper, we develop a framework, which addresses
the energy constraint, under/over utilization of resources
and security constraints to schedule the dynamic workloads.
In our proposed framework, we integrate the LS-CSO and
ANOVA-RNN with the UUID-BLAKE hashing technique to
resolve the above-mentioned issues.

Contribution: The key highlights of this paper is as follows.

i. We proposed a resource-efficient framework based on
workflow scheduling for cloud computing using UUID-
BLAKE, MH-PAM, A-RNN, and LS-CSO.

ii. We developed a secure workflow scheduling policy
by generating hash codes. The hash code is generated
by using the UUID-BLAKE algorithm to improve the
authenticity of the cloud server by allowing the legiti-
mate user to access it.

iii. To reduce the makespan and system overhead, similar
tasks are clustered. The clustering process is done with
the help of MH-PAM. PAM is a k-medoid algorithm,
which has less sensitive noise and outliers compared to
k-means.

FIGURE 4. Montage.

FIGURE 5. LIGO.

iv. The virtual machines are monitored by using A-RNN,
which predicts the usage of the resources. Based on the
availability of resources, a dynamic workflow is gener-
ated. To overcome the drawback of RNN, the ANOVA
radial basis kernel function is incorporated.

v. The most appropriate virtual machines to perform the
dynamic workflow are selected by means of the LS-CSO

37180 VOLUME 11, 2023



P. V. Reddy, K. Ganesh Reddy: Multi-Objective Based Scheduling Framework for Effective Resource Utilization

TABLE 1. Abbreviations.

algorithm. Each VM’s capability is evaluated, and tasks
are then assigned to the most appropriate one. By doing
so, energy consumption is reduced and resources are
utilized efficiently.

The remaining sections of the paper are organized as follows:
The outline of the paper is condensed as follows: Sec-

tion II surveys the associated works regarding the proposed
method. Section III explains the proposed methodology
called a resource-efficient and secure workflow scheduling.
Section IV illustrates the results and discussion of the pro-
posed method based on performance metrics. Finally, Sec-
tion V concludes the paper with future work and Table.1
represents the abbreviations used in the paper.

II. RELATED WORK
Dubey et al. [19] framed a management system for the eval-
uation of multi-organizations in a community cloud model.
An Ideal Distribution Approach (IDA) in conjunction with
an Enhanced IDA (EIDA) heuristic-cantered algorithm was
demonstrated for resource allocation. These algorithms iden-
tified the attainable and ideal schedule in workflow execution
and reduced the Makespan (MS) and cost during the time
limit efficiently. In the need to meet SLA terms and to reduce
time and computation costs, the IDA algorithm attained solu-
tions efficiently. The IDA algorithm’s efficacy was elevated
by load balance phase inclusion. While analogizing with the
IDA algorithm, Enhanced IDA (EIDA) attained a reduced
MS. The experimental outcomes illustrated that EIDA per-
formed superior regarding cost and MS than the existing

algorithms. However, resource utilization was not executed
efficiently.

For data-intensive scientific workflows, Hazekampet
al. [20] combined Static and Dynamic Storage Management.
the three-tiered approach was formulated: (1) to analyze the
storage requirements of a workflow before execution, a static
analysis algorithm contributed an authentic prediction for
success or failure; (2) Ignoring the deadlock that occurred
at runtime, an online storage management algorithm was
supposed to be for the storage requirements of future tasks.
(3) The storage consumption of distinctive tasks was limited
by an online storage management algorithm that allowed
strong guarantees of the static evaluation along with dynamic
management algorithms. As the outcomes suggest, the execu-
tion of these methods on three complex workflows performed
superior to the existing techniques. Nevertheless, elevated
workflow MS was demanded in this scheme.

In Asghari et al. [21], they introduced a framework
that consisted of numerous cooperative agents. Here, Task
Scheduling (TS) phases along with resource provisions were
taken into account, and the QoS imparted to the consumer is
confined. All TS along with resource provisioning processes
were contributed by the integrated model, and it also served
as a management tool for user applications and efficacious
exploitation of cloud resources. It had a complex scheduling
process for the reason that it relied on sub-tasks, and it
performed well on dependent simultaneous tasks. Regarding
MS, resource utilization, and cost, together with consumption
of energy, high-quality performance was attained in the out-
comes when analogized with other cloud resource manage-
ment models. However, the impact of communication among
tasks has not been inspected.

Kim et al. [22] presented human-intelligence workflow
management (HIWM) for the dynamic resource distribution,
storage, work processing, and the computation of opera-
tions for fast Augmented Reality (AR) service provision
on diverse smart mobile devices that relied on human atti-
tude and was applicable for future web environments. Rely-
ing on the description of the metadata along with AR
user requests, pre-processing was executed to reduce ser-
vice response time in HIWM. A dynamic job distribution
model was demonstrated for the processing of big data
for AR services. It also comprises the cloud infrastructure
depending on the computer’s capability. With regards to out-
comes grounded onAR service requests, 40.56% of operation
time was reduced when compared to the existing models,
whereas inefficiency occurs in the process of a complex
workflow.

Patnaiket et al. [23] elucidated a workflow-cantered tech-
nique for TS in a cloud environment. A huge quantity of
co-dependent tasks by the cluster of computed resources with
heterogeneous capability was performed by this workflow
procedure. Here, efficient allotment of tasks was the vital
motive, as a consequence of which MS was reduced. Addi-
tionally, to indicate a set of interdependent tasks, an elon-
gation of the max-min algorithm was executed on a DAG.
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TABLE 2. Workflow evaluations and Objectives used in Algorithms.

Regarding MS, this technique outperformed the existing
methods when testing was executed on standard scientific
workflows. While executing the workflow process, igno-
rance of some basic principles of CC was the downside
here.

Belgacem and Beghdad-Bey [24] proposed HEFT-ACO
trade-off between cost and makespan is designed to improve
the quality of service requirements. The authors are primar-
ily concerned about finding the best solution for assign-
ing tasks to the VM. For assigning tasks the workflow
schedule is divided into two parts, the first of which uses
HEFT to schedule tasks based on rank and the second
of which uses ACO to schedule ready tasks. The exper-
imental results showed that HEFT-ACO outperformed the
current algorithms in terms of cost and MS. However,
energy consumption and security were not carried out
efficiently.

Haidri et al. [25] proposed a cost-effective deadline-aware
algorithm (CEDA) to optimize the execution cost and time
by satisfying deadline constraints. CEDA chooses the tasks
with the highest rank and sends them to the cheapest VMs,
taking the VMs’ acquisition delay into account. The exper-
iment results showed that CEDA outperformed the ICICP
and ICICPD2 in terms of cost and time. To reduce the cost,

instead of creating a new VM instance, CEDA prefers to
use an existing one whose remaining charge period is long
enough to complete the task before its latest finish time. How-
ever, the utilization of resources and energy consumption is
efficient.

The preceding Table 2 provides an overview of workflow
evaluations and scheduling objectives used in various algo-
rithms. It also reveals that the authors considered the mon-
tage, SIPHT, and LIGO workflows as static with limited
parameters, resulting in poor scheduling performance. The
author BTS considered all workflows, including random
workflows, but did not take into account multi-objective
parameters such as makespan, resource utilization, and
energy consumption. The existing scheduling algorithms did
not address secure scheduling; security is a major issue in
cloud computing in terms of unauthorized persons accessing
and modifying data (tasks), which can lead to a different
scheduling attack. To address the aforementioned limitations,
our proposed approach addressed secure scheduling in the
beginning by allowing authorized users into the cloud envi-
ronment using the UUID-BLAKE hashing technique, and it
addressed VMmonitoring using A-RNN to improve schedul-
ing performance in terms of resource utilization and energy
consumption.
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III. PROPOSED FRAMEWORK
In a cloud-computing paradigm, workflow scheduling is a
key issue and poses a continuously challenging problem.
Large numbers of virtual machines are employed in the cloud
infrastructure. Thus, the selection of the most appropriate
virtual machines for each task is a complex process. So, the
work has proposed an resource-efficient and secure workflow
scheduling in a cloud server using MH-PAM, LS-CSO, and
ARNN with the UUID-BLAKE hashing technique. The pro-
posed framework Figure.6 concentrates on three important
phases. The first phase ensures the secure authorization of
the users to the cloud server. In the second phase, the works
requested by the users are scheduled to the server in such a
way that the total time, as well as the energy required for
the task’s completion, is minimum. Then, the third phase
focuses on the efficient selection of virtual machines that
are appropriate for the user-requested task. By which the
resource consumption, time consumption, as well as energy
consumption can be drastically reduced.

A. PHASE 1: USER AUTHENTICATION
1) USER REGISTRATION
Initially, the users are registered with the corresponding
cloud server by providing their details and their cloud server
requirements such as bandwidth utilization, Hard disk drive,
RAM, a processor with estimation details, and some other
details.

2) GENERATION OF HASH CODE
Once the registration process has been completed, the hash
code is generated for every registered user. This hash code
generation process improves the authenticity of the cloud
server by allowing the legitimate user to access the cloud
server. In this work, the hash code is generated by using
the UUID-BLAKE Hashing algorithm. Here, the universally
unique identifier (UUID) is incorporated with the exist-
ing BLAKE hashing algorithm to improve the hash code
complexity.

a: GENERATION OF HASH CODE USING UUID-BLAKE
ALGORITHM
The BLAKE-32 hash function is used to hash a message ms
and before that the message is padded with equal or more
than 66bits,then it becomes to the multiple of 512.The repre-
sentation of bits in message are consider as, the last 64 bits
are binary representation of the bit length of the unpadded
message. This padding message again splits into 512-bit
blocks and reiteratively inputted to the compression function.
With old, hash value, until now 64-bit counter bits hashed and
optional 128-bit salt. Moreover, in the documentation the old
one hash value is specified as initialization vector to the first
block. While padding the counter last block is set to zero.
In this work, the UUID is given as the input to the BLAKE
algorithm to ensure the complexity of the hash code [37].

Following are the steps incorporated in the BLAKE
algorithm.

The BLAKE’s compressive function has ‘4’ values as its
input, which is expressed as,

• Chaining value (H ) = H0,. . . . . . .,H7

H (0——7) are the internal states of hash

• Message block (ms) = ms0,. . . . . . . . . .,ms15

The algorithm starts with splitting the user message ms into
512b blocks ms0 to ms15 (If necessary, the final block is null
padded).

• Salt (S) = S0,. . . . . . .,S3

The salt is chosen optionally by the user and set to a null
value when no salt is required. Which is only used tasks, like
randomized hashing.

• Counter (C) = C0,C1

If the last block does not contain any bits from the original
message, the counter is reset to zero.

The compression function of H, ms, S,C is

H ′ = compress(H ,ms, S,C (1)

Initialization, round iteration, and finalization are the ‘3’
stages undergone by the compressive function.
Initialization:
The initial states of L0 . . . . . . . . . . L15is represented by 4×

4 matrix.

L =


L0 L1 L2 L3
L4 L5 L6 L7
L8 L9 L10 L11
L12 L13 L14 L15

 (2)

A 512-bit state L is maintained within the compress function,
which is represented as a 4 × 4 matrix of 32-bit words. The
current hash, salt value, timer value C, and a 256-bit constant
c are used to initialize this state. The compression function’s
initial state is given


H0 H1 H2 H3
H4 H5 H6 H7

S0 ⊕ C0 S1 ⊕ C1 S2 ⊕ C2 S3 ⊕ C3
S4 ⊕ C4 S5 ⊕ C5 S6 ⊕ C6 S7 ⊕ C7

 (3)

The state matrix is iterated over in 10 rounds after being
initialized. It is strongly recommended that simpler rounds
be used when designing BLAKE, as this has been proven to
increase security.
Round Function:
In every round it consists of 8 states those are, λ0. . . . . . . . . ..

λ7 that are responsible for changing the data (confusion) of
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FIGURE 6. Multi-objective Framework using LS-CSO.

the BLAKE algorithm

λ0(L0,L4,L8,L12)λ1(L1,L5,L9,L13)

λ2(L2,L6,L10,L14)λ3(L3,L7,L11,L15)

λ4(L0,L5,L10,L15)λ5(L1,L6,L11,L12)

λ6(L2,L7,L8,L13)λ7(L3,L4,L9,L14)

a← a+ b+msσRu(2i)⊕CσRu(2i+ 1) (4)

d← (d⊕ a)≫>16 (5)

c← c+d (6)

b← (b⊕ c)≫>12 (7)

a← a+b+ (msσRu(2i+1) ⊕ CσRu(2i)) (8)

d← (d⊕ a)≫>8 (9)

c← c+ d (10)

b← (b⊕ c)≫>7 (11)

Here, the constants are specified as Cj for j =
0,. . . . . . . . . . . .,15 and permutations of Z16 are signified as
σRu forRu = 0,1,. . . . . . . . . ,9.In the BLAKE documentation,
both of them are proffered. Lastly, the output hash value H is
formulated as.
Finalization:
Afinal step is carried out by the compressive function after

ten/fourteen iterations of the λ transformation, The new chain
values H are extracted from L0 . . . . . . . . . . . . L15 with salt and
chain value.

H
′
i ← H i ⊕ Simod4 ⊕H i ⊕H i+8fori = 0, 1 . . . ., 7

(12)

After successfully generating the hash code, it is saved on
both the cloud server and the user’s system. When logging

into the cloud, the user must authenticate with their username,
password, and hash code.

3) LOGIN
After the successful generation of the hash code, the user
must enter the username, password, and hash code. Then,
these three data are verified by the verification server. If all
entered details are correct, then the system allows the user to
access the cloud server. Thus, the users can make use of cloud
resources to complete their work.

B. PHASE 2: EFFICIENT WORKFLOW SCHEDULING
1) ATTRIBUTES EXTRACTION
After Submitting the tasks, the most important and required
attributes such as the number of CPUs required for the
task execution NCPU, the number of instructionsNIns, and
the dimensions such as large, medium and, small tasks D
are extracted from the workflow. These extracted attributes
highly contributed to the efficient clustering of tasks.
The mathematical representation for the extracted attributes
WFAttributes is given by.

WFAttributes = {NCPU,NIns,D}

2) TASK CLUSTERING
After that, the tasks are clustered based on the extracted
attributes. This clustering process drastically reduces the sys-
tem’s overhead by assigning one or more small tasks into a
single execution unit called a job. In this proposed frame-
work, the clustering of similar tasks is done by the means
of Manhattan Distance-based Partitioning around Medoid
(MD-PAM). The PAM is a kind of K-Medoid Algorithm.
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A k-medoid algorithm is a clustering approach that is related
to the k-means clustering algorithm. Thus, the K-medoid-
based PAM algorithm is less sensitive to noise and outliers
compared to k-means because it uses medoids as cluster cen-
ters instead of means, which is used in k-means. In the PAM
algorithm, the minimum distance between the medoids and
the tasks is calculated in terms of Manhattan distance (MD),
thereby the more similar tasks are formed as a cluster. Thus,
the MD-PAM algorithm drastically improves the clustering
accuracy.

Step 1: In an initial step, the optimal medoid k is initialized
by adding the number of objects with minimum distance to
all other objects. Here, the objects represent the tasks. The
distances between the objects i and j at Ai and Bj respectively
are calculated by theManhattan distance formula that is given
as.

MD =
n∑
i=1

|Ai-Bj| (13)

Step 2:An object i (iϵO) is considered as a candidate that is
added to k. Then, a total gainTGi is computed for each object
and that is given by.

TGi =
∑

j∈0
Max{Hj − ∂(j,i),0} (14)

where, j is the object of O excepti. In case, Hj > ð(i,j) then
the quality of the clustering is improved.

Step 3: After the calculation of the total gain of all objects
in O, the object G, which has maximum,TGg is selected and
is mathematically formulated as.

K = K ∪ {G} (15)

O = O− {G} (16)

These steps are repeated until the v objects are selected.
Step 4: The swap phase improves the clustering quality by

optimizing the set of selected objects that are terminated by
considering all swap pairs (v,

(
v, ∅

)
ϵk ∪ O and computing

the effect ξv on the sum of dissimilarities between objects
and their cluster centers by swapping v and 8, and then
transferring 8 from O to k. ξv8 is calculated by.

ξvφ =
∑ {

Vtvφ |t ∈ O
}

(17)

where, vtv8 denotes the contribution of each object t in O to
swap v and O. If 8(t,v)>Ht or 8(t,v)=Ht, then vtv8 can be
computed as.

νtvO =

{
Min{∂(t, φ)− Ht , 0} ∂(t, v) > Ht
Min{∂(t, φ), εt } − Ht ∂(t, v) = Ht

(18)

Step 5: The pair (v,8) with the minimum ξk8 is selected
to determine whether the swapping is done or not. If ξk8<0,
then the swapping process is taken place and returns to the
beginning phase of the swap. Otherwise, record the medoids.

Step 6: Then, the objects which are closest to the medoids
and the minimum dissimilarities between the objects are
grouped into the clusters and that is given by.

Cp = {C1,C2,C3, . . . . . . .Cn} (19)

where, {C1,C2,C3, . . . . . . .,Cn} denotes the number of
formed clusters. This cluster contains more similar tasks so
that the tasks can be executed efficiently with limited con-
sumption of resources and time.

3) WORKFLOW MANAGEMENT SYSTEMS
After the successful clustering, the number of requests is
collected from the number of users and these requests are
submitted to the workflow management systems (WMS).
Usually, the heavy workload demands significant amounts of
computing resources, at some point, the server exhausts its
resources, and it fails to handle incoming requests. So, to deal
with that, the WMS has been used. Thus, the WMS makes
sure the efficient usage of cloud resources and manages the
limited consumption of energy. TheWMS resides on the host
machine, which schedules the workflow tasks based on the
available resource. Furthermore, it monitors the execution
and manages the input data, intermediate files, and output
files of the workflow tasks.

4) WORKFLOW MAPPER
The workflow mapper produces an executable workflow
based on the availability of VMs, which are calculated (mon-
itored and predicted), by ARNN. This workflow mapper
identifies the suitable software alongwith hardware resources
needed for the implementation. Thus, with limited ET, the
number of tasks is executed. Furthermore, for performance
optimization, the mapper restructures the workflow.

5) MULTI-OBJECTIVE MEASURES
From the number of virtual machines that reside on the cloud
server the multi-objective measures such as network transmit
throughput, memory usage, disk read throughput, disk write
throughput, cpu cores, timestamp, cpu usage, memory capac-
ity provisioned, and cpu capacity provisioned are extracted.

6) VIRTUAL MACHINE MONITORING
In this phase virtualmachines aremonitored, before assigning
the workflows to the virtual machines are monitored based on
the historical data of machines and extracted multi-objectives
measures. Thus, the VMs are monitored using the A-RNN
Figure.7The traditional RNN uses the sigmoid or softmax
activation function for classification. However, the vanishing
gradient that exists in the back-propagation process is the dis-
advantage of these activation functions, resulting in learning
delay as well as poor classification performance. To over-
come the aforementioned issues, the ANOVA radial basis
kernel function, which is well-suited for deeper networks,
is combined with the RNN algorithm. Furthermore, the error
rate is reduced.

RNN is a neural network, In which the outcome from the
previous step is used as input for the next step. The hidden
state is the important feature of RNN, which retains the infor-
mation of sequence. Each hidden layer (HL) in a traditional
neural network has its own set of weights and biases. For
example, the weights and biases of HL1, HL2 and HL3 are
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(W1, B2), (W2, B2) and (W3, B3), respectively. It indicates
that every HL is independent to the other. Thus, they do not
remember the o/p of the previous layer. The RNN on the
other hand, converts independent into dependent activation
by assigning the same weights and biases to all the layers.
Thus, by feeding each o/p into the next HL, the complexity
of increasing the parameter and remembering each previous
output is reduced.

Step 1: By iterating the following sequence from t = 1 to
T, the ANOVA-RNN is espoused on the input data αIn =

{α1, α2, . . . . . . αt },which contains a hidden vector sequence
ℏLyr = {ℏ1, ℏ2, . . . . . . .ℏt } along with the output vector
sequence βout = {β1, β2, . . . . . . .., βt }. The HL is measured
as,

ℏLyr = ℑact [wgαℏαt + wgℏℏℏt−1 + Ba] (20)

where, the weight matrices (e.g. the input-hidden weight
value is specified aswgαℏ and the HLweight value is symbol-
ized aswgℏℏ) is notated aswg, the bias vector is mentioned as
Ba and the ANOVA radial basis kernel function is proffered
as ℑact . The expression for the ANOVA radial basis kernel
function is formulated as,

ℑact =
∑n

κ=1
Exp(−σ (ακ

X − ακ
Y )

2) (21)

where, the dimensional inputs are notated as αX and αY .
Step 2: Next, to estimate the VMs’ efficiency, the output

layer is accountable. By utilizing the sigmoid activation func-
tion (σs), the output layer is activated; then, it is estimated as,

βout = σS [wgαβℏt + Ba] (22)

α = wgαβℏt + Ba (23)

Step 3: The following equation is utilized to compute the
sigmoid activation function.

σS (x) =
1

1+ ε−α
(24)

Step 4: Subsequently, by calculating the difference
between the original value αa and the predicted value α̂p, the
loss value is analyzed, which is specified as,

Loss = (αa − α̂p)2 (25)

Regarding the pre-historical functions, the VMs are trained
effectively if the model’s loss value is zero (Loss = 0).
By updating the weight values, the backpropagation is per-
formed if the loss value Loss ̸= 0.

At last, the VM’s resource utilization are determined effec-
tively by the ANOVA-RNN in t seconds for every iteration,
by this workflows are generated according to the resource
utilization for the clustered task.

C. PHASE 3: SELECTION OF VIRTUAL MACHINES
After that, the most appropriate virtual machines to per-
form the clustered task is selected by the means of the
LS-CSO algorithm. Here, the resources, as well as the

capability of each virtual machine, are analyzed effi-
ciently; thereby the suitable virtual machines are allo-
cated for the execution of clustered tasks. Hence, this
process drastically reduces resource consumption, and energy
consumption and also speeds up the overall execution
process.

1) SELECTION OF VIRTUAL MACHINES USING LS-CSO
CSO, which is centered on the intelligent behavior of crows,
is a novel meta-heuristic optimization algorithm. The crow’s
idea of storing excess food in hiding places along with
recovering it when required is a conception on which the
CSO (a population-based approach) is centered [38]. In CSO,
by deploying an LS algorithm, the awareness probability is
enhanced in LS-CSO Algorithm.1. Thus, the optimal VM is
chosen precisely. The following are the CSO’s fundamental
principles.
• Crows live in the form of a flock.
• Crows remember their hiding places.
• Crows flock together to steal.
• Crows keep their food stores from being stolen by a
probability of thieves.

Step 1: Initialization
• Initially, the crows’ population is initialized randomly in
d-dimensional. N signifies the flock size. In this, every
single crow denotes the VMs. The initialization process
is expressed as,

Cw =


x11 x12 · · · x

1
d

x21 x22 · · · x
2
d

...
...

...
...

xN1 xN2 · · · x
N
d

 (26)

Each crowmemory is initialized. It is supposed that the crows
hide their foods at their initial positions since they have no
experience at the initial iteration.

Mem =


M1

1 M1
2 · · · M

1
d

M2
1 M2

2 · · · M
2
d

...
...

...
...

MN
1 MN

2 · · · M
N
d

 (27)

Step 2: Evaluate fitness (objective) function
To analyze every single crow, the fitness function is cal-

culate; then, its value is assumed as an initial memory
value. Every crow amasses its hiding place in its memory
variablMemj
Step 3: Generate new positio
The crow updates its position by selecting a random

another crow, such thatxj and generating a random value.
If this value is greater than the awareness probability AP,
then crow xi will followxj to know the Memj. In order to
improve the awareness probability the linear scaling tech-
nique is employed and that is given by.

g(h) =
s(x)−min s(x)

max s(x)−min s(x)
(28)
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FIGURE 7. Structure of A-RNN Classifier.

Step 4: Updating to the new position
Crow updates its position by selecting a random another

crow such thatxj and following it to knowMemj. Then, the
new xj is calculated as follows.

xi.Itr+1

=

{
xi,Itr + Ri × Fli,Itr × (Memj,Itr − xi,Itr ) Rj ≥ APj,Itr
A random position Otherwise

}
(29)

where, APj,Itr refers to crow j awareness probability,Itr refers
to iteration number,Ri,Rj refers to random numbers,Fli,Itr is
the crow i flight length to denote crow j memory.

Step 5: Check the feasibility of new positions
Every single crow’s probability of the new position is

verified. The crow updates its position if its new position is
feasible. Or else, the crow doesn’t shift to the generated new
position; also, it stays in the present position itself.

Step 6: Evaluate the fitness function of new positions for
the new position of every single crow, the fitness function is
calculated.

Step 7: Update memory
The memory is updated by the crow as,

Memi,Itr+1 =
{
xi,Itr+1 F(xi,Itr+1) ≤ F(Memi,Itr )

Memi,Itr Otherwise
(30)

where, the objective function value is proffered as F. The crow
updates its memory by the new position if the fitness function
value of the crow’s new position is better than the memorized
position’s fitness function value. Therefore, the optimal VMs
are formulated as,

vmopt = {vm1, vm2, vm3, . . . . . . .vmn} (31)

2) JOB QUEUE
After the identification of the most appropriate virtual
machines, the clustered tasks are arranged in a queue for exe-
cution. Thus, the tasks are scheduled to the virtual machines
in such a way that the execution process consumes a minimal
amount of energy.

IV. RESULTS AND DISCUSSIONS
Here, the complete evaluation of the proposed system’s final
outcome is illustrated. The performance along with the com-
parative evaluation is conducted to illustrate the efficiency
of the work. By using Cloudsim, the proposed model is exe-
cuted, and from the HCSP [39] and the GWA-T-12 Bitbrains
datasets [40], which are publicly available on the internet.

A. PERFORMANCE ANALYSIS OF BLAKE
BLAKE2B performs well on 64-bit CPUs, on an Intel Core
i7-11800H, BLAKE2B can process 1 gibibyte per second, the
Figure 6. Demonstrates that BLAKE2B performed better than
the SHA-1, BLAKE2S, MD5, SHA-512 on Intel CPUs.
Table 3. Determines the comparison of different services

between the BLAKE2B and other Hash techniques. In case
of BLAKE2B authentication is essential while uploading to
data server and downloading the data from server, while
other hashing techniques the authentication is not essential.
It suggest that BLAKE2B is more faster which is assessed in
Figure.8 and secure than other hash techniques

B. PERFORMANCE ANALYSIS OFMD-PAM
The proposed MH-PAM is evaluated in terms of Clustering
time and outcomes are compared with various existing meth-
ods such as Mean shift, Fuzzy C Means, Kmeans, and PAM
in order to state the worthiness of the method.
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Algorithm 1 Pseudocode for LS-CSO Algorithm
Input: Number of virtual machines
Output: Selection of optimal virtual machines
Begin

Initialize the positions of VM = {vm1,vm2,vm3,. . . . . . . . . .vmn}
Evaluate the memory of each vm by the initial position
Compute the fitness value for each vm
Update the position of VM according to the random another vm
Improve the awareness probability by using,
g(h) = s(x)−min s(x)

max s(x)−min s(x)
If Rj ≥ APj,Itr

xi,Itr = xi,Itr + Ri × Fli,Itr × (Memj,Itr − xi,Itr )
Else

Relocate the vm randomly
End if
Check the feasibility of new position
Update the VMs memory
The process continue until the best solutions obtained

END

The Figure.9 illustrates the performance ofMH-PAM, here
four clustered groups are formed based on the length of the
task to reduce the makespan efficiently.

In Figure 10, the proposed MH-PAM’s cluster time is
compared to that of othermethods such asMeans Shift, Fuzzy
C Means, K-means, and PAM. Clustering time is simply
the amount of time the classifier needs to cluster the tasks.
By grouping one or more small tasks into a single job-style
execution unit, clustering reduces make-span and energy con-
sumption. This suggests that the proposed algorithm performs
better than the current algorithm.

C. PERFORMANCE ANALYSIS OF PROPOSED A-RNN
Metrics such as precision, accuracy, specificity, sensitivity,
recall, F1-Score, and training time are analysed for the pro-
posed model. As shown in Table 4 and Table 5, these metrics
are compared with the state of the art algorithms such as Deep
Neural Network (DNN), RNN, Deep Belief Network (DBN),
and Convolution Neural Network (CNN).

Regarding specificity, sensitivity, and accuracy, the per-
formance evaluation of the A-RNN along with the exist-
ing approaches such as RNN, DBN, DNN, and CNN are
shown in Table 4. The proposed A-RNN obtains high met-
ric rates such as 97.62%, 97.60%, and 97.65%, for accu-
racy, sensitivity, and specificity; while the existing system
achieves a low rate for accuracy, sensitivity, and specificity,
which ranges between 93.66%-95.93%, 93.49%-95.81%, and
93.82%-96.05%, respectively. Thus, the proposed technique
performs in a more secure manner along with manages the
excess usage of energy.

A comparative evaluation of the metric values obtained by
the proposed A-RNN along with the existing methodologies
is illustrated in the Figure 11. If the system wants to be robust
and effective, then the metrics values should remain high.

FIGURE 8. Various Hash functions speed.

Thus, when analogized to the existing RNN, DBN, DNN,
and CNN, the proposed A-RNN technique guarantees higher
accuracy, sensitivity, along with specificity rates. Thus, the
proposed system gives accurate outcomes in WFS and man-
ages the energy effectively.

In Table 5, the proposed A-RNN along with other existing
RNN, DBN, DNN, and CNN models’ performance met-
rics such as precision, recall, and FM are encompassed.
By the high rate of precision, recall, and FM, the significance
of the scheme is known. For precision, recall, along with
FM, the proposed technique obtained 97.60%, 97.61%, and
97.59%; whereas the existing approach achieved the average
of 92.43%, 92.67%, and 92.66%, which is comparatively low.
Hence, the proposed A-RNNminimizes enormous complica-
tions and improves the steadiness of the WFS with enhanced
security and low energy usage.
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TABLE 3. Comparison table between BLAKE2B and other techniques.

FIGURE 9. Task clustering performance by MD-PAM.

In Figure 12, the clear outlook of table 5 is shown.
The comparative evaluation of the proposed methodology is
exhibited in the figure 12. The proposed A-RNN achieves
high performance ranges between 97.6% to 97.59% for
precision, recall, and F-Measure, But for the existing met-
rics, the current RNN, DBN, DNN, and CNN achieve low
performance between 89.96 % to 95.76%, Thus, the pro-
posed A-RNN approach surpasses the other existing tech-
niques and gives accurate outcomes under enormous complex
conditions.

Training time taken by the proposed A-RNN is analogized
with the prevailing RNN, DBN, DNN, and CNN in Figure 13.
Training time is the quantity of time consumed by the clas-
sifier to train the data. The ET of the whole system will be
affected if the system’s training time is high. The system
should consume less training time if it wants to be advanced.
To complete the training process, the proposed A-RNN takes
54774 ms; while the prevailing techniques take 58987 ms for
RNN, 61774 ms for DBN, 84774ms for DNN, and 94774 ms
for CNN. Thus, compared to the existing approaches, the
proposed A-RNN completes the whole training process with
low computation time.

FIGURE 10. Comparative analysis of MH-PAM.

FIGURE 11. Graphical representation of the proposed A-RNN concerning
the accuracy, sensitivity, and specificity.

TABLE 4. Performance evaluation of proposed A-RNN in terms of
accuracy, sensitivity, and specificity.

Figure 14 compares the testing time of the proposed
A-RNN to that of existing work such as RNN, DBN, DNN,
and CNN. Testing time is nothing, but the time taken by
the classifier to test the files. If the testing time is high,
it degrades the performance of the model. The model is said
to be best when testing is at its minimum. According to
this, the proposed A-RNN takes 724 ms, whereas existing
systems such as RNN, DBN, DNN, and CNN require 925 ms,
1233 ms, 1519 ms, and 1832 ms of testing time. Hence,
the proposed A-RNN completes the entire testing process
with less consumption time when compared to the existing
work.
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FIGURE 12. Graphical representation of the proposed A-RNN concerning
the precision, recall, and F-Measure.

FIGURE 13. Comparison of the proposed A-RNN in terms of Training time.

FIGURE 14. Comparison of the proposed A-RNN in terms of Testing time.

D. PERFORMANCE ANALYSIS OF PROPOSED LS-CSO
Regarding energy consumption, MS time, along with
resource utilization, the LS-CS’s performance is authenti-
cated; then, the achieved outcomes ar

By utilizing the below equation, the total EC is estimate

E(x) =
∑

Enij + E0 (32)

subject to : δj(Taski) < TDeadline (33)

Enij = erj × δj(Taski) (34)

FIGURE 15. Make-span against 4 VMs.

TABLE 5. Performance evaluation of proposed A-RNN in terms of
precision, recall, and F-measure.

Here, the EC created by the tas Ti krunning on the VM, vmj
is denoted byEni,j, the power required to operate a data center
is represented by E0, the EC rate of the VM is denoted by erj,
and the users’ time constraint is represented by TDeadlin.
The equation for determining MS is,

MinimizeMakespan = min{max{mv1, . . . . . . .mvn}} (35)

mv1 =
n∑
i=0

δj(Taski) (36)

δj(Taski) =
l(Taski)

NPej × Vmipsj
∀i = {1, 2, 3, . . . . . . ., n},

j = {1, 2, 3, . . . . . . ,m} (37)

Here, the whole ET of a set of tasks running on vmj is
denoted by mv1.The ET of the task i on vmj is represented
as ∂j(Taski).The entire number of tasks is denoted by n and
the number of vm is denoted by m, the length of the task in
instruction MI is denoted by l(Taski).the number of process-
ing elements is represented by NPej, and the vm speeds in
million instructions per second (mips) is denoted by Vmipsj.
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TABLE 6. Cloudsim experimental parameters.

FIGURE 16. Make-span against 8 VMs.

Finally, the quantity of resources used is calculated by the
following equation.

CPU (i) =
Total CPU usage of process (i)

No of process(i)
(38)

To evaluate the performance of proposed method cloudsim
simulator [41] is used. Table.6 introduces the cloud platform
components such as Datacenter, VMs and Hosts. These val-
ues are fixed for the simulation.

TheoutcomesofLS-CSOwerecomparedtothose of
PSO,CSO and RR over a range of 50 to 200 cloudlets
and 4 and 8VMs. Table6 displays the clouds imconfigura-
tion with 2hosts,4 and 8VMs,2datacentres, and 50,100, and
200cloudlets,for which 40runs were applied to each scenario,
and the average was then calculated.

1) MAKESPAN
Makespan is an important evaluation metric for deter-
miningascheduler’seffectiveness. We have inputted 50,
100,200 number of cloudletson4&8VMsinsimulation envi-
ronment to compare the proposed LS-CSO with existing

FIGURE 17. Resource utilization.

FIGURE 18. Cost against 4 VMs.

algorithm. From Figures.15 and 16 observed that the LS-CSO
outperformed PSO,CSO and RR.

2) RESOURCEUTILIZATION
From the perspective of the cloud provider, resource util-
Isation is another critical metric in cloud computing. The
resource utilization of proposed LS-CSO is compared with
the existing PSO, CSO and RR algorithms in Figure.17 with
50,100, 200 cloudlets. It observed that 6% of better perfor-
mance that the existing algorithms.

3) COST
The cost of task scheduling is related to various parameters,
depending on the number of cloudlets and the number of
available resources. It is more difficult to find the optimal
global solutions when there are many tasks. As number
of tasks increases the makespan, scheduling cost, waiting
time are all increased due to insufficient existing resources.
It is straightforward to arrive at a globally optimal solution
when there are sufficient available resources. By comparison,
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FIGURE 19. Cost against 8VMs.

FIGURE 20. EnergyConsumption.

to CSO, PSO and RR the LS-CSO achieved 35%, 28%, and
29% respectively in the overall decreases execution cost as
shown in Figure. 18&19.

4) ENERGY CONSUMPTION
For an LS-CSO algorithm with 8 virtual machines, the aver-
age energy consumption evaluation matrix shows that it con-
sumes 52% less energy than CSO,PSO and RR algorithms
as Shown in Figure.20. This is due to the overall execution
time Of LS-CSO, which has as mall make-span, compared to
CSO,PSO and RR algorithms that have higher make- spans.
Because of this, these algorithms consumes more energy.

V. CONCLUSION
In this paper, a novel framework is proposed for scien-
tific workflow scheduling in cloud computing. This frame-
works targets authentication, energy consumption, resource
utilization, cost, makespan as multi objective parameters.
The framework composed in 3 phases, First Phase achieved
authentication, which allows the user for secure scheduling

using Blake2b with UUID, in second Phase the user tasks are
initially clustered into different groups using MH-PAM, with
the help of A-RNN resources monitored to generate dynamic
workflow. In third Phase LS-CSO used for optimization to
schedule the workflow on suitable VM’s. To validate the effi-
ciency of the proposed framework, comparative experimental
results are presented. The outcomes demonstrated that the
proposed framework performed better in terms of the multi-
objective metrics taken into consideration than the current
methods PSO and CSO. This analysis used the publicly avail-
able HCSP and GWA-T-12 Bitbrains datasets.

The work will be extended with some advanced neural
networks and perform the workflow scheduling process in
multiple clouds with real-time data.
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