
Received 19 March 2023, accepted 3 April 2023, date of publication 11 April 2023, date of current version 27 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266385

Input Validation Vulnerabilities in Web
Applications: Systematic Review, Classification,
and Analysis of the Current State-of-the-Art
FARIS FAISAL FADLALLA AND HUWAIDA T. ELSHOUSH
Department of Computer Science, Faculty of Mathematical Sciences and Informatics, University of Khartoum, Khartoum 11115, Sudan

Corresponding author: Faris Faisal Fadlalla (frsfaisall@gmail.com)

ABSTRACT In recent years, huge increase in attacks and data breaches is noticed. Most of the attacks are
performed and focused on the vulnerabilities related to web applications. Hence, nowadays the mitigation
of application vulnerabilities is an ignited research area. Thus, due to the potential high severity impacts of
web application, many different approaches have been proposed in the past decades to mitigate the damages
of application vulnerabilities. Static and dynamic analysis are the two main techniques used. In this paper,
a new classification for web application input validation vulnerabilities is proffered. In addition, various
techniques/tools that are used to detect them are analyzed and evaluated to apprehend their strengths and
weaknesses. Thus, this paper provides both technical as well as literature countermeasures to input validation
vulnerabilities. Moreover, various statistical distributions of the reviewed techniques were manifested and
scrutinize in different aspects to reveal the perception of the prevailing techniques and the gaps in the
literature. In addition, the most widespread metrics are also propounded.

INDEX TERMS Web security, static analysis, dynamic analysis, input validation vulnerabilities, source code
review.

I. INTRODUCTION
Since world wide web (WWW) arrives in early 1990 and
joined the internet, it becomes ubiquitous and very quickly it
hosts every aspect ranging from simple static text page, e.g.
news, article, to frameworks running complex web applica-
tions such as banks applications, Facebook, Twitter, Google,
Amazon [1], [2], [3]. Every day, new vulnerabilities evolve
in web applications due to the complexity and continuously
new technologies being introduced as well as integrated pro-
cesses to build web applications such as back-end language,
front end language, traditional and NoSQL databases, Web
cache and application programming interface (APIs) data
interchange language, etcetera [4], [5]. Each time new classes
of vulnerabilities in web applications evolve and it can be
seen that the open web application security project (OWASP)
and sysadmin, audit, network and security (SANS) constantly
release new reports containing recent top vulnerabilities in

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

the web [6], [7], [8], [9], [10], [11]. Each report contains new
evolved vulnerabilities with its rank in terms of severity and
complexity as well they mention and modify ranks of the
previous vulnerabilities.

Many reviews [12], [13], [14], [15], [16], [17], [18] exist
in the area of web vulnerabilities but they focus on gen-
eral kind of vulnerabilities, nonetheless this paper focused
on input validation issues, that occur in cloud-based or in
house based application because these issues result from
programmers that write software and do not have background
about security functions nor use functions that will validate
user input. Moreover, the existing review articles suffer from
poor categorization and overlapping. Furthermore, up to our
knowledge, there is no deep study for defending against
them.

Our paper aims to proffer a systematic review on most
popular vulnerabilities that have high risk values and can
occur due to lack of user input validation. We organized
the input validation vulnerabilities into a classification that
differ from OWASP top 10 as well as SANS top 25 category,

40128

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-6756-1158
https://orcid.org/0000-0003-0142-393X
https://orcid.org/0000-0002-2703-0213

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

as these are related to broad kind of vulnerabilities that have
high risk values [6], [19].

Input validation vulnerabilities represent each vulnerabil-
ity that arises because there is an external data received
(source) and processed as well as arrived at a sensitive func-
tion (sink) in the web application without validation and
sanitation or using validation functions in the wrong way.
Examples of external data can come from different sources
such as user input, file name input, log files, databases, file
systems, HTTP headers, integrationwith other systems, APIs,
auto-generated data, etc. Noteworthy, validation depends on
the context in which the data will be used; hence, different
types of validations are needed.

Input validation vulnerabilities can be detected with devel-
oped security framework more easily than other types of
vulnerabilities such as session fixation, certificate validation,
weak encryption, misconfiguration, default credential, ver-
bose error messages or vulnerabilities related to the patch and
insufficient logging as well as monitoring [20]. Therefore,
our proposed classification of input validation vulnerabilities
provides big picture and guide to researchers to determine
which vulnerabilities to mitigate, detect/prevent especially
when they work on static analysis tools. Hence, a new clas-
sification is inaugurated. Moreover, a comprehensive review
of the input validation vulnerabilities research revealing the
strengths and weaknesses of each method is propounded
according to this new classification.

The remainder of this paper is organized as follows: Sec-
tion II presents background and motivation. The research
methodology is explained in section III.We introduced differ-
ent kinds of techniques to reduce web application vulnerabil-
ities, which includes static and dynamic techniques in section
IV. Section V classifies the vulnerabilities related to input
validation according to the proposed classification and pro-
vides a concise explanation of their solutionsmentioned in the
literature. The common evaluation metrics are presented in
section VI The vulnerabilities are scrutinized and analyzed in
sectionVII,. The limitations and future works are propounded
in section VIII. Finally, section IX concludes the paper.

II. BACKGROUND AND MOTIVATION
The main issue of the web application vulnerabilities arises
when it receives input from out of its control such as user
input coming through entry points (where the external data is
received and entered into the web application) such as $_GET
in the PHP language without proper validation and processed
by sensitive sink (function that will process external data,
and if external data is not sanitized, may exploit the system.)
such as mysqli_query [21], [22], [23], [24], [25]. Most of
the attacks exploit improper validation and enter malicious
metadata such as (‘, ‘‘, OR) to corrupt applications logic.
Therefore, to protect the web app often sanitization or val-
idation functions need to be added that handles any input
entering web application before arriving sensitive sink [26],
[27], [28]. Figure 1 demonstrates the source and sink idea.

FIGURE 1. Source and sink concepts in source code review.

The motivation of this paper is that most of the studies in
web application vulnerabilities discuss all kind of vulnerabil-
ities or randomly selected issues but there are few papers writ-
ten specially for input validation vulnerabilities [29], [30],
[31], [32], [33], [34]. These kinds of vulnerabilities happen
because users enter malicious inputs and servers have no
validation or sanitization of these users inputs. OWASP [6],
as well SANS [19], have categories for web application
vulnerabilities but they are not grouped and thus have wide
ranges. Additionally, previous review works, such as those
in [12], [13], [14], [15], [16], [17], and [18], have their limita-
tions in terms of broad and poor categorization, overlapping,
and furthermore sometimes pay no attention to some of the
vulnerabilities. Moreover, there is no deep study for defend-
ing against them. Ergo, this present work continues the efforts
of the current reviews and aims to present a better ambit for
comprehending and distinguishing the different methods of
input validation vulnerabilities.

III. METHODOLOGY
Our methodology involved data collection, vulnerability
analysis, and classification. To write this survey a total of
720 papers were downloaded during the whole steps using
the keywords (‘‘WEB security’’ OR ‘‘WEB Attack’’ OR
‘‘WEB vulnerability’’ OR ‘‘Input validation vulnerabilities’’
OR ‘‘Source code review’’ OR ‘‘File Inclusion’’ OR ‘‘Direc-
tory Listing’’ OR ‘‘SQL Injection’’ OR ‘‘SQLI’’ ‘‘XSS
attack’’ OR ‘‘XPath Injection’’ OR ‘‘LDAP Injection’’ OR
‘‘NoSQL Injection’’ OR ‘‘XSS’’ OR ‘‘Cross-Site Scripting’’
OR ‘‘Header Injection’’ OR ‘‘Email Injection’’ OR ‘‘Path
Traversal’’ OR ‘‘CSRF’’ OR ‘‘Cross-Site Request Forgery’’
OR ‘‘SSRF’’ OR ‘‘Server side request forgery’’ OR ‘‘CORS’’
OR ‘‘Cross site request forgery’’ OR ‘‘XXE Injection’’ OR
‘‘XML external entity injection’’ OR ‘‘type juggling’’ OR
‘‘Deserialization’’ OR ‘‘Prototype Pollution’’ OR ‘‘command
injection’’ OR ‘‘template injection’’) AND (‘‘source and
sink’’ OR ‘‘Static analysis’’ OR ‘‘Dynamic analysis’’ OR
‘‘Machine Learning’’ OR ‘‘Deep Learning’’ OR ‘‘Source
code review’’).
First collection of research articles were published between
2015 and 2022 related to input vulnerabilities from Engineer-
ing Village database. In specific, mostly research in SQL,
XPATH, and XSS injection vulnerabilities were found in this
database. Other research articles were obtained from trust-
worthy databases such as IEEE, ACM, Springer and OWASP.
In particular, 506 research articles were downloaded from

VOLUME 11, 2023 40129

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 2. Data collection and filtering process.

Engineering Village database and filtered to 168 after remov-
ing conference articles. Then finally filtered to 153 research
articles after removing book chapters. Finally, we came up
with 52 research articles from Engineering Village. This
last filtration was conducted after title and abstract filter-
ing. These 52 research articles from Engineering Village
were combined with 45 research articles from IEEE, ACM,
Springer, and OWASP yielded 97 research articles as the final
collection of data as depicted in Figure 2.

IV. TECHNIQUES TO REDUCE WEB APPLICATION
VULNERABILITIES
There are numerous techniques developed to detect and
prevent web appilcation vulnerabilities, some of them are
widespread quick solutions that work as an addition secu-
rity layer in web security. Security features implemented
in the browser are considered client-side prevention, e.g.,
CSP, CORS, X-XSS-Protection header and HSTS [35], [36],
[37], [38]. Other solutions based on web application firewall
(WAF) are considered server-side prevention, where their
mechanisms are analyzing traffic and preventing or sanitizing

any request/input considered potentially malicious [39], [40],
[41]. However, these kinds of widespread prevention tech-
niques are not enough to make web applications completely
secure because they lack completeness as they detect few
kinds of vulnerabilities, not all of them. Furthermore, they
can be bypassed because there is a variant method that can be
used in the exploitation such as Cross-Site Scripting (XSS)
attacks. Client-side protection viz X-XSS-Protection header
is not supported by all browsers, for instance Firefox browser
is an example. Therefore, they can be easily bypassed when
browsing through Firefox [42].

Defensive programming is another technique used and
advised by security consortia [43]. It consists of a set of habits
and good practices that need to be followed when developing
web applications. The core idea is to consider each sup-
plied users input as malicious and not from a trusted source,
and check all inputs and restrict them solely to intended
recipients [44], [45], [46], [47], [48]. In specific, there are
frameworks evolved nowadays used to build web application
e.g., Rails, Django and Laravel that support defensive pro-
gramming by providing built-in security features that assist in

40130 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

input validation, authentication and authorization. Addition-
ally, the OWASP provides guidance to write secure code [49].
However, defensive programming cannot be adopted to be
a final solution for making each web application free from
vulnerabilities because it is prone to human fault which is
its nature and inevitable. Moreover, complexity of code with
large technology integrated inweb application harden the task
even more.

Basically, there are two main classes of techniques to
reduce web application vulnerabilities namely, static and
dynamic analysis [50]. However, recently researchers utilized
data mining and machine learning (ML) together with these
techniques to yield more efficacious results. Hereafter, these
techniques are scrutinized.

A. STATIC ANALYSIS
Static analysis can be carried out at the implementation phase
of a security development lifecycle (SDL), where it looks for
vulnerabilities in source codes and trying to flag themwithout
executing the applications [51], [52], [53], [54], [55]. Former
researches in static analysis were focused on older vulner-
abilities such as heap and buffer overflow as well as race
conditions [56]. Static analysis techniques are often derived
from compiler technologies and actually there are more than
one technique to detect vulnerabilities inside source code that
can be combined into one solution [57]. These techniques
are:

• Control Flow Graph (CFG): extracts and slice source
code. Then the sliced code is parsed and an abstract
syntax tree (AST) is built. To jump and tie paths between
blocks, a directed edge is used [58].

• Taint Analysis: is the most famous technique in software
testing. It monitors at which entry point (source) user
input is received and trace it until arriving to a vulnerable
function (sink). If there is no sanitization function or val-
idation implemented from entry point to the vulnerable
function, it will be flagged as vulnerability [59].

• Lexical Analysis: extracts and slice block of code. Then
it converts the syntax into group of tokens in an attempt
to abstract source code. Each function, represented with
a token, will be compared with a vulnerable function
(sink) that is stored in a database. Some tools that imple-
ment this technique are Flawfinder, ITS4 and RATS for
C and C++ [51], [60]. However, this technique may
generate false positives. For instance, there may exist
a variable in a source code having the same name as a
vulnerable function that is stored in the database.

The advantages of static analysis may be summarized as:
• Cover 100% of the source code
• detect more vulnerabilities than dynamic analysis
• detect vulnerabilities from developing phase
• solve a vulnerability from its root by adding a sensitiza-
tion function

Nevertheless, static analysis has disadvantages viz:
• not applicable when there is no source code available
• prone to more false positives

• cannot detect logic vulnerabilities
• need a good understanding of programming languages

B. DYNAMIC ANALYSIS
On the other hand, dynamic analysis is a technique that tests
applications without searching in the source code. Instead
it is performed at run time with direct interaction with an
application [43], [61], [62], [63], [64], [65], [66], [67], [68].
This technique tends to be simple to apply because it does not
require knowledge about the program to test, furthermore its
interaction with the program is limited to the program’s entry
points [69].

The advantages of dynamic analysis are hereafter outlined:
• covers only parts of the source code of current execution
paths and depends on test cases used

• can detect vulnerabilities outside the code and in third-
party interfaces

• more precise than static analysis
• mimic external attacks executed by attackers
• provide cost-effective detection for certain types of
important vulnerabilities

• simple to apply because no need for programming lan-
guage knowledge

Nonetheless, dynamic analysis has some disadvantages
such as:

• prone to more false positive because it does not cover all
source code

• predict vulnerabilities based on the received responses
without knowledge of the source code.

• therefore, it suffers from false positive/negative, and
• often requires human investigation as well as it detects
fewer range of vulnerabilities than static analysis.

C. HYBRID ANALYSIS
Static and dynamic analysis have complementing advan-
tages, and this has led researchers to create amalgamation
to attain the best of the two techniques. Actually, each
technique detects distinct sets of vulnerabilities with some
overlap [70], [71].

D. DATA MINING (DM) AND MACHINE LEARNING (ML)
Recently DM and ML are used frequently and prove better
results when combined with the basic techniques, where they
automatically obtain and learn knowledge through ML algo-
rithms. On the contrary, in static and dynamic techniques,
human provides signature of the vulnerabilities [72], [73],
[74], [75], [76], [77], [78].

V. INPUT VALIDATION VULNERABILITIES IN WEB
APPLICATIONS
In this section, most of the user injection vulnerabilities and
their exploitations are examined as well as how to protect
vulnerable codes from user input vulnerabilities is scruti-
nized. We propose a new classification for the input valida-
tion vulnerabilities in web applications. The vulnerabilities

VOLUME 11, 2023 40131

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 3. Proposed classification for the input validation vulnerabilities.

FIGURE 4. Distribution of the three proposed categories to reduce web application vulnerabilities.

were classified into three categories namely, query manip-
ulation, client-side injection and information disclosure as
illustrated in Figure 3. Each proposed category is scrutinized,
exploring all its possible exploited scenarios as well as its
ranking released by OWASP in 2007, 2010, 2013 and 2017,
as demonstrated in Table 1. Furthermore, Table 2 presents
sensitive functions written by PHP language that make web
application vulnerable if there is no filtering or best practices
used. Moreover, the countermeasures are further expounded.
Sensitive functions, which are also called sinks, need to be
noted and reviewed in the source code [79], [80]. Figure 4
depicts the distribution of the three proposed categories for
reducing web application vulnerabilities and further shows
the subclasses of each category, together with the num-
ber of reviewed articles (quoted between brackets) and the

percentage of distribution. Hereafter, each category is further
elucidated, and state-of-the-art solutions are presented.

A. QUERY MANIPULATION
This category includes attacks that take advantage of the
query and change its intended action from normal to mali-
cious. Such attacks execute SQLI, LDAP injection (LDAPI),
XPath injection (XPathI) and NoSQL Injection (NoSQLI).
In the following, we explore each type, give examples, and
present literature solutions to avoid it.

1) SQL INJECTION
Structured Query Language Injection (SQLI) vulnerabilities
occur when web application enquires users for input such as
an authentication page that enquires a username and password

40132 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 1. Proposed classification for the input validation vulnerabilities, their attacks types, goals and ranking.

VOLUME 11, 2023 40133

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 2. Vulnerable sink and countermeasures.

or any related input data such as hypertext transfer protocol
(HTTP) headers that hence interact with databases through
SQL language without validation or sanitization. A success-
ful SQLI can lead to access and modify (insert/ update/
delete) and hence storing of confidential data to the database.
It can as well lead to read and write file system and execute
commands on the server that cause full control.
Figure 5 shows PHP authentication code interacting with a
database and vulnerable to SQLI. Line 1 starts connection
with the database. Line 2 and 3 are received data through
the users calling source. Line 4 is a constructed query
that executes at the database when send in line 5 through
mysqli_query() function called sink. If the user inserts mali-
cious data in line 2 username field such as admin’ - -, this
will cause script to return admin info and allows to bypass
the login formwithout actually knowing a valid password and
valid username. The constructed query will be:
SELECT * FROM users WHERE username=‘admin’ - -’

AND password=‘foo’
whereas - - character interpreted as a comment in SQL

language. Therefore, any supplied data after username field
will not be considered as part of the query and the password
will never be checked.

This code is vulnerable because there is no sanitiza-
tion or prepared statement (a.k.a. parameterized queries)
are used. The concept of prepared statement is that an
SQL statement is sent to the database server and parsed
separately for any parameters to eliminate SQLI. Whereas
sanitization is performed by using function that escapes spe-
cial characters such as ‘, ’’, and \ that can lead to SQLI,
wheremysql_real_escape_string() function is a real example.

FIGURE 5. PHP login script vulnerable to SQLI [20].

Therefore, username at line 2 in Figure 5 should by sanitized
to make the code secure:
$user = mysql_real_escape_string($_POST[‘user’]);
Note that also password filled input at line 3 needs to

be sanitized. Noteworthy, the mysql_real_escape_string is
sufficient for the SQL statement in the context of Figure 5.
In other situations it is not enough (e.g., . . .Where id = $id.
Clause without quotes. $id = −1 OR 1 = 1). so prepared
statement is better in SQL Injection attack.
State-of-the-art research of SQL Injection Solutions
Figure 6 demonstrates the distribution of SQL Injection

techniques used in reducing web application vulnerabilities.
Multifarious researchers [81], [82], [83], [84], [85], [86],
[87], [88], [89], [90], [91], [92], [93], [94] implement a pat-
tern matching algorithm to detect and prevent SQL Injection
attacks. All applied dynamic analysis except [89], [95], [96],
[97] whom used static analysis. They check user SQL input
and find whether they are SQL injected or not using vari-
ous approaches viz. scanner [90], [92], [94], regular expres-
sion [84], string pattern [86], [97], keyword matching [93],
no sanitization [82], sanitizing or blocking [85], [98], access
control methods [88], and with the cooperation of intrusion
detection systems (IDS) [81], [87]. Figure 7 depicts the dis-
tribution of the different pattern matching techniques used in
SQLI.

40134 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 6. SQL Injection techniques to reduce web application vulnerabilities.

FIGURE 7. SQL Injection - Pattern matching techniques.

Using static analysis, Umar et al. [89] developed a tool
called EPSQLIFix, which uses grammar reachability analysis
to detect as well as remove SQL Injection. Yet, they need to

evaluate their method. Whilst working on a different dimen-
sion, researcher D’silva et al. [95] built lightweight static
technique to detect and prevent SQLI in authentication page

VOLUME 11, 2023 40135

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

by using hash concept. Their solution generates hash value
for the SQL authentication query concatenated with user’s
credential and then checks this value each time a user tries
to authenticate. This solution will allow to check if there are
any modification or SQL Injection attack in the query also
validate correct credentials. It can be implemented in most
languages. However, this method only protects from SQL
Injection in authentication page, yet SQL vulnerability can be
found in various pages such as search feature or file inclusion.

Other researchers utilized scanner in pattern matching.
In particular, Saoudi et al. [90] provided a scanner tool
called SQLIVD, which detects injection by comparing HTTP
response results. The author tested SQLIVD tool with
other three well-known scanners named W3af, ZAP, and
Acunetix. It shows better results for detecting blind as well
as error-based SQL Injection. Alike, Aliero et al. [92] devel-
oped a black box scanner called SQLIVS that fuzz web
server. It has anti crawling feature that performs data pre-
processing such as eliminating duplicates and filtering stored
URLs more accurately as well as analyzing attacked page
response. However, they perform experiments on vulnerable
web applications they created, and not public open source
vulnerable application that have many different vulnerable
scenario. Later the same authors, Aliero et al. [92] devel-
oped an automatic scanner tool based on an object-oriented
approach to detect SQL Injection in black box testing without
scanning source code. Their method lacks comparison with
more advanced scanners. Recently, Thombare and Soni [94]
also presented a scanner consisting of four elements: crawling
by visitingURLs that talk with database, attacking by sending
malicious SQL request, analysis by analyzing response page
to determine if there are vulnerabilities or not, and their final
component is report generation.

Using regular expression, Chenyu and Fan [84] prof-
fered an intention-oriented detection approach for submitted
queries and checks if it is malicious or not.

From a different facet using string pattern,
Ceccato et al. [86] presents a security oracle for
SQL-injection vulnerabilities (SOFIA) that works through
making classification for requests. This tool intercepts
request specially SQL statement and makes some processes
on it: parsing, prunning, and eventually classifying as safe
or malicious. On the other hand, Abikoye et al. [97] starts
by: preparing, parsing, then identifying and extracting SQLI
type patterns and finally preventing identified SQL Injection
attacks. Different actions may be performed such as blocking
user, reseting HTTP request and displaying warningmessage.
Yet, their method needs more processing and time.

Using keyword matching, Kumar et al. [93] used a
two-level restricted application prevention (TRAP) tech-
nique, which works at the middle tier using pattern passed
keyword filtering and the DB tier using SQL rewriting.

Some such as Li et al. [82] analyze the source and deter-
mines injection points that have no sanitization.

Working differently, Karuparthi and Zhou [85] proposed
an enhanced dynamic approach to detect SQL attacks that

works through efficient matching techniques and sanitizing
or blocking data before it arrives at the database server.
Their method lacks evaluation. Likewise using sanitization,
Jahanshahi et al. [98] submitted a hybrid static-dynamic tool,
called SQLBlock, which works in PHP language by limiting
each function for accessing the database. SQLBlock works
as a plugin for PHP and MySQL and does not require any
modification to the web app.

Using access control methods, Zhu et al. [88] developed
a new technique based on two-tiers, where the first tier is a
fine-grained role-based access control model and the second
tier is an extended AC multi-pattern matching algorithm.

With the aid of IDSs, Patel and Shekoka [81] used
AIIDA-SQL techniques and SQLMAP tool, and their algo-
rithm yields better accuracy and memory consumption
results. In a similar fashion, Lodeiro-Santiago et al. [87]
presents an improvement of current IDSs based on the use
of a frequency analysis and the previous behavior of one of
the most used database audit software, SQL Map. They use
training data and achieve positive detection close to 99%.

Alike research [87], other researchers [83], [91], [99]
combine pattern matching with ML techniques. Specifically,
Gao et al. [91] presented a model, called ATTAR, which uses
access behavior mining and grammar pattern recognition.
The author extracts features to detect injection from a custom
web access log file and trains it with support vector machine
(SVM), Naive Bayesian, random Forest, ID3, and K-means
algorithms. Similarly, Latchoumi et al. [99] employed SVM
trained with malicious SQL Injection syntax to predict bad
input also can detect new malicious syntax by matching it
with a minimum amount of syntax. This technique can work
in big data environment. However, there are no comparison
with other techniques to measure its efficiency and results
properly. In addition, it detects limited types of SQL Injec-
tion. In a like manner, Uwagbole et al. [83] provide API
service called SQLIA that works as a proxy which captures
requests before arriving at the back-end database and decrypts
the web traffic. Then the intercepted request traffic will be
parsed for pattern matching.

From a different aspect, multitudinous researchers [96],
[100], [101], [102], [103], [104], [105], [106], [107], [108],
[109], [110], [111], [112], [113], [114], [115], [116], [117]
deployed ML techniques to detect/prevent SQLI. Working in
a static way, Zhang [96] developed classifier model based on
ML, which works through scanning source code and deciding
if there is SQL Injection or input is sanitized properly. This
model shows highly accurate results, yet they need to increase
the dataset.

However, most researchers use dynamic analysis. Con-
cerning web applications, in particular Luo [114] studied
the limitations of web fuzzing and generated an ML solu-
tion called SQLI-Fuzzer that overcomes traditional fuzzing
limitations. Rahul et al. [115] developed WAF that receives
a request before it arrives at a web application and if it
detects a malicious request will redirect the attacker to a
honeypot rather than an actual web application. Whilst,

40136 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

researchers [101] suggest API and web services respectively
that work as proxy in .NET application to detect and pre-
vent malicious requests from reaching the back-end database
using ML. The same authors, in [102] present an application
context pattern-driven corpus to train a supervised learning
model. They use ML to train their model using algorithms of
Two-Class Logistic Regression (TC LR) and Two-Class Sup-
port Vector Machine (TC SVM) implemented on Microsoft
Azure ML (MAML) studio to mitigate SQL Injection attack.

Using also classification SVM, Li and Zhang [106]
improve the Term Frequency-Inverse Document Frequency
(TFIDF) algorithm through distribution of feature words in
the same kind of statement. They also combine TFIDF algo-
rithm with SVM, yielding better accuracy results. Another
researcher uses SVM, Chen et al. [103] process the text data
of an HTTP request and effectively determine malicious SQL
payload. Other researchers implement different ML tech-
niques. In particular, Sivasangari et al. [116] used AdaBoost
algorithm, while the algorithm of researchers Pathak and
Yadav [109] was based on trained neural network mode.

Others presented distinct approaches, viz
Parashar et al. [111] used text rank summarization with ML
classification. Working by syntax analysis and emulation,
Kuroki et al. [108] developed a method to detect the intention
of SQL queries in HTTP requests. The author defines four
types of the intention of SQLI (Reconnaissance, Leakage
of system information, Leakage of database content, or
Falsification).

A different approach presented by Tripathy et al. [110]
developing an ML classifier to detect SQL Injection in cloud
Software as a Service (SaaS) module.

With the assistance of IDSs, [104] and [105] presented
different approaches. For instance, Ross et al. [104] work
by capturing request data in two points: first in web appli-
cation using snort IDS and save data in PCAP file. Second,
using Datiphy appliance node that work as proxy between
web application and remote MySQL server and save cap-
tured data in CSV format. These two datasets process using
bash shell scripts and save into one file to create the corre-
lated dataset. Volkova et al. [105] applied ML approaches
for identifying SQLI in the HTTP query string. They com-
pare results from SVMs, Rule-based IDS, Neural Network
with Dropout layers, Multilayer Perceptron (MLP), and
Deep Sequential Models (Gated Recurrent Units, and Long
Short-Term Memory) using bag-of-word techniques, word
embedding for query string vectorization, and multiple string
analysis.

Comparing different ML techniques, Hasan et al. [107]
proposed a heuristic algorithm that compares best five classi-
fiers having best accuracy results. Their results show that both
Bagged Trees Ensemble Boosted classifiers provide the high-
est classification accuracy (93.8%). Choudhary et al. [113],
after comparing many algorithms, concludes that the
Decision Tree, Neural Network, and Naive Bayes-based
method provide better accuracy results. On the other hand,
Adebiyi et al. [117] discovered that decision tree shows

better accuracy results than Naïve Bayes and K Nearest
Neighbour classifiers.

In the last few years, researchers [118], [119], [120], [121],
[122], [123], [124], [125], [126], [127], [128], [129], [130],
[131] began to consider using deep learning (DL) techniques
to detect and prevent SQL Injection.

Researchers [120] and [118] extracted the features values
in the HTTP traffic. Using deep belief network (DBN), the
model of Zhang et al. [120] works at network layer through
sniffing traffic, specifically HTTP requests and determining
if it contains malicious SQL request or not based on training
data. They further compare between four models (long short-
term memory (LSTM), MLP, CNN, and DBN) and the DBN
model shows better accuracy results. Deploying also LSTM,
Tang et al. [118], using MLP and LSTM networks, extract
the feature values in the HTTP traffic to detect user behavior
that contains SQLI. Conversely, Li et al. [119] presented
an LSTM based SQLI detection method, and uses injection
sample generation that is based on data transmission channel
from the perspective of penetration. This method can model
SQLI and generate valid positive samples. To detect SQLI in
transportation system, Li et al. [119] likewise use the LSTM
to complete feature extraction automatically. Li et al. [124]
proffered an QL-LSTM model based on both traffic features
and text features. Their model also utilizes a multi-layer
LSTM structure. Deploying two LSTMs, researchers [127],
[128], [129] all uses a bidirectional LSTM (BiLSTM). For
instance, Gandhi et al. [127] presented a hybrid module based
on CNN combined with BiLSTM. Wen et al. [128] enhanced
the BiLSTM model for SQL attack detection by adding an
attention mechanism. Farea et al. [129] also uses BiLSTM for
SQL and XSS attack detection. However, another researcher
Tang et al. [123] uses artificial neural network (ANN) to
model training data in MLP and LSTM.

Researchers [126] and [125] based their models on a
deep learning MLP algorithm. Particularly, Jothi et al. [126]
model shows good accuracy results and can also scale with
other type of injection issues easily. However, it needs
more payload types to assess it well. Whilst the model of
Chen et al. [125], which is based on CNN and MLP algo-
rithms, combines lexical analysis and data preprocessing
techniques to achieve higher accuracy results. Their model is
able to detect some 0-day attacks. However, it cannot detect
second-order SQL attacks. Using CNN also, Xie et al. [121]
utilizes elastic-pooling CNN (EP-CNN) algorithm to detect
SQL Injection. It is harder to bypass and can identify new
attacks.

Recently, Zhang et al. [130] presented an SQLNN deep
neural network model for SQL Injection attack detection.
The author compares this model with LSTM, KNN, and DT
algorithms and SQLNN shows better accuracy, precision,
recall, and F1-score results. Lately, Falor et al. [131] com-
pares different ML and DL algorithms for SQL Injection
attack detection, and came out with the result that CNN out-
performs other algorithms in precision, accuracy, and recall.
In another research [132], Li et al. suggested an algorithm

VOLUME 11, 2023 40137

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 3. State-of-the-art of the research on Query Manipulation - SQL Injection.

40138 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 3. (Continued.) State-of-the-art of the research on Query Manipulation - SQL Injection.

VOLUME 11, 2023 40139

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 3. (Continued.) State-of-the-art of the research on Query Manipulation - SQL Injection.

40140 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 3. (Continued.) State-of-the-art of the research on Query Manipulation - SQL Injection.

VOLUME 11, 2023 40141

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 3. (Continued.) State-of-the-art of the research on Query Manipulation - SQL Injection.

called AdaBoost based on structure of deep forest model.
In the training stage, their algorithm assigns different features
with different weights based on their influence on the results
and uses error rate to update the weights of features on
each layer. They claimed that their algorithm shows better
performance results than ML and DL.

Other researchers work dynamically on different aspects,
such as DeepSQLI tool of M. Liu et al. [122] is based on deep
natural language processing, and shows better results than
SQLMAP. Likewise in a dynamic fashion, Xiao et al. [133]
model is based on analyzing user behavior such as numbers
of requests sent, length of SQL character inserted in the
request and conducted operation in database. When behav-
ior is recorded as malicious, the attacker will be added to
the block-list, hence banning attacker from accessing web
application. Also dynamically, Qi and Dai [134] presented a
method to detect SQL Injection attacks based on an align-
ment algorithm. Operating on a different dimension using
both static and dynamic analysis, Singh et al. [135] detects
unauthorized users utilizing auditing database records.

Table 3 summarizes the state-of-the-art of the SQL Injec-
tion techniques, and manifests their pros and drawbacks,
together with target application, languages and metrics
used.

2) XPath INJECTION (XPathI)
XPath stands for XML Path Language which is a language
that is used to query the ExtensibleMarkup Language (XML)
file like SQL for Database Management System (DBMS).
XML files are usually used to store configuration related
to the application or to store user data such as information
related to authentication page, viz. roles, credentials and
privileges. XPath injection is similar to SQL Injection sce-
nario and when used without sanitization can allow unau-

FIGURE 8. PHP login script vulnerable to XPathI [20].

thorized users to supply and manipulate query that is used
to access and read stored confidential data. However, XPath
language unlike SQL does not support comment character,
so attackers need to build complete and successful malicious
query to run their exploits. Figure 8 shows PHP authenti-
cation code that uses XPath language which is vulnerable
to XPathI. Lines 2 and 3 receive user supplied data, whilst
line 4 builds XPath query from the users input that is stored
in lines 2 and 3 variables. Therefore, malicious user can
send malformed payload in the username field line 2, for
example:
admin’ or 2=2 or ‘b’=’c.
Then this malicious payload will build Xpath query that

will allow attackers to access admin profile without need to
provide password value:
//addresses[susername/text()=’admin’ or 2=2 or ‘b’=’c’

and password/text()=’’]/creditCard/text()
This code is vulnerable to XPathI because there is no

parameterized XPath or sanitization in user supplied data.
Therefore to prevent XPathI the following meta characters:
() = ’ : [] , / . * need to be prevented.
State-of-the-art research of XPath Injection Solutions
Table 4 summarizes the XPath injection solutions in the

literature. Few research [136], [137], [138], [139] is found
regarding XPath. Researchers [136] and [137] both use static

40142 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

analysis. Thomé et al. [136] proposed a method to reduce the
slice that is extracted by a tool in source code analysis. The
authors reduce slice length to only extract valuable and rele-
vant information needed to predict if there was a vulnerability
or not in the sink. However, their method only enhances slice
but not verify vulnerabilities. Later, Thomé et al extended this
work in [137] where they suggested a tool called JoanAudit
that works by data flow analysis to detect and fix common
injection vulnerabilities such as XSS, SQLI, XMLi, XPathI,
and LDAPi in Java web system. This tool slices sensitive lines
and sink of code that needs to audit regarding security checks.
Then the code is followed from source to sink using context
analysis and vulnerable sink that missed security or valida-
tion functions are reported. This tool has many advantages
such as detect vulnerabilities in early stage, security auditor
only needs 1% to inspect source code manually as well as
locate which line of source code has vulnerability. However,
it periodically needs update when any new source or sink are
released and add them to the configuration file. Furthermore,
it also needs comparison with prevailing tools to measure its
effectiveness properly.

On the other hand, [138] and [139] based their solutions
on dynamic analysis. Specifically, Clincy and Shahriar [138]
developed IDS by leverage generic algorithm to protect web
services from common web attack such as XPath injection,
XML bomb, remote file inclusion and SQL Injection. This
IDS is signature-based and work by analyzing SOAP mes-
sages against attack signature. It has the ability to generate
new attack signature and detect complex and simple forms of
variety injection attacks. However, it needs to be compared
with other IDS types such as anomaly based and increase
datasets for best evaluation

Deshpande and Kulkarni [139] worked from a different
perception using neural network to classify and identify user
input behavior for three groups valid, invalid and malicious.
After identification, if the user input is classified as valid, then
access to legitimate file is allowed, otherwise if the input is
classified as a malicious request, then user is redirected to
other counterfeit resources instead of original one. Finally,
if it was classified as invalid will provide a custom error mes-
sage. Their experimental results shows accuracy value over
90% in classification of input vectors, misleading attacker
and redirect him to fake resources and custom error messages
and access normal input if it contains special characters.

3) LDAP INJECTION
Lightweight Directory Access Protocol (LDAP) is an internet
open protocol used to store and retrieve data from a hier-
archical structure called LDAP information tree. It works
like computer’s folders that stores data inside directory in
a hierarchical way. It is commonly used in organizations
for authentication/authorization as well as when releasing
web applications. Hence, web application can integrate with
LDAP server. A malicious user could query LDAP server

1OCL =Object Constraint Language.

FIGURE 9. LDAPI attack [143].

FIGURE 10. PHP login code vulnerable to LDAPI [20].

with meta-characters in an unexpected way and retrieve
potentially sensitive data from LDAP directory if there is
no sanitization or validation and this is called LDAPI. This
is illustrated in Figure 9, where a normal operation versus
another operation containing code injection is presented.
This attack is conducted on the server side and works by
manipulating LDAP query logic such as SQLI and XPathI.
However, LDAP does not support comment character like
SQL. Therefore, attackers need to insert query that will cause
intended filter to be ignored.

Figure 10 presents authentication script that is vulnerable
to LDAPI. Lines 1 and 2 are used to connect web application
with LDAP server. Line 6 uses filter to authenticate users
login info that is supplied in lines 4 and 5.

If a malicious user enters as username Alice)(&)) and as
password any Password, he will cause unintended behavior
and bypass login validation by accessing Alice profile with-
out sending correct password. Therefore, the resulting filter
will be (&(username=Bob)(&)). Consequently, the password
value will be ignored and substituted by & character. There-
fore to prevent LDAPI, a validation in user input is required
and these characters () ;, * | & = need to be blocked.
State-of-the-art research of LDAP Injection Solutions
*To our knowledge, very few approaches [72], [141], [142]

solving LDAP injection were found, as presented in Table 5.
In particular, Jawalkar et al. [142] utilized a hybrid approach
using both static and dynamic technique to test web appli-
cation vulnerabilities. Their approach focuses on Java lan-
guage specially input injection vulnerabilities such as SQL

VOLUME 11, 2023 40143

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 4. State-of-the-art research on Query Manipulation - XPath Injection.

TABLE 5. State-of-the-art research on Query Manipulation - LDAP Injection.

Injection, XSS, LDAP injection, XML injection, HTTP verb
tampering and HTTP parameter pollution. Their approach
first uses Findbug tool to perform static analysis and reports
vulnerabilities, followed by dynamic analysis using Tom-
cat server to test reported vulnerabilities. Dynamic analysis
also will report vulnerabilities, but final report only contains

vulnerabilities that are reported in both static and dynamic
analysis. Therefore, it will produce a final report with high
confidence results and less false positives. However, this will
producemore false negatives because the vulnerabilities if are
not discovered by dynamic analysis will not be reported in the
final report and some vulnerabilities will not be discovered by

40144 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

dynamic analysis or may be blind and need further work to
detect.

On the other hand, researches [72], [140], [141] use
static techniques. In particular, P. Bulusu [140] applied OCL
fault-injection based testing approach for detecting LDAP
injection in source code. It first identifies LDAP function
used in source code and analyses it by applying fault adequate
test case generation algorithm. It has has high detection rate,
yet it does not extract design level information from source
code

Working manually, Shahriar et al. [141] proposed a new
method to detect LDAP injection manually. Their method
works by reading source code and identifying lines that are
related to LDAP query and building a flow chart for the
function they want to test and expressing various paths related
to make injection succeed. This technique has less false pos-
itives and negatives yet needs to be automated.

From a different perspective using data mining techniques
to classify the false positives, Medeiros et al. [72] developed a
WAP tool by introducing WAPe (extensions). Extensions are
weapons that solved extensibility issues and allow WAPe to
detect 15 classes of vulnerabilities. Aswell user can configure
it to handle new classes of vulnerabilities without program-
ming knowledge by defining entry points, sensitive sinks and
sanitization functions. It is an open source and first static
tool to detect NoSQL and comment spamming injection and
programmed with new weapon that handle $wpdb class to
detect SQLI inWordPress. In addition, it detects LDAP injec-
tion.Moreover,WAPe produces less false positives thanWAP
because it is developed with more symptoms aka attributes
that handle false positives as well as dealing with dynamic
attributes such as symptoms defined by a user. However,
a user does not have enough knowledge to define most entry
points, sensitive sinks and sanitization functions to detect
new classes of vulnerabilities. Moreover, attributes need to
be updated regularly to help predicting FPs.

4) NoSQL INJECTION
NoSQL is an approach to untraditional, unstructured database
that uses to store and retrieve data without using SQL query.
NoSQL databases are commonly used with large-scale web
applications. There are varieties of NoSQL databases that are
created for specific needs. MongoDB is the most common
used one that implements document store model, similar to
key-value model but in the value it stores all information
in the document. MongoDB uses Javascript object notation
(JSON) format to execute queries, which is well-defined and
natively implemented with most web application languages.

Figure 11 shows login code vulnerable to NoSQL Injec-
tion. In lines 4 and 5, two variables receive user input
then embed them into MongoDB query to lookup user in
its database without using validation or sanitization. There-
fore, this code is vulnerable and could allow attacker to
bypass login page if he supplies malicious payload such as in
username field: user=administrator and in the password

FIGURE 11. PHP login code vulnerable to NoSQL Injection [20].

field: password= [$ne]=1. This payload will compile in this
array:
array(‘‘username’’=> ‘‘administrator’’, ‘‘password’’=>

array(‘‘$ne’’= > 1)) and encoded in JSON format to execute
at MongoDB:
username: ‘administrator’, password: $ne: 1.
Therefore, break intended logic when send $ne that means

not equal and allow to access administrator without supplying
the correct password. To secure code from this vulnerability,
a proper validation by checking user input is required to
escape from these characters: <> & ; / : ’ * as well
as sanitization by using mysql_real_escape_string function,
which will escape from malicious characters as SQLI.
State-of-the-art research of NoSQL Injection Solutions
It is an injection vulnerabilities that appeared in 2013 men-

tioned inOWASP report under injection attack. Table 6 recaps
the solutions investigated in this category, where all use
dynamic techniques.

Ma et al. [144] detection approach, called dynamic
NOSQL injection attacks detection (DND), relies on parse
tree. DND focuses on MongoDB database. When receiving
HTTP request from the client, a parse tree is built according
to the client’s request and compared with the old record of
parse tree. If they are equal, that means no NoSQL Injection
is detected otherwise injection is detected and stored as text
in repository. DND approach shows less false positives, fewer
response time and high accuracy rates, but only detects injec-
tion in MongoDB database.

Researches [145], [146], [147] use pattern matching tech-
niques in detecting NoSQL Injection. For instance, Joseph
and Jevitha [145] proposed a dynamic solution based on
regular expression to detect and prevent injection attack in
MongoDBwhen deployed with Java language. Their solution
works by matching user input and decide if it contains injec-
tion or not. If entered input flagged as invalid the query will
not proceed to the database even if it was not attack intended.
They claim there is no false negatives in their solution but
this solution only detects blind-based boolean and time-
based NoSQL attacks. Moreover, some not intended attacks
input will be rejected. Eassa et al. [146] present independent
RESTful web service solution named DNIARS to detect and
prevent NoSQL Injection attack. DNIARS is built using PHP
language and has the ability to response to variety of request
formats viz. XML and JSON. It works by checking if there is
no injection, then returns 200 status code and continue exe-
cuting the NoSQL query. Otherwise if injection is detected,

VOLUME 11, 2023 40145

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

it will return 400 status code and display error message as
well as stop executing NoSQL query. DNIARS tool has less
error rate but the request needs more time because another
request will be generated from web server to web service
DNIARS tools. Furthermore, if DNIARSweb service is down
there will not be any detection. A different approach for
detecting NoSQL Injections using supervised learning tech-
nique was suggested by Rafid et al. [147] by creating two
categories benign and injection. Their tool detects injection
of both MongoDB and CouchDB but can extend to other
NoSQL databases withminormodifications. Their tool works
as server plugin, which automatically opens a port and listen
in the web server. Then, it intercept requests when there is a
communication between a web server and NoSQL database.
After interception, it only sends benign query to the back-end
NoSQL database. This tool shows better results in detecting
NoSQL Injection, and has the ability to detect most NoSQL
Injection attacks, but needs to increase its dataset.

B. CLIENT-SIDE INJECTION
This category differs from the others in that here the target is
users not the application itself, through executing malicious
client-side script (e.g., JavaScript) in the victim’s browser.
There are three vulnerability classes, namely cross-site script-
ing (XSS), header injection (HI) and email injection (EI),
which are hereafter explained.

1) XSS INJECTION
Cross-Site Script (XSS) is one of the most vulnerabilities that
affects web applications and websites because XSS occur
in environment that can parse and understand Javascript.
Additionally, it is considered the most reported vulnerability
in hacker one bug bounty platform. It is considered a type
of injection attack because it occurs when an attacker injects
malicious code in the web application and sends it to other
users. This flaw is succeeding because it is quite widespread
in most web applications and occurs when web application
utilizes users input and generate output based on it without
encoding or validation [148], [149]. When exploiting XSS,
attacker can inject JavaScript code that allows to steal user
cookies, session or redirect users into fishing web sites as
displayed in Figure 12.

XSS can be classified into three types:
• Reflected XSS: is non-persistent. Attacker needs to send
malformed URL with injected Java-script code to other
users.

• Stored XSS: is persistent and attackers inject malicious
JavaScript code in the database. Therefore, there is no
need to send malformed URL or to interact with the
victim where users request web application page that
retrieves its content from the injected database.

• DOM Based XSS: is a less well-known kind of XSS and
occurs in the DOMenvironment not in the response code
from the server.

To prevent XSS attack, a sanitization is required by using
function such as htmlentities() and/or by encoding output.

FIGURE 12. Stored XSS attack to steal user cookies [150].

Encoding techniques can prevent metacharacters such as
< and > to interpret as HTML code instead of using it as
normal character.
State-of-the-art research of XSS Solutions
Researchers [151], [152], [153], [154], [155], [156] use

ML concept to detect XSS attack, as synopsizes in Table 7.
For instance, Rathore et al. [151] proffered an approach
to detect XSS attack on social network services (SNS).
Ten different classifiers are used to classify webpages into
XSS or not-XSS. This approach shows better accuracy and
lowest FP in the SNS environment. However, its dataset
need to be updated regularly to work better. On the other
hand, Banerjee et al. [152] detect modus operandi of XSS
attack via two features: URLs and JavaScript. They use four
ML algorithms (SVM, KNN, Random forest and Logistic
Regression), and hence classifying webpages as malicious
or benign. They inferred that the Random Forest Classifier
was the most accurate having the lowest false positive rate
of 0.34. As well Mereani et al. [153] investigate SVM, KNN
and Random Forests and achieved high accuracy and preci-
sion. Whilst Gogoi et al. [154] also compare ML techniques
in detecting XSS attacks. Specifically, researchers [155],
[156], [157] propounded other solutions using genetic
algorithm. Gupta et al. [155] further compare their classifica-
tion accuracy with NB, random forest (RF), logistic regres-
sion (LR), SVM, AdaBoost, and MLP. They achieve high
accuracy of 98.5%. Whilst research [157] utilized genetic
algorithm-based fuzzing scheme to sequence the attack vec-
tors into genes, which are then repeatedly optimized using the
grammatical structure features of XSS together with common
bypass methods. They profess high precision and accuracy
rate. However, their parallel detection performance may be
further optimized and improved. Lu et al. [156], on the
other hand, detects XSS attacks using a fusion verification
method that amalgamates traffic detection with XSS payload
detection. Their experiments have an increase in accuracy by
3.81%, in recall rate by 48%, and in F1-score by 27.94%.

Researchers [158], [159] work on both ML and DL in
detecting XSS attacks. Using a fuzzing-based approach,

40146 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

research [158] realized a black & white attack that enhances
the confidence coefficient of malicious samples. Their
approach is an adversarial attack model based on Soft
Q-learning, which has an escape rate of over 85%. On the
other hand, Zhou et al [159] proffered an ensemble learning
approach to detect XSS attacks. Sorting the nodes, using the
Bayesian network, could aid in real time attack detection.
Howbeit, they need more testing to verify their method. Other
researchers [160], [161], [162], [163], [164], [165], [166],
[167], [168] present DL XSS attacks detection approaches.
In particular, [161], [162], [163], [164] use LSTM in
their detection methods. Specifically, the approach of
Lei et al. [161] is based on the attention mechanism of LSTM
recurrent neural network. They preprocess the data then uti-
lize word2vec to extract XSS payload features and finally
map them to feature vectors. The LSTM-Attention detection
model, which is an improvement to the LSTM model, was
developed to train and test the data. The context-related fea-
tures for DL are extracted using LSTM, then the added atten-
tion mechanism is utilized to extract more effective features.
Their model achieves a precision rate of 99.3% and a recall
rate of 98.2%.

From a different aspect, to defend embedded devices
deployed in intelligent IoT system against XSS attack,
research work of [162] uses a fog-enabled approach that
detects by comparing injected strings with the block-listed
attack vectors. Further, they prevent by utilizing an optimized
filtering method. They claim high accuracy up to 90%. On the
other hand, Yong et al. [163] use LSTM RNN to train and
test the detection model, achieving a precision rate of 99.5%
and a recall rate of 97.9.%.Whilst [164] combined CNNwith
LSTM after decoding, generalizing and tokanizing, then next
utilizing word2vec to change words into word vectors. Their
method achieves excellent accuracy of 99.3%.

Researchers [165] and [166] use MLP in their methods.
Research [165] detects XSS using a robust ANN-based MLP
scheme, using a large real-world dataset. They achieve high
accuracy, detection rate and AUC-ROC while maintaining
low FP rate. Whereas, research [166] use MLP DL model in
five phases namely extraction, feature engineering, datasets
generation, then DL modeling, and classification filtering.
Their experiment shows high accuracy of 99.47%.

Utilizing neural networks, [160] and [167] proffered
solutions for XSS attacks. Research [160] utilized Con-
volutional Deep Neural Network (CDNN) in preprocess-
ing, then they use noise filtering to encode and train
the CDNN for removing SQL and XSS special symbols.
Their method has a reduced processing time. Whereas,
researchers [167] use Convolutional Gated-Recurrenr-Unit
(CGRU) neural network. Instead of a pooling layer, a gate-
recurrent unit is used to do feature acquisition on the
time dimension, yielding high-accuracy multicategory results
above 99.6%.

Other researchers [168] work differently using DL GAN
technique to optimize the detection of XSS attacks. Their
model is enhanced using Monte Carlo tree search (MCTS)

algorithm, which is utilized to produce the adversarial model
for training and testing.

Same authors Gupta et al. [169], [170], [171] work on
mobile cloud computing application, virtual cloud server,
and HTML scripting. Specifically, the work of [171] uti-
lizes context-sensitive sanitization with HTTP requests.
Research [169] uses PHP web applications with BlogIT,
whilst the method of [170] works on virtual cloud server
based on HTTP requests.

From a different facet, instead of using black box,
Antonin et al. [172] uses gray box. Their method utilizes
HTML output with HTTP request based context-sensitive
XSS flaws.

2) HEADER AND EMAIL INJECTION
Header Injection (HI) occurs when web application receives
input from a user without security check and includes that
input in the HTTP response headers. This allows an attacker
to break the normal response and inject it with the new line
(\n) and carriage return (\r) characters to execute attacks such
as response splitting, Cross-Site Scripting, session fixation
and malicious redirection. To prevent this attack, it is highly
recommended to avoid returning user input into HTTP head-
ers or by sanitizing user input for line-feed characters and
carriage-return.

Email injection (EI) is similar to HI and occurs when there
is vulnerable web contact forms that allow users to send
email. The malicious user can inject vulnerable forms with
line termination characters, which allow attacker to manip-
ulate email components (such as content, sender, receiver,
etc.). Protection against this vulnerability is alike in HI.
State-of-the-art research of Header and Email Injection

Solutions
Table 8 sums up the Header and Email injection solu-

tions in the literature. Researchers Medeiros et al have two
researches [173] and [174]. For instance, research [174] built
a new tool called WAP to detect as well as go further by
correcting vulnerabilities in source code. Their tool works by
combining different approaches specifically Taint Analysis
(human coded knowledge) with data mining supervised tech-
nique (automatically get knowledge). WAP is implemented
in three phases. First, it performs taint analysis to flag vul-
nerabilities. Second, each candidate vulnerability enters data
mining process to classify which one is a real vulnerabil-
ity and which one is an FP. In the last phase, after being
confirmed as real vulnerabilities, they will enter a correction
step by adding proper code that will eliminate vulnerabilities
i.e., validation and sanitization functions. It performs global
analysis by scanning connected modules not only current
file, and shows better accuracy and precision results when
compared with Pixy as well as PhpMinerII tools. Actually,
accuracy 45% better than Pixy’s and 5% better than Php-
MinerII. One more benefit that it can handle eight classes of
input validation vulnerabilities. However, attributes used in
data mining to classify FPs from real vulnerabilities need to
be updated regularly because there is always new ones created

VOLUME 11, 2023 40147

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 6. State-of-the-art research on Query Manipulation - NoSQL Injection - Dynamic techniques.

and evolved. Moreover, WAP is only configured with static
attributes not dynamic one such as user defined function,
moreover source code used in WAP tool is hard to extend
to new classes of vulnerabilities. Another static approach
suggested by the same authors [173] inspired in natural
language processing NLP, which makes static tools learn
to detect vulnerabilities automatically without programing
knowledge about how each vulnerability is discovered. They
implemented this concept in a tool called DEKANT, which
uses sequence model hidden Markov model (HMM) for
learning to characterize vulnerabilities from a corpus (group
of instructions ‘not slices’ converted to ISL) as vulnerable or
not. ISL is an intermediate slicing language produced by the
authors that translates source code into tokens to represent
code. It is a crucial part in the approach, where it stores
info about which group of instructions lead to vulnerabilities.
Then utilizing this knowledge (namely which instructions
may lead to a flaw) with remaining slices to classify them.
Sequencemodel is differing from standard classifiers where it
takes the order of source code elements and relation between
them into consideration to reduce FPs.

Working dynamically from a different perspective,
Chandramouli et al. [175] developed a tool for detecting
email header injection through fuzzing web application to
find email form then sending request to test it by predefined
payloads and based on the response can determine if it
vulnerable or not. Their tool detect email header injection
in many programing language, nonetheless can not test email
header injection if CAPTCHAs is used.

C. INFORMATION DISCLOSURE
This last proposed category considers vulnerabilities dealing
with access to URL locations and unintended files to access
or disclose/read operating system file from application file
inclusion feature. The following vulnerabilities are related to

FIGURE 13. File inclusion feature [176].

this category: local file inclusion (LFI), remote file inclusion
(RFI), Path Traversal (PT), Information leaks (IL), Directory
Listing (DR) and Predictable Resource Location (PRL).

1) FILE INCLUSION (FI)
There are few researches conducted on detecting FI vulnera-
bility. It has two types local and remote inclusion.

• Local File Inclusion(LFI)
* It is a vulnerability that allows an attacker to exploit
the feature of file inclusion in web application through
reading files from the server, as shown in Figure 13. LFI
attack can lead to read sensitive files, configuration, XSS
or even remote code execution (RCE). To secure from
LFI, a developer needs to explicitly build white list for
required files or use if statements besides not allowing
users to control file include feature.

• Remote File Inclusion (RFI)
RFI is similar to LFI, but differs in the required files.
In the RFI, the web application requests files from
remote location not in the local host. Exploiting RFI
can lead to the same risks that are caused by LFI.
Figure 14 displays RFI attack where an attacker con-
trols file parameter via URL to retrieve and execute
malicious payload from the server that he/she controls.
Fortunately, most current PHP installation configured
with allow_url_include feature to off, which prevents

40148 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 7. State-of-the-art research on Client-side - XSS injection.

VOLUME 11, 2023 40149

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 7. (Continued.) State-of-the-art research on Client-side - XSS injection.

malicious user from include remote files. Nonetheless,
this prevents RFI but not LFI.

State-of-the-art research of File Inclusion Solutions
A prevention technique presented by Tajbakhsh and

Bagherzadeh [178], called AntiLFIer, prevents local file
inclusion vulnerability in PHP language. This framework is
written in Java and work by only allowing to include PHP
scripts that are locally located in the root folder or subfolder
related to the web site. These PHP scripts are labeled as
trusted files and other files are labeled as untrusted file. This

framework only includes PHPweb site code as well as trusted
list encrypted by administrator private key. However, attacker
can delete trusted list file if he/she gets access to the web site
directory. On the other hand, Hassan et al [179] proffered a
model to detect local file inclusion (LFI) vulnerability. This
model is implemented using Python language. The tool is
developed with five steps:

• URL validation: identify host status through checking
HTTP response code if matched with 200 then host is up
and forward to next step otherwise the host is considered

40150 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 8. State-of-the-art research on Client-side - Header and Email Injection - Static techniques.

FIGURE 14. Exploit RFI and execute payload from attacker server [177].

down and the tool will display an error message ‘‘Host
server is not available’’.

• Crawling: this step will send many requests to identify
URL endpoint in the application. Then extract parame-
ters from endpoint

• Execution of the URLs: sends LFI attack payload to
crawled pages.

• Collect and Matched Response: receives response and
matches it with predefined expressions to confirm if
there is LFI or not.

• Provide Output: shows output result to the user.

This model has an advantage of comparing between manual
and automated LFI detection and presents high accuracy
value. However, it only detects LFI in $_GET method and
also leaves many host without checking because it only con-
siders host is up when receiving 200 status code. Therefore,
it needs to dig dipper when receiving other meaningful status
code such as 301, 302, 403, and 500.

These solutions are summarized in Table 9.

FIGURE 15. Manipulate filename variable to perform PT/DT attack [180].

2) PATH TRAVERSAL (PT)
PT is an attack that works bymanipulating sanitized variables
that reference files aiming to access files/directories stored
outside the web root folder. Figure 15 explains PT attack.
When exploiting PT, an attacker can read arbitrary files such
as sensitive operating system files, configuration and applica-
tion code on the back-end system. This attack is also known as
‘‘directory traversal’’, ‘‘dot-dot-slash’’, ‘‘directory climbing’’
or ‘‘backtracking’’.
State-of-the-art research of Path traversal Solutions Flan-

ders [181] presented new algorithm to prevent directory (DT)
traversal attacks. This algorithm is written in C program-
ing language and works by using both path string canoni-
calization and whitelisting technique to prevent DT. Their
algorithm is easy to test, lightweight, easily extendable, cross-
platform compatible as well as intuitive. However, they need
to test this algorithm with more real application and compare

VOLUME 11, 2023 40151

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

TABLE 9. State-of-the-art research on Information disclosure - File Inclusion - Dynamic solutions.

TABLE 10. State-of-the-art research on Information disclosure - Path Traversal - Dynamic solution.

it with more algorithms to measure its effectiveness properly.
Their method is recapitulated in Table 10.

3) DIRECTORY INDEXING
Directory Indexing (also called Directory Listing or Brows-
ing) occurs when user clicks URL to access web page but
there is no index default page. Therefore, user can view
besides download entire files located on the same direc-
tory/folder of the visited URL file. The danger of this mis-
configuration allows attacker to read sensitive files such
as database configuration or third-party services that assist
attackers to escalate the attack. To protect from directory
indexing the administrator of the web server has to configure
web server properly, such as preventing viewing files located
in the server when there is no index page.

4) INFORMATION LEAKS
This command occurs when web application reveals sensi-
tive information, example a comment created by a developer
in HTML, error messages or debug mod. This information
may be critical such as credential, source code or unsecure
endpoint, or not critical such as framework version or rec-
ommendations but can also help attackers to leverage attack
and cause damage to the application. Therefore, revealed
information needs to be restricted.

5) PREDICTABLE RESOURCE LOCATION
This attack is used to discover hidden function and content
of the web application by sending guessing requests for

unintended public content and brute force critical files and
endpoint such as backup and configuration. These discovered
files may disclose sensitive and critical information related
to the web application database, passwords, admin panel,
machine names that host web application and paths to other
sensitive areas.

VI. EVALUATION METRICS
This section presents the most commonmetrics used to assess
the performance of the reviewed suggested techniques. Every
metric is represented by the number of its occurrence in the
reviewed articles as depicted in graph 16. As can be seen from
the graph, the most common evaluation metric as yet is accu-
racy, then precision and DR or recall, which were used by
most of the total reviewed articles. Next in popularity comes
FP and TP. In actual fact, other evaluation metrics viz. TN,
FN and Fi-Score share great popularity amongst the reviewed
techniques. However, others like response time, specificity,
AUC-ROC, detection time, scalability, memory consump-
tion, payload ratio, predictive capacity, no. of reductions,
escape rate and mutation score were noticed with varying
less popularity. Actually, regarding negative tests, researchers
have to embed more to their metrics evaluations because TN
shows real result of no vulnerability found. On the other
hand, FN is most danger because it unveils no vulnerability
in applications that really have.

Recalling the following metrics [125], [165]:
True Positive (TP): is the number of actual attacks that are

correctly classified.

40152 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

True Negative (TN): is the number of legitimate statements
that are correctly classified as safe.
False Positive (FP): this is a false vulnerability reported

that happens when the tool incorrectly reports vulnerability
that does not exist.
False Negative (FN): this occurs when a scanner fails to

recognize known vulnerability.
Accuracy is a measure of the number of correct predictions

of the total number, as presented by equation 1 [165].

Accuracy =
(TP+ TN)

(TP+ TN + FP+ FN)
(1)

Detection rate (DR) or Recall (also known as Sensitivity)
is the ratio between the correctly detected attacks and all the
actual attacks as shown by equation 2 [165]. This metric is
also well known as True Positive Rate (TPR).

Detection rate (DR) or Recall =
TP

TP+ FN
(2)

The False Positive Rate (FPR), on the other hand, measures
the ratio of false positives within the negative samples, which
is presented by equation 3.

False Positive Rate or (FPR) =
FP

FP+ TN
(3)

Equation 4 shows precision (also known as Positive Pre-
dictive Value (PPV)) representing the proportion of predicted
accuracy in the total number of predictions [165].

Precision (or Positive Predictive Value) =
TP

TP+ FP
(4)

The Negative Prediction Value (NPV) is presented by
equation 5

Negative Prediction Value ==
TN

TN + FN
(5)

F1-Score is a measure combining both precision and recall
as given by equation 6 [165].

F1 − Score = 2 ×
Recall × Precision
Recall + Precision

. (6)

Specificity, also known as True Negative Rate (TNR) is
gauged using equation 7.

Specificity =
TN

TN + FP
(7)

Misclassification Rate (Error Rate) is the number of false
predictions of the total number, which is calculated as pre-
sented in equation 8 [165]:

Misclassification Rate =
(FP+ FN)

(TP+ TN + FP+ FN)
(8)

AreaUnder the Curve is gauged by equation 9 below [165]:

Area Under the Curve (AUC − ROC)

=
1
2

(
TP

(TP+ FN)
+

TN
(TN + FP)

)
(9)

Other metrics varying in popularity viz.:

Memory consumption, which reveals the memory (RAM)
resource utilization [81].
Response time is the taken time in HTTP response [98].
Scalability is ability to increase features and work with

other platforms [136].
Payload ratio is the size of the payload in the test [114].
Mutation Score [140] is the ratio between the number of

test cases included in the test set to the total number of test
cases generated.

VII. ANALYSIS
Security is unarguably the most key concern for web applica-
tions, to which SQL Injection (SQLI) and XSS attacks are the
most ruinous attacks. The pie chart of Figure 4 affirmed that
injection vulnerabilities are most danger specifically SQL
Injection and there are more research papers than other issues
in web application. SQL Injection has more papers because
it is ranked number 1 in injection vulnerabilities. Regard-
ing our proposed classification the query manipulation has
more papers followed by client side injection. Specifically,
XSS attacks are the most popular in client side injection
category. Information disclosure category has fewest solution
papers. Moreover, directory indexing, information leaks and
predictable resource location have no solution articles from
sounded journals. Therefore there is a demand for more
research solutions in these topics.

As proclaimed in Figures 17 and 18, dynamic is the most
implemented one in this survey because dynamic is more
easily to develop than static. Dynamic work is similar to
fuzzing concept that send large number of requests and notice
responses for some characteristics, if found that means there
is a vulnerability. Regarding the Information disclosure cat-
egory, all reviewed articles use dynamic techniques. Never-
theless, static technique needs to specify target language to
protect and know its critical sink and code structure but it
suffers from more FPs. Howbeit, static techniques are more
complex yet accurate because it scans source code not just
sends a request.

Whilst the works summarized in the previous sections are
of obvious value to input validation vulnerabilities in web
applications, there is, in our opinion, a scarcity in hybrid
solutions in all categories. We noticed few solutions take
advantage of both static and dynamic techniques and merged
them together. Therefore, there is a need for more study in
hybrid techniques and also more accurate static techniques.

Figure 19 illustrates that the most used target applications
for presented solutions are real and custom web application
because they are most and old form of web application,
whereas web service is less used. Furthermore, to our knowl-
edge, there is no test in real web service. Therefore, in future
researchers have to focus to test their solutions in real web ser-
vices because web services are becoming more important and
more frequently used nowadays. Web service used to allow
various applications to communicate such as web application
with desktop application or mobile app, escetra.

VOLUME 11, 2023 40153

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 16. Evaluation metrics distribution.

FIGURE 17. Distribution of query manipulation static/dynamic techniques.

When static technique is used, target language have to
be specified because it will find vulnerability based on the
syntax of the language. Also there are few solutions that

implement dynamic technique require specific language.
Figure 20 demonstrates the distribution of target language
used in the literature solutions and shows that PHP language

40154 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 18. Distribution of client side static/dynamic techniques.

FIGURE 19. Distribution of the target application commonly used.

is the most target language which researchers focus on for
protection. This is because it is the most used back-end lan-
guage in internet and most developer start with this language.

Therefore, there is a need to developmore static security solu-
tions that focus on JAVA and .NET language. Furthermore,
other back-end languages and framework such as node.JS,

VOLUME 11, 2023 40155

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

FIGURE 20. Distribution of the language commonly used.

Python, Ruby, Laravel, Django etc, have few studies in the
literature.

Based on the aforementioned review, the deep learning-
based XSS detection has commenced from 2018 till up-to-
date. Multifarious DL techniques have been amalgamated
to develop efficient and effective schemes to detect/prevent
various attacks from different categories viz. MLP, LSTM,
DBN, ANN, CNN, CDNN, and RNN. Thus, this offers a
profound insights into the need of in depth study of DL
techniques.

VIII. LIMITATIONS AND FUTURE WORK
This section highlights the limitations of the prevailing
work. The main aspect that can be covered further in this
review is a comparison in real environment of the pro-
posed tools/solutions in previous study and notice their
effectiveness for detecting vulnerabilities. Future work will
focus on add more vulnerabilities to each category as well
as more research papers that focus on data mining and
machine learning techniques. In addition, a unified evalu-
ation environment that includes controlled parameters can
be designed to enable a fair comparison for each mentioned
solution.

IX. CONCLUSION
Security is indisputably the most serious concern for Web
applications. Input validation vulnerabilities happens because
user enters malicious input and servers have no validation or
sanitization of user input. In this paper, a review has been
conducted on the solutions of various input validation vul-
nerabilities. The solutions have been collected in a systematic
manner on four major digital databases. The proposed review
aims to shed light on the solutions and ideas proposed in
input validation vulnerabilities. Existing reviews focus on
general kind of vulnerabilities, yet this paper focused on input
validation issues.Moreover, the existing review articles suffer
from poor categorization and overlapping. Furthermore, up to
our knowledge, there is no deep study for defending against
them. This review proposes a new classification of input
validation vulnerabilities namely query manipulation, client
side injection and information disclosure.

The contribution of this paper is summarized hereafter:

• It reviewed existing web vulnerabilities and their types
from 2015 - up-to-date.

• Provided technical as well as literature solutions that
reduce web application vulnerabilities. The goal is to
elucidate the present methods, unveil and discuss their

40156 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

pros and drawbacks, moreover investigate the gaps and
hence give insight for future research.

• A new classification for input validation vulnerabilities
is proffered.

• Displayed statistical distributions of the various tech-
niques in the different proposed categories.

• Demonstrated the distribution of the static, dynamic and
hybrid solutions.

• Presented the most commonmetrics used to measure the
performance of the reviewed suggested techniques, and
their distributions in the literation solutions.

• Manifested the statistical distribution of the target apps
and the programming languages used in the literature.

ACKNOWLEDGMENT
(Faris Faisal Fadlalla and Huwaida T. Elshoush are co-first
authors.)

REFERENCES
[1] R-Fielding. (1999). Hypertext Transfer Protocol-http/1.1. IETF RFC

2616. [Online]. Available: http://www.ietf.org/rfc/rfc2616.txt
[2] D. Kopec, ‘‘History of web programming,’’ in Dart for Absolute Begin-

ners. Cham, Switzerland: Springer, 2014, pp. 275–286.
[3] J. Fonseca, M. Vieira, and H. Madeira, ‘‘The web attacker perspective—

A field study,’’ in Proc. IEEE 21st Int. Symp. Softw. Rel. Eng., Nov. 2010,
pp. 299–308.

[4] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, ‘‘Evaluating bug finders–
test and measurement of static code analyzers,’’ in Proc. IEEE/ACM 1st
Int. Workshop Complex Faults Failures Large Softw. Syst. (COUFLESS),
May 2015, pp. 14–20.

[5] T. Scholte, D. Balzarotti, and E. Kirda, ‘‘Have things changed now? An
empirical study on input validation vulnerabilities in web applications,’’
Comput. Secur., vol. 31, no. 3, pp. 344–356, May 2012.

[6] D. Wichers. Leadership of the OWASP Top 10 Project.
Accessed: Jun. 3, 2021. [Online]. Available: https://owasp.org/
www-project-top-ten/

[7] Leadership of the OWASP Top 10 Project. Accessed:
Jun. 3, 2021. [Online]. Available: https://github.com/owasp-top/
owasp-top-2007

[8] Leadership of the OWASP Top 10 Project. Accessed: Jun. 3, 2021.
[Online]. Available: https://owasp.org/www-pdfarchive/
OWASP_AppSec_Research_2010_OWASP_Top_10_by_Wichers.pdf

[9] Leadership of the OWASP Top 10 Project. Accessed: Jun. 3,
2021. [Online]. Available: https://owasp.org/www-pdf-archive/
OWASP_Top_10_-_2013.pdf

[10] Leadership of the OWASP Top 10 Project. Accessed:
Jun. 3, 2021. [Online]. Available: https://owasp.org/www-pdf-
archive/OWASP_Top_10-2017_%28en%29.pdf.pdf

[11] Welcome to the OWASP Top 10–2021, Accessed: Mar. 18, 2023. [Online].
Available: https://owasp.org/Top10/

[12] O. B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam, and A. Derhab,
‘‘An OWASP top ten driven survey on web application protection meth-
ods,’’ in Proc. Int. Conf. Risks Secur. Internet Syst. Cham, Switzerland:
Springer, 2020, pp. 235–252.

[13] G. K. Pannu, ‘‘A survey on web application attacks,’’ Int. J. Comput. Sci.
Inf. Technol., vol. 5, no. 3, pp. 1–5, 2014.

[14] H. Atashzar, A. Torkaman, M. Bahrololum, and M. H. Tadayon, ‘‘A sur-
vey on web application vulnerabilities and countermeasures,’’ in Proc.
6th Int. Conf. Comput. Sci. Converg. Inf. Technol. (ICCIT), 2011,
pp. 647–652.

[15] O. B. Al-Khurafi and M. A. Al-Ahmad, ‘‘Survey of web application
vulnerability attacks,’’ in Proc. 4th Int. Conf. Adv. Comput. Sci. Appl.
Technol. (ACSAT), Dec. 2015, pp. 154–158.

[16] C. Meghana, B. Chaitra, and V. Nagaveni, ‘‘Survey on—Web application
attack detection using data mining techniques,’’ J. Comput., Internet
Netw. Secur., vol. 4, no. 2, pp. 154–158, 2018.

[17] M. Khari, ‘‘Web-application attacks: A survey,’’ in Proc. 3rd Int. Conf.
Comput. Sustain. Global Develop. (INDIACom), 2016, pp. 2187–2191.

[18] N. ElBachirElMoussaid and A. Toumanari, ‘‘Web application attacks
detection: A survey and classification,’’ Int. J. Comput. Appl., vol. 103,
no. 12, pp. 1–6, Oct. 2014.

[19] SANS. Private U.S. for-Profit Company. Accessed: Jun. 3, 2021.
[Online]. Available: https://www.sans.org/top25-software-errors/

[20] I. V. de Sousa Medeiros, ‘‘Detection of vulnerabilities and automatic
protection for web applications,’’ Ph.D. dissertation, Dept. Comput. Sci.,
Universidade de Lisboa, Portugal, 2016.

[21] D. Balzarotti,M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna, ‘‘Saner: Composing static and dynamic analysis to validate
sanitization in web applications,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2008, pp. 387–401.

[22] A. Algaith, P. Nunes, F. Jose, I. Gashi, andM.Vieira, ‘‘Finding SQL injec-
tion and cross site scripting vulnerabilities with diverse static analysis
tools,’’ in Proc. 14th Eur. Dependable Comput. Conf. (EDCC), Sep. 2018,
pp. 57–64.

[23] J. Dahse and T. Holz, ‘‘Simulation of built-in php features for precise
static code analysis,’’ in Proc. NDSS Symp., vol. 14. Princeton, NJ, USA:
Citeseer, 2014, pp. 23–26.

[24] D. Hauzar and J. Kofron, ‘‘Framework for static analysis of php appli-
cations,’’ in Proc. 29th Eur. Conf. Object-Oriented Program. (ECOOP).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015, pp. 689–711.

[25] N. L. de Poel, F. B. Brokken, and G. R. R. de Lavalette, ‘‘Automated
security review of PHP web applications with static code analysis,’’
M.S. thesis, Dept. Comput. Sci., vol. 5, 2010.

[26] P. J. C. Nunes, J. Fonseca, and M. Vieira, ‘‘PhpSAFE: A security analysis
tool for OOP web application plugins,’’ in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2015, pp. 299–306.

[27] N. Munaiah, ‘‘Assisted discovery of software vulnerabilities,’’ in Proc.
40th Int. Conf. Softw. Eng., Companion, May 2018, pp. 464–467.

[28] P. E. Black, P. E. Black, M. Kass, M. Koo, and E. Fong, ‘‘Source
code security analysis tool functional specification version 1.0,’’ U.S.
Dept. Commerce, Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. 500-268, 2007.

[29] C. Cao, N. Gao, P. Liu, and J. Xiang, ‘‘Towards analyzing the input
validation vulnerabilities associated with Android system services,’’ in
Proc. 31st Annu. Comput. Secur. Appl. Conf., Dec. 2015, pp. 361–370.

[30] A. Z. Baset and T. Denning, ‘‘IDE plugins for detecting input-
validation vulnerabilities,’’ in Proc. IEEE Secur. Privacy Workshops
(SPW), May 2017, pp. 143–146.

[31] G.Wassermann and Z. Su, ‘‘Static detection of cross-site scripting vulner-
abilities,’’ in Proc. 13th Int. Conf. Softw. Eng. (ICSE), 2008, pp. 171–180.

[32] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, ‘‘An empirical
analysis of input validation mechanisms in web applications and lan-
guages,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput., Mar. 2012,
pp. 1419–1426.

[33] E. Ufuktepe and T. Tuglular, ‘‘Estimating software robustness in relation
to input validation vulnerabilities using Bayesian networks,’’ Softw. Qual-
ity J., vol. 26, no. 2, pp. 455–489, Jun. 2018.

[34] M. Alkhalaf, S. R. Choudhary, M. Fazzini, T. Bultan, A. Orso, and
C. Kruegel, ‘‘ViewPoints: Differential string analysis for discovering
client- and server-side input validation inconsistencies,’’ in Proc. Int.
Symp. Softw. Test. Anal., Jul. 2012, pp. 56–66.

[35] S. Stamm, B. Sterne, and G. Markham, ‘‘Reining in the web with content
security policy,’’ in Proc. 19th Int. Conf. World Wide Web, Apr. 2010,
pp. 921–930.

[36] E. Shaji and N. Subramanian, ‘‘Assessing non-intrusive vulnerability
scanning methodologies for detecting web application vulnerabilities on
large scale,’’ in Proc. Int. Conf. Syst., Comput., Autom. Netw. (ICSCAN),
Jul. 2021, pp. 1–5.

[37] A. Lavrenovs and F. J. R. Melon, ‘‘HTTP security headers analysis of top
one million websites,’’ in Proc. 10th Int. Conf. Cyber Conflict (CyCon),
May 2018, pp. 345–370.

[38] E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang, ‘‘You can’t be me:
Enabling trusted paths and user sub-origins inweb browsers,’’ inProc. Int.
Workshop Recent Adv. Intrusion Detection. Cham, Switzerland: Springer,
2014, pp. 150–171.

[39] V. Clincy and H. Shahriar, ‘‘Web application firewall: Network security
models and configuration,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Jul. 2018, pp. 835–836.

VOLUME 11, 2023 40157

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

[40] T. Krueger, C. Gehl, K. Rieck, and P. Laskov, ‘‘TokDoc: A self-healing
web application firewall,’’ inProc. ACMSymp. Appl. Comput.,Mar. 2010,
pp. 1846–1853.

[41] A. Razzaq, A. Hur, S. Shahbaz, M. Masood, and H. F. Ahmad, ‘‘Critical
analysis on web application firewall solutions,’’ in Proc. IEEE 11th Int.
Symp. Auto. Decentralized Syst. (ISADS), Mar. 2013, pp. 1–6.

[42] M-Official Site, X-XSS-Protection, Accessed: Jun. 3, 2021.
[Online]. Available: https://developer.mozilla.org/en-U.S./docs/Web/
HTTP/Headers/X-XSS-Protection

[43] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, ‘‘State of the art: Auto-
mated black-box web application vulnerability testing,’’ in Proc. IEEE
Symp. Secur. Privacy, Dec. 2010, pp. 332–345.

[44] K. A. Williams, X. Yuan, H. Yu, and K. Bryant, ‘‘Teaching secure coding
for beginning programmers,’’ J. Comput. Sci. Colleges, vol. 29, no. 5,
pp. 91–99, 2014.

[45] M. Zaidman, ‘‘Teaching defensive programming in Java,’’ J. Comput. Sci.
Colleges, vol. 19, no. 3, pp. 33–43, 2004.

[46] X. Qie, R. Pang, and L. Peterson, ‘‘Defensive programming: Using an
annotation toolkit to build DoS-resistant software,’’ in Proc. 5th Symp.
Operating Syst. Design Implement. (OSDI), 2002, pp. 1–16.

[47] B. Chen, D.-W. Xu, S.-D. Gao, and L. Yu, ‘‘Cultivating the ability of
security coding for undergraduates in programming teaching,’’ in Proc.
4th Int. Conf. Comput. Sci. Educ., Jul. 2009, pp. 1425–1430.

[48] M. Stueben, Good Habits for Great Coding. Cham, Switzerland:
Springer, 2018.

[49] L. Conklin. OWASP Code Review Guide. Accessed: Jun. 10, 2021.
[Online]. Available: https://owasp.org/www-project-code-review-guide/

[50] A. Aggarwal and P. Jalote, ‘‘Integrating static and dynamic analysis for
detecting vulnerabilities,’’ in Proc. 30th Annu. Int. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 1, Sep. 2006, pp. 343–350.

[51] B. Chess and G. McGraw, ‘‘Static analysis for security,’’ IEEE Security
Privacy, vol. 2, no. 6, pp. 76–79, Nov. 2004.

[52] M. Berman, S. Adams, T. Sherburne, C. Fleming, and P. Beling, ‘‘Active
learning to improve static analysis,’’ in Proc. 18th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Dec. 2019, pp. 1322–1327.

[53] Z. Zhioua, S. Short, and Y. Roudier, ‘‘Static code analysis for software
security verification: Problems and approaches,’’ in Proc. IEEE 38th Int.
Comput. Softw. Appl. Conf. Workshops, Jul. 2014, pp. 102–109.

[54] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, ‘‘Static analysis-
based approaches for secure software development,’’ in Proc. Int. ISCIS
Secur. Workshop. Cham, Switzerland: Springer, 2018, pp. 142–157.

[55] G. Díaz and J. R. Bermejo, ‘‘Static analysis of source code security:
Assessment of tools against SAMATE tests,’’ Inf. Softw. Technol., vol. 55,
no. 8, pp. 1462–1476, Aug. 2013.

[56] M. Bishop, ‘‘Checking for race conditions in file accesses,’’ Comput.
Syst., vol. 2, no. 2, pp. 131–152, 1996.

[57] R. Dewhurst. Static Code Analysis. Accessed: Oct. 10, 2020.
[Online]. Available: https://owasp.org/www-community/controls/
Static_Code_Analysis

[58] W. R. Bush, J. D. Pincus, and D. J. Sielaff, ‘‘A static analyzer for finding
dynamic programming errors,’’ Softw., Pract. Exper., vol. 30, no. 7,
pp. 775–802, Jun. 2000.

[59] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
‘‘F4F: Taint analysis of framework-based web applications,’’ in Proc.
ACM Int. Conf. Object Oriented Program. Syst. Lang. Appl., 2011,
pp. 1053–1068.

[60] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, ‘‘ITS4: A static vulnera-
bility scanner for C and C++ code,’’ in Proc. 16th Annu. Comput. Secur.
Appl. Conf. (ACSAC), 2001, pp. 257–269.

[61] A. Petukhov and D. Kozlov, ‘‘Detecting security vulnerabilities in web
applications using dynamic analysis with penetration testing,’’ Comput.
Syst. Lab., Dept. Comput. Sci., Moscow State Univ., Moscow, Russia,
2008, pp. 1–120.

[62] G. Antoniol, M. Di Penta, and M. Zazzara, ‘‘Understanding web appli-
cations through dynamic analysis,’’ in Proc. 12th IEEE Int. Workshop
Program Comprehension, Jun. 2004, pp. 120–129.

[63] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, ‘‘Dynamic analy-
sis of malicious code,’’ J. Comput. Virol., vol. 2, no. 1, pp. 67–77,
2006.

[64] L. Li and C. Wang, ‘‘Dynamic analysis and debugging of binary code for
security applications,’’ in Proc. Int. Conf. Runtime Verification. Cham,
Switzerland: Springer, 2013, pp. 403–423.

[65] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, ‘‘Jäk: Using
dynamic analysis to crawl and test modern web applications,’’ in Proc.
Int. Symp. Recent Adv. Intrusion Detection. Cham, Switzerland: Springer,
2015, pp. 295–316.

[66] G. A. Di Lucca andM. Di Penta, ‘‘Integrating static and dynamic analysis
to improve the comprehension of existing web applications,’’ in Proc. 7th
IEEE Int. Symp. Web Site Evol., Jul. 2005, pp. 87–94.

[67] G. A. Di Lucca, M. Di Penta, A. R. Fasolino, and P. Tramontana, ‘‘Sup-
porting web application evolution by dynamic analysis,’’ in Proc. 8th Int.
Workshop Princ. Softw. Evol. (IWPSE), 2005, pp. 175–184.

[68] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan, ‘‘NAVEX:
Precise and scalable exploit generation for dynamic web applica-
tions,’’ in Proc. 27th USENIX Secur. Symp. (USENIX Security), 2018,
pp. 377–392.

[69] D. Jurafsky and J. Martin, Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, vol. 2.

[70] S. Rawat, D. Ceara, L. Mounier, and M.-L. Potet, ‘‘Combining static and
dynamic analysis for vulnerability detection,’’ 2013, arXiv:1305.3883.

[71] X. He, L. Xu, and C. Cha, ‘‘Malicious Javascript code detection based on
hybrid analysis,’’ in Proc. 25th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2018, pp. 365–374.

[72] I. Medeiros, N. Neves, and M. Correia, ‘‘Equipping WAP with
WEAPONS to detect vulnerabilities: Practical experience report,’’ in
Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2016, pp. 630–637.

[73] I. Medeiros, N. Neves, and M. Correia, ‘‘Statically detecting vulnerabil-
ities by processing programming languages as natural languages,’’ IEEE
Trans. Rel., vol. 71, no. 2, pp. 1033–1056, Jun. 2022.

[74] H. Tribus, I. Morrigl, and S. Axelsson, ‘‘Using data mining for static
code analysis of C,’’ in Proc. Int. Conf. Adv. Data Mining Appl. Cham,
Switzerland: Springer, 2012, pp. 603–614.

[75] V. Barstad,M.Goodwin, and T. Gjøsæter, ‘‘Predicting source code quality
with static analysis and machine learning,’’ in Norsk IKT-Konferanse for
Forskning og Utdanning, 2014.

[76] L. K. Shar, L. C. Briand, and H. B. K. Tan, ‘‘Web application vulnera-
bility prediction using hybrid program analysis and machine learning,’’
IEEE Trans. Dependable Secure Computing, vol. 12, no. 6, pp. 688–707,
Nov. 2015.

[77] J. Kronjee, A. Hommersom, and H. Vranken, ‘‘Discovering software
vulnerabilities using data-flow analysis and machine learning,’’ in Proc.
13th Int. Conf. Availability, Rel. Secur., 2018, pp. 1–10.

[78] G. Grieco and A. Dinaburg, ‘‘Toward smarter vulnerability discovery
using machine learning,’’ in Proc. 11th ACM Workshop Artif. Intell.
Secur., Jan. 2018, pp. 48–56.

[79] J. A. Kupsch and B. P. Miller, ‘‘Manual vs. automated vulnerability
assessment: A case study,’’ in Proc. 1st Int. Workshop Manag. Insider
Secur. Threats (MIST), 2009, pp. 83–97.

[80] P. E. Black, ‘‘Counting bugs is harder than you think,’’ in Proc. IEEE 11th
Int. Work. Conf. Source Code Anal. Manipulation, Sep. 2011, pp. 1–9.

[81] N. Patel and N. Shekokar, ‘‘Implementation of pattern matching algo-
rithm to defend SQLIA,’’ Proc. Comput. Sci., vol. 45, pp. 453–459,
Jan. 2015.

[82] L. Li, J. Qi, N. Liu, L. Han, and B. Cui, ‘‘Static-based test case dynamic
generation for SQLIVs detection,’’ in Proc. 10th Int. Conf. Broadband
Wireless Comput., Commun. Appl. (BWCCA), Nov. 2015, pp. 173–177.

[83] S. O. Uwagbole, W. J. Buchanan, and L. Fan, ‘‘Numerical encoding
to tame SQL injection attacks,’’ in Proc. IEEE/IFIP Netw. Operations
Manage. Symp., Apr. 2016, pp. 1253–1256.

[84] M. Chenyu and G. Fan, ‘‘Defending SQL injection attacks based-on
intention-oriented detection,’’ in Proc. 11th Int. Conf. Comput. Sci. Educ.
(ICCSE), Aug. 2016, pp. 939–944.

[85] R. P. Karuparthi and B. Zhou, ‘‘Enhanced approach to detection of SQL
injection attack,’’ in Proc. 15th IEEE Int. Conf. Mach. Learn. Appl.
(ICMLA), Dec. 2016, pp. 466–469.

[86] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand, ‘‘SOFIA:
An automated security Oracle for black-box testing of SQL-injection
vulnerabilities,’’ in Proc. 31st IEEE/ACM Int. Conf. Automated Softw.
Eng., Aug. 2016, pp. 167–177.

[87] M. Lodeiro-Santiago, C. Caballero-Gil, and P. Caballero-Gil, ‘‘Collabo-
rative SQL-injections detection system with machine learning,’’ in Proc.
1st Int. Conf. Internet Things Mach. Learn., Oct. 2017, pp. 1–5.

40158 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

[88] Y. Zhu, G. Zhang, Z. Lai, B. Niu, and Y. Shen, ‘‘A two-tiered defence
of techniques to prevent SQL injection attacks,’’ in Proc. Int. Conf.
Innov. Mobile Internet Services Ubiquitous Comput. Cham, Switzerland:
Springer, 2017, pp. 286–295.

[89] K. Umar, A. B. Sultan, H. Zulzalil, N. Admodisastro, andM. T. Abdullah,
‘‘Formulation of SQL injection vulnerability detection as grammar reach-
ability problem,’’ in Proc. Int. Conf. Inf. Commun. Technol. MuslimWorld
(ICTM), Jul. 2018, pp. 179–184.

[90] L. Saoudi, K. Adi, and Y. Boudraa, ‘‘A rejection-based approach for
detecting SQL injection vulnerabilities in web applications,’’ in Proc.
Int. Symp. Found. Pract. Secur. Cham, Switzerland: Springer, 2019,
pp. 379–386.

[91] H. Gao, J. Zhu, L. Liu, J. Xu, Y.Wu, andA. Liu, ‘‘Detecting SQL injection
attacks using grammar pattern recognition and access behavior mining,’’
in Proc. IEEE Int. Conf. Energy Internet (ICEI), May 2019, pp. 493–498.

[92] M. S. Aliero, I. Ghani, K. N. Qureshi, andM. F. Rohani, ‘‘An algorithm for
detecting SQL injection vulnerability using black-box testing,’’ J. Ambi-
ent Intell. Humanized Comput., vol. 11, no. 1, pp. 249–266, Jan. 2020.

[93] A. Kumar, S. Rai, and R. Boghey, ‘‘A novel approach for sql injection
avoidance using two-level restricted application prevention (trap) tech-
nique,’’ in Proc. Int. Conf. Innov. Comput. Commun. Cham, Switzerland:
Springer, 2021, pp. 227–238.

[94] B. M. Thombare and D. R. Soni, ‘‘Prevention of SQL injection attack by
using black box testing,’’ in Proc. 23rd Int. Conf. Distrib. Comput. Netw.,
Jan. 2022, pp. 266–272.

[95] K. D’silva, J. Vanajakshi, K. N. Manjunath, and S. Prabhu, ‘‘An effective
method for preventing SQL injection attack and session hijacking,’’ in
Proc. 2nd IEEE Int. Conf. Recent Trends Electron., Inf. Commun. Technol.
(RTEICT), May 2017, pp. 697–701.

[96] K. Zhang, ‘‘A machine learning based approach to identify SQL injection
vulnerabilities,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE), Nov. 2019, pp. 1286–1288.

[97] O. C. Abikoye, A. Abubakar, A. H. Dokoro, O. N. Akande, and
A. A. Kayode, ‘‘A novel technique to prevent SQL injection and cross-
site scripting attacks using Knuth-morris-pratt string match algorithm,’’
EURASIP J. Inf. Secur., vol. 2020, no. 1, pp. 1–14, Dec. 2020.

[98] R. Jahanshahi, A. Doupé, and M. Egele, ‘‘You shall not pass: Mitigating
SQL injection attacks on legacy web applications,’’ in Proc. 15th ACM
Asia Conf. Comput. Commun. Secur., Oct. 2020, pp. 445–457.

[99] T. Latchoumi, M. S. Reddy, and K. Balamurugan, ‘‘Applied machine
learning predictive analytics to SQL injection attack detection and pre-
vention,’’ Eur. J. Mol. Clin. Med., vol. 7, no. 2, p. 2020, 2020.

[100] K. Kamtuo and C. Soomlek, ‘‘Machine learning for SQL injection pre-
vention on server-side scripting,’’ in Proc. Int. Comput. Sci. Eng. Conf.
(ICSEC), Dec. 2016, pp. 1–6.

[101] S. O. Uwagbole, W. J. Buchanan, and L. Fan, ‘‘Applied machine learning
predictive analytics to SQL injection attack detection and prevention,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 1087–1090.

[102] S. O. Uwagbole, W. J. Buchanan, and L. Fan, ‘‘An applied pattern-driven
corpus to predictive analytics inmitigating SQL injection attack,’’ inProc.
7th Int. Conf. Emerg. Secur. Technol. (EST), Sep. 2017, pp. 12–17.

[103] Z. Chen and M. Guo, ‘‘Research on SQL injection detection technology
based on SVM,’’ in Proc. MATEC Web Conf., vol. 173. Les Ulis, France:
EDP Sciences, 2018, p. 01004.

[104] K. Ross, M. Moh, T.-S. Moh, and J. Yao, ‘‘Multi-source data analysis and
evaluation of machine learning techniques for SQL injection detection,’’
in Proc. ACMSE Conf., Mar. 2018, pp. 1–8.

[105] M. Volkova, P. Chmelar, and L. Sobotka, ‘‘Machine learning blunts the
needle of advanced SQL injections,’’MENDEL, vol. 25, no. 1, pp. 23–30,
Jun. 2019.

[106] Y. Li and B. Zhang, ‘‘Detection of SQL injection attacks based on
improved TFIDF algorithm,’’ J. Phys., Conf., vol. 1395, no. 1, Nov. 2019,
Art. no. 012013.

[107] M. Hasan, Z. Balbahaith, and M. Tarique, ‘‘Detection of SQL injection
attacks: A machine learning approach,’’ in Proc. Int. Conf. Electr. Com-
put. Technol. Appl. (ICECTA), Nov. 2019, pp. 1–6.

[108] K. Kuroki, Y. Kanemoto, K. Aoki, Y. Noguchi, andM. Nishigaki, ‘‘Attack
intention estimation based on syntax analysis and dynamic analysis for
SQL injection,’’ in Proc. IEEE 44th Annu. Comput., Softw., Appl. Conf.
(COMPSAC), Jul. 2020, pp. 1510–1515.

[109] R. K. Pathak, ‘‘Handling sql injection attack using progressive neural
network,’’ in Proc. Int. Conf. Inf., Commun. Comput. Technol. Cham,
Switzerland: Springer, 2020, pp. 231–241.

[110] D. Tripathy, R. Gohil, and T. Halabi, ‘‘Detecting SQL injection attacks in
cloud SaaS using machine learning,’’ in Proc. IEEE IEEE 6th Intl Conf.
Big Data Secur. Cloud (BigDataSecurity) Intl Conf. High Perform. Smart
Comput., (HPSC) IEEE Intl Conf. Intell. Data Secur. (IDS), May 2020,
pp. 145–150.

[111] D. Parashar, L. M. Sanagavarapu, and Y. R. Reddy, ‘‘SQL injection
vulnerability identification from text,’’ in Proc. 14th Innov. Softw. Eng.
Conf. Formerly Known India Softw. Eng. Conf., Feb. 2021, pp. 1–5.

[112] M. Gowtham and H. Pramod, ‘‘Semantic query-featured ensemble learn-
ing model for SQL-injection attack detection in IoT-ecosystems,’’ IEEE
Trans. Rel., vol. 71, no. 2, pp. 1057–1074, Jun. 2022.

[113] R. R. Choudhary, S. Verma, and G. Meena, ‘‘Detection of SQL injection
attack using machine learning,’’ in Proc. IEEE Int. Conf. Technol., Res.,
Innov. Betterment Soc. (TRIBES), Dec. 2021, pp. 1–6.

[114] Y. Luo, ‘‘SQLi-fuzzer: A SQL injection vulnerability discovery frame-
work based onmachine learning,’’ in Proc. IEEE 21st Int. Conf. Commun.
Technol. (ICCT), Oct. 2021, pp. 846–851.

[115] S. Rahul, C. Vajrala, and B. Thangaraju, ‘‘A novel method of honeypot
inclusive WAF to protect from SQL injection and XSS,’’ in Proc. Int.
Conf. Disruptive Technol. Multi-Disciplinary Res. Appl. (CENTCON),
vol. 1, Nov. 2021, pp. 135–140.

[116] A. Sivasangari, J. Jyotsna, and K. Pravalika, ‘‘SQL injection attack detec-
tion using machine learning algorithm,’’ in Proc. 5th Int. Conf. Trends
Electron. Informat. (ICOEI), 2021, pp. 1166–1169.

[117] M. O. Adebiyi, M. O. Arowolo, G. I. Archibong, M. D. Mshelia, and
A. A. Adebiyi, ‘‘An sql injection detection model using chi-square with
classification techniques,’’ in Proc. Int. Conf. Electr., Comput. Energy
Technol. (ICECET), Dec. 2021, pp. 1–8.

[118] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu, ‘‘SQL injection behavior
mining based deep learning,’’ in Proc. Int. Conf. Adv. Data Mining Appl.
Cham, Switzerland: Springer, 2018, pp. 445–454.

[119] Q. Li, F. Wang, J. Wang, and W. Li, ‘‘LSTM-based SQL injection
detection method for intelligent transportation system,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 5, pp. 4182–4191, May 2019.

[120] H. Zhang, B. Zhao, H. Yuan, J. Zhao, X. Yan, and F. Li, ‘‘SQL injection
detection based on deep belief network,’’ in Proc. 3rd Int. Conf. Comput.
Sci. Appl. Eng., Oct. 2019, pp. 1–6.

[121] X. Xie, C. Ren, Y. Fu, J. Xu, and J. Guo, ‘‘SQL injection detection for
web applications based on elastic-pooling CNN,’’ IEEE Access, vol. 7,
pp. 151475–151481, 2019.

[122] M. Liu, K. Li, and T. Chen, ‘‘DeepSQLi: Deep semantic learning for
testing SQL injection,’’ in Proc. 29th ACM SIGSOFT Int. Symp. Softw.
Test. Anal., Jul. 2020, pp. 286–297.

[123] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu, ‘‘Detection of SQL injec-
tion based on artificial neural network,’’ Knowl.-Based Syst., vol. 190,
Feb. 2020, Art. no. 105528.

[124] M. Li, B. Liu, G. Xing, X. Wang, and Z. Wang, ‘‘Research on integrated
detection of SQL injection behavior based on text features and traffic
features,’’ in Proc. Int. Conf. Comput. Eng. Netw. Cham, Switzerland:
Springer, 2020, pp. 755–771.

[125] D. Chen, Q. Yan, C.Wu, and J. Zhao, ‘‘SQL injection attack detection and
prevention techniques using deep learning,’’ J. Phys., Conf., vol. 1757,
no. 1, Jan. 2021, Art. no. 012055.

[126] K. Jothi, N. Pandey, P. Beriwal, and A. Amarajan, ‘‘An efficient SQL
injection detection system using deep learning,’’ in Proc. Int. Conf. Com-
put. Intell. Knowl. Economy (ICCIKE), Mar. 2021, pp. 442–445.

[127] N. Gandhi, J. Patel, R. Sisodiya, N. Doshi, and S. Mishra, ‘‘A CNN-
BiLSTM based approach for detection of SQL injection attacks,’’ in
Proc. Int. Conf. Comput. Intell. Knowl. Economy (ICCIKE), Mar. 2021,
pp. 378–383.

[128] P.Wen, C. He,W. Xiong, and J. Liu, ‘‘SQL injection detection technology
based on BiLSTM-attention,’’ in Proc. 4th Int. Conf. Robot., Control
Autom. Eng. (RCAE), Nov. 2021, pp. 165–170.

[129] A. A. R. Farea, C.Wang, E. Farea, and A. Ba Alawi, ‘‘Cross-site scripting
(XSS) and SQL injection attacks multi-classification using bidirectional
LSTM recurrent neural network,’’ in Proc. IEEE Int. Conf. Prog. Infor-
mat. Comput. (PIC), Dec. 2021, pp. 358–363.

[130] W. Zhang, Y. Li, X. Li, M. Shao, Y. Mi, H. Zhang, and G. Zhi, ‘‘Deep
neural network-based SQL injection detection method,’’ Secur. Commun.
Netw., vol. 2022, pp. 1–9, Mar. 2022.

VOLUME 11, 2023 40159

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

[131] A. Falor, M. Hirani, H. Vedant, P. Mehta, and D. Krishnan, ‘‘A deep learn-
ing approach for detection of SQL injection attacks using convolutional
neural networks,’’ in Proc. Data Analytics Manage. Cham, Switzerland:
Springer, 2022, pp. 293–304.

[132] Q. Li, W. Li, J. Wang, and M. Cheng, ‘‘A SQL injection detection method
based on adaptive deep forest,’’ IEEE Access, vol. 7, pp. 145385–145394,
2019.

[133] Z. Xiao, Z. Zhou, W. Yang, and C. Deng, ‘‘An approach for SQL injection
detection based on behavior and response analysis,’’ inProc. IEEE 9th Int.
Conf. Commun. Softw. Netw. (ICCSN), May 2017, pp. 1437–1442.

[134] X. Qi and T. Dai, ‘‘Research on the detection method of SQL injection
attack based on sequence alignment,’’ J. Phys., Conf., vol. 1550, no. 3,
May 2020, Art. no. 032054.

[135] G. Singh, D. Kant, U. Gangwar, andA. P. Singh, ‘‘SQL injection detection
and correction using machine learning techniques,’’ in Proc. Emerg. ICT
Bridging Future 49th Annu. Conv. Comput. Soc. India (CSI), vol. 1.
Cham, Switzerland: Springer, 2015, pp. 435–442.

[136] J. Thome, L. K. Shar, and L. Briand, ‘‘Security slicing for auditing XML,
XPath, and SQL injection vulnerabilities,’’ in Proc. IEEE 26th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2015, pp. 553–564.

[137] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand, ‘‘JoanAudit: A
tool for auditing common injection vulnerabilities,’’ in Proc. 11th Joint
Meeting Found. Softw. Eng., Aug. 2017, pp. 1004–1008.

[138] V. Clincy and H. Shahriar, ‘‘Web service injection attack detection,’’
in Proc. 12th Int. Conf. for Internet Technol. Secured Trans. (ICITST),
Dec. 2017, pp. 173–178.

[139] G. Deshpande and S. Kulkarni, ‘‘Modeling and mitigation of XPath
injection attacks for web services using modular neural networks,’’
in Recent Findings in Intelligent Computing Techniques. Cham,
Switzerland: Springer, 2019, pp. 301–310.

[140] P. Bulusu, ‘‘Detection of lightweight directory access protocol query
injection attacks in web applications,’’ 2015.

[141] H. Shahriar, H. M. Haddad, and P. Bulusu, ‘‘OCL fault injection-based
detection of LDAP query injection vulnerabilities,’’ in Proc. IEEE 40th
Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016, pp. 455–460.

[142] M. K. Jawalkar, P. S. Gokhale, and A. M. Dixit, ‘‘JIID: Java input injec-
tion detector for pre-deployment vulnerability detection,’’ in Proc. IEEE
Int. Conf. Res. Comput. Intell. Commun. Netw. (ICRCICN), Nov. 2015,
pp. 444–449.

[143] C. Alonso, R. Bordón, M. Beltrán, and A. Guzmán, ‘‘LDAP injection &
blind LDAP injection,’’ Figure, vol. 1, p. 4, 2008.

[144] H. Ma, T.-Y. Wu, M. Chen, R.-H. Yang, and J.-S. Pan, ‘‘A parse tree-
based NoSQL injection attacks detection mechanism,’’ J. Inf. Hiding
Multimedia Signal Process., vol. 8, no. 4, pp. 916–928, 2017.

[145] S. Joseph and K. Jevitha, ‘‘An automata based approach for the prevention
of NoSQL injections,’’ in Proc. Int. Symp. Secur. Comput. Commun.
Cham, Switzerland: Springer, 2015, pp. 538–546.

[146] A. M. Eassa, M. Elhoseny, H. M. El-Bakry, and A. S. Salama, ‘‘NoSQL
injection attack detection in web applications using RESTful service,’’
Program. Comput. Softw., vol. 44, no. 6, pp. 435–444, Nov. 2018.

[147] M. R. Ul Islam, M. S. Islam, Z. Ahmed, A. Iqbal, and R. Shahriyar,
‘‘Automatic detection of NoSQL injection using supervised learning,’’
in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf. (COMPSAC),
Jul. 2019, pp. 760–769.

[148] V. S. Stency and N. Mohanasundaram, ‘‘A study on XSS attacks: Intel-
ligent detection methods,’’ J. Phys., Conf., vol. 1767, no. 1, Feb. 2021,
Art. no. 012047.

[149] ‘‘Intelligent detection methods,’’ J. Phys., Conf., vol. 1767, no. 1, 2021,
Art. no. 012047.

[150] H. Takahashi, K. Yasunaga, M. Mambo, K. Kim, and H. Y. Youm,
‘‘Preventing abuse of cookies stolen by XSS,’’ in Proc. 8th Asia Joint
Conf. Inf. Secur., Jul. 2013, pp. 85–89.

[151] S. Rathore, P. K. Sharma, and J. H. Park, ‘‘XSSClassifier: An efficient
XSS attack detection approach based on machine learning classifier on
SNSs,’’ J. Inf. Process. Syst., vol. 13, no. 4, pp. 1014–1028, 2017.

[152] R. Banerjee, A. Baksi, N. Singh, and S. K. Bishnu, ‘‘Detection of XSS in
web applications using machine learning classifiers,’’ in Proc. 4th Int.
Conf. Electron., Mater. Eng. Nano-Technol. (IEMENTech), Oct. 2020,
pp. 1–5.

[153] G. Kaur, Y. Malik, H. Samuel, and F. Jaafar, ‘‘Detecting blind cross-
site scripting attacks using machine learning,’’ in Proc. Int. Conf. Sig-
nal Process. Mach. Learn. Cham, Switzerland: Springer, Nov. 2018,
pp. 200–210.

[154] B. Gogoi, T. Ahmed, and H. K. Saikia, ‘‘Detection of XSS attacks in web
applications: A machine learning approach,’’ Int. J. Innov. Res. Comput.
Sci. Technol., vol. 9, no. 1, pp. 2347–5552, 2021.

[155] C. Gupta, R. K. Singh, and A. K. Mohapatra, ‘‘GeneMiner: A classifi-
cation approach for detection of XSS attacks on web services,’’ Comput.
Intell. Neurosci., vol. 2022, pp. 1–12, Jun. 2022.

[156] J. Lu, Z. Wei, Z. Qin, Y. Chang, and S. Zhang, ‘‘Resolving cross-
site scripting attacks through fusion verification and machine learning,’’
Mathematics, vol. 10, no. 20, p. 3787, Oct. 2022.

[157] Z. Liu, Y. Fang, C. Huang, and Y. Xu, ‘‘GAXSS: Effective payload gener-
ation method to detect XSS vulnerabilities based on genetic algorithm,’’
Secur. Commun. Netw., vol. 2022, pp. 1–15, Mar. 2022.

[158] Q.Wang, H. Yang, G.Wu, K.-K.-R. Choo, Z. Zhang, G.Miao, andY. Ren,
‘‘Black-box adversarial attacks on XSS attack detection model,’’Comput.
Secur., vol. 113, Feb. 2022, Art. no. 102554.

[159] Y. Zhou and P. Wang, ‘‘An ensemble learning approach for XSS attack
detection with domain knowledge and threat intelligence,’’ Comput.
Secur., vol. 82, pp. 261–269, May 2019.

[160] S. Abaimov and G. Bianchi, ‘‘CODDLE: Code-injection detection with
deep learning,’’ IEEE Access, vol. 7, pp. 128617–128627, 2019.

[161] L. Lei, M. Chen, C. He, and D. Li, ‘‘XSS detection technology based on
LSTM-attention,’’ in Proc. 5th Int. Conf. Control, Robot. Cybern. (CRC),
Oct. 2020, pp. 175–180.

[162] P. Chaudhary, B. B. Gupta, and A. K. Singh, ‘‘Securing heterogeneous
embedded devices against XSS attack in intelligent IoT system,’’Comput.
Secur., vol. 118, Jul. 2022, Art. no. 102710.

[163] Y. Fang, Y. Li, L. Liu, and C. Huang, ‘‘DeepXSS: Cross site scripting
detection based on deep learning,’’ in Proc. Int. Conf. Comput. Artif.
Intell., Mar. 2018, pp. 47–51.

[164] R. Kadhim and M. Gaata, ‘‘A hybrid of CNN and lstm methods for
securing web application against cross-site scripting attack,’’ Indones.
J. Electr. Eng. Comput. Sci., vol. 21, pp. 1022–1029, 2020.

[165] F. M. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F. Akhtar, and
W. Xiaoxi, ‘‘MLPXSS: An integrated XSS-based attack detection scheme
inweb applications usingmultilayer perceptron technique,’’ IEEEAccess,
vol. 7, pp. 100567–100580, 2019.

[166] I. Odun-Ayo, W. Toro-Abasi, M. Adebiyi, and O. Alagbe, ‘‘An imple-
mentation of real-time detection of cross-site scripting attacks on cloud-
based web applications using deep learning,’’ Bull. Electr. Eng. Informat.,
vol. 10, no. 5, pp. 2442–2453, 2021.

[167] W. Yang,W. Zuo, and B. Cui, ‘‘Detecting malicious URLs via a keyword-
based convolutional gated-recurrent-unit neural network,’’ IEEE Access,
vol. 7, pp. 29891–29900, 2019.

[168] X. Zhang, Y. Zhou, S. Pei, J. Zhuge, and J. Chen, ‘‘Adversarial examples
detection for XSS attacks based on generative adversarial networks,’’
IEEE Access, vol. 8, pp. 10989–10996, 2020.

[169] S. Gupta and B. B. Gupta, ‘‘Automated discovery of Javascript code
injection attacks in PHP web applications,’’ Proc. Comput. Sci., vol. 78,
pp. 82–87, Jan. 2016.

[170] S. Gupta and B. B. Gupta, ‘‘Enhanced XSS defensive framework for
web applications deployed in the virtual machines of cloud computing
environment,’’ Proc. Technol., vol. 24, pp. 1595–1602, Jan. 2016.

[171] S. Gupta, B. B. Gupta, and P. Chaudhary, ‘‘Hunting for DOM-based
XSS vulnerabilities in mobile cloud-based online social network,’’ Future
Gener. Comput. Syst., vol. 79, pp. 319–336, Feb. 2018.

[172] A. Steinhauser and P. Tuma, ‘‘Database traffic interception for graybox
detection of stored and context-sensitive XSS,’’ Digit. Threats, Res.
Pract., vol. 1, no. 3, pp. 1–23, Sep. 2020.

[173] I. Medeiros, N. Neves, and M. Correia, ‘‘DEKANT: A static analysis tool
that learns to detect web application vulnerabilities,’’ in Proc. 25th Int.
Symp. Softw. Test. Anal., Jul. 2016, pp. 1–11.

[174] I. Medeiros, N. Neves, and M. Correia, ‘‘Detecting and removing web
application vulnerabilities with static analysis and data mining,’’ IEEE
Trans. Rel., vol. 65, no. 1, pp. 54–69, Mar. 2016.

[175] S. P. Chandramouli, P.-M. Bajan, C. Kruegel, G. Vigna, Z. Zhao,
A. Doupé, and G.-J. Ahn, ‘‘Measuring E-mail header injections on the
world wide web,’’ in Proc. 33rd Annu. ACM Symp. Appl. Comput.,
Apr. 2018, pp. 1647–1656.

[176] R. Chandel. Comprehensive Guide on Local File Inclusion
(LFI). Accessed: Dec. 8, 2022. [Online]. Available: https://www.
hackingarticles.in/comprehensive-guide-to-local-file-inclusion/

40160 VOLUME 11, 2023

F. Faisal Fadlalla, H. T. Elshoush: Input Validation Vulnerabilities in Web Applications

[177] Comprehensive Guide on Local File Inclusion (LFI).
Accessed: Dec. 8, 2022. [Online]. Available: https://www.
hackingarticles.in/comprehensive-guide-to-local-file-inclusion/

[178] M. S. Tajbakhsh and J. Bagherzadeh, ‘‘A sound framework for dynamic
prevention of local file inclusion,’’ in Proc. 7th Conf. Inf. Knowl. Technol.
(IKT), May 2015, pp. 1–6.

[179] M. Maruf Hassan, T. Bhuyian, M. Khaled Sohel, M. Hasan Sharif, and
S. Biswas, ‘‘SAISAN: An automated local file inclusion vulnerability
detection model,’’ Int. J. Eng. Technol., vol. 7, no. 2.3, p. 4, Mar. 2018.

[180] Portswigger. Directory Traversal. Accessed: Dec. 8, 2022. [Online].
Available: https://portswigger.net/web-security/file-path-traversal

[181] M. Flanders, ‘‘A simple and intuitive algorithm for preventing directory
traversal attacks,’’ 2019, arXiv:1908.04502.

FARIS FAISAL FADLALLA received the B.Sc.
degree from the Faculty of Information Technol-
ogy, Almanhal Academy of Science, Sudan, and
the M.Sc. degree from the Faculty of Information
Technology, University of Science and Technol-
ogy, Sudan. He is currently pursuing the Ph.D.
degree with the Faculty of Mathematical Sciences
and Informatics, University of Khartoum, Sudan.

In 2019, he participated in the Bug Bounty Pro-
gram. He discovered and reported vulnerabilities

in Twitter as well as the U.S. Department of Defense and got awarded as well
as put in the hall of fame in Twitter. His research interests include application
security, information, and network security.

HUWAIDA T. ELSHOUSH received the bach-
elor’s degree in computer science (Division 1),
the master’s degree in computer science, and the
Ph.D. degree in information security from the Fac-
ulty of Mathematical Sciences and Informatics,
University of Khartoum, Sudan, in 1994, 2001,
and 2012, respectively. Her M.Sc. dissertation was
titled, Frame Relay Security.

She is currently an Associate Professor with the
Computer Science Department, Faculty of Math-

ematical Sciences and Informatics, University of Khartoum, where she is
also acting as the Head of Research Office. She is also the Deputy Dean of
Basic Sciences and Engineering with the Graduate College, University of
Khartoum. She has more than 29 publications and some of her publications
appeared in Applied Soft Computing (Elsevier), PLOS One, IEEE ACCESS,
Multimedia Tools and Applications, PeerJ Computer Science, Journal of
Information Hiding and Multimedia Signal Processing, and Springer book
chapters. Her research interests include information security, cryptography,
steganography, and intrusion detection systems.

Dr. Elshoush received several awards and honors, including the
Second-Place Prize from the ACM Student Research Competition SRC–
SAC, Coimbra, Portugal, in 2013. Her article titled ‘‘An Improved Frame-
work for Intrusion Alert Correlation’’ was awarded the Best Student Paper
Award from the 2012 International Conference of Information Security and
Internet Engineering (ICISIE) in WCE 2012. Other prizes were the best
student during the five years of her undergraduate study. She is a reviewer of
many international reputable journals related to her fields, including Applied
Soft Computing (Elsevier).

VOLUME 11, 2023 40161

