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ABSTRACT Security and reliability of electrical power supply has become indispensable to modern society,
and the system operator is challenged to manage the increasingly complex modern power system in a
manner that ensures the expected reliability and security of system operation. In this context, Volt/VAR
optimization (VVO) plays a key role in the efficient delivery of power through the transmission system,
contributing significantly to the security, reliability, quality and economy of system operation. This article
presents the design and implementation of an efficient primal-dual interior-point algorithm for the solution of
the VVO problem. The primal-dual interior-point method combines efficient constraint handling by means
of logarithmic barrier functions, Lagrangian theory of optimization, and the Newton method to constitute
one of the most efficient deterministic algorithms for large-scale nonlinear optimization. The developed
algorithm also incorporates the efficient Newton-Raphson load flow computation, which ensures that the
solution is feasible with respect to the power flow balance equations at each iteration of the VVO algorithm.
Both the VVO and Newton-Raphson load flow problems are formulated in the rectangular coordinates of
system voltages. This is a departure from most researchers, who make use of the polar formulation, and adds
considerably to the efficiency of the developed algorithm. The efficiency and effectiveness of the developed
algorithm has been demonstrated by means of case studies performed on the 6-bus and IEEE 14-bus, 30-bus
and 118-bus test systems, which have been selected to analyse the computational efficiency and scalability
of the algorithm as it is applied to systems of various sizes. The extensive analyses that have been conducted
reveal the developed primal-dual interior-point algorithm’s effectiveness and efficiency, particularly in being
able to successfully solve the VVO problem for systems of widely varying sizes without disproportionate
increase in computational cost or deterioration in the quality of the results. The developed algorithm exhibits
characteristics of fast convergence, high efficiency, and scalability to large-scale problems.

INDEX TERMS Volt/VAR optimization, reactive power/voltage control, primal-dual interior-point method,
optimal power flow, Newton’s method, Newton-Raphson load flow, Lagrange multiplier method, rectangular
voltage coordinates.

I. INTRODUCTION
The electric power system is arguably one of the most
complex engineering systems in existence. For the majority
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of the world population (and especially the developed
world), reliable electrical power supply has become an
indispensable daily commodity, the prolonged unavailability
of which causes enough disruption to essential public (and
private) services and normal daily activities to be considered
practically intolerable. To be able to deliver electric power
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with the required high reliability and security, whilst being
economical, planning and operational strategies have been
developed over the decades by means of which the system
can be operated optimally as far as practicable. These
strategies are collectively referred to as Optimal Power
Flow (OPF).

The general OPF problem was first formulated in the early
1960s by Carpentier [1], and has since then developed into a
sophisticated and indispensable tool for all aspects of power
system planning and operation, both in the traditional and
deregulated electricity market contexts. Key developments in
the treatment of the OPF problem over the years have been
presented in a number of review articles, some notable ones
being [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. Gradient-based techniques constituted the
first approaches applied to the algorithmic solution for the
OPF problem [17], [18], [19]. Over the years, a variety
of solution techniques have been explored and developed,
falling into two main categories, commonly referred to
as classical/conventional or deterministic methods, and
heuristic/non-conventional or non-deterministic methods.
The category of classical optimization methods includes a
variety of gradient-based methods (e.g. reduced-gradient,
generalized reduced-gradient, conjugate-gradient, Newton
and quasi-Newton methods), and local-approximation meth-
ods such as sequential linear programming (SLP) and
sequential quadratic programming (SQP). Heuristic opti-
mizationmethods encompass genetic algorithm, evolutionary
programming, particle swarm optimization, fuzzy set theory,
and expert systems, among others [20].

The various classical optimization techniques suffer from
a number of drawbacks. First-order gradient-based methods,
for example, are characterized by slow convergence, and
potentially zig-zagging behaviour in the neighbourhood
of the optimal solution. Local-approximation techniques
(principally SLP and SQP) attempt to reconcile the objectives
of (moderate) model complexity and (sufficient) model
accuracy by means of iterative model approximation around
an operating point (leading to reduced computational effort
needed to arrive at the optimal solution), but they are not
equally applicable to all problem types, and are particularly
not well-suited to handling the stressed operating conditions
that modern power systems are quite often subjected to
(perhaps due to heavy loading or other phenomena).

The seminal work by Sun et al. [21] that applied New-
ton’s method along with Lagrange multipliers and penalty
functions to directly solve the first-order optimality (KKT)
conditions for the OPF problem constituted a significant
step in the development of efficient methods for solving
the large-scale nonlinear OPF problem, although with the
major drawback of the approach being the difficulty of
identifying the binding inequality constraints at the optimal
solution. A class of techniques that uses a similar approach
is interior-point methods (IPM), whose origins can be traced
back to the barrier methods worked on by Frisch in the
1950s [22], and further developed by Fiacco and McCormick

in the 1960s [23]. But the more recent development of
IPMs is closely connected with the work of Karmarkar [24],
whose discovery of their superior convergence characteristics
relative to the Simplex method for linear programming (LP)
led to a resurgence in interest for this once-sidelined class of
optimization methods, not only for LP, but also for general
nonlinear programming (NLP) problems [25]. Interior-point
methods possess a number of characteristics that make them
particularly attractive for application to large-scale nonlinear
optimization, such as fast convergence, and effective handling
of inequality constraints by means of logarithmic barrier
functions.

An important OPF formulation is the Volt/VAR optimiza-
tion (VVO) problem, which is primarily concerned with the
optimal coordinated dispatch of voltage-regulating devices
and reactive power sources so as to maintain a secure voltage
profile, thereby enhancing system security, and improving
system economy by minimizing system losses [26]. Optimal
reactive power dispatch (as it is otherwise referred to) plays a
key role in the efficient transfer of real power, especially in the
bulk power transmission system, and contributes significantly
to the security, reliability, quality and economy of power
system operation [27].

In this article, an interior-point method, precisely the
primal-dual interior-point method (PDIPM), is used as the
basis for developing an efficient Volt/VAR optimization
algorithm, which makes use of the rectangular representation
of the system voltages, both for the Volt/VAR optimization
and the (Newton-Raphson-based) load flow computation
(which forms part of the optimization algorithm). The
rationale behind this choice is motivated later in the article.
Several case studies based on IEEE test systems of various
sizes are conducted to evaluate the efficiency of the developed
algorithm. The key contributions of the work presented in this
article include:

• Development and implementation of an efficient
Newton-Raphson load flow algorithm in the rectangular
coordinate representation of the system voltages

• Development and implementation of an efficient primal-
dual interior-point algorithm for Volt/VAR optimization
(PDIPM-VVO), formulated in rectangular coordinates,
which incorporates the rectangular-coordinate Newton-
Raphson load flow computation

• Comprehensive performance analysis of the developed
PDIPM-VVO algorithm, focusing on the quality of the
solution (in terms of the magnitude of real power loss
percentage reduction and the voltage profile improve-
ment) and the computational efficiency of the algorithm
(in terms of the required number of iterations and
runtime)

• Demonstrating the scalability of the developed algo-
rithm by analysing its performance for test systems
ranging in size from 3-bus to 118-bus system

An outline of the article is as follows. Section II presents
the problem formulation for the Volt/VAR optimization
problem in rectangular coordinates of the system voltages.
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The Newton-Raphson load flow computation is then briefly
discussed in Section III before presenting the developed
primal-dual interior-point algorithm for Volt/VAR optimiza-
tion in section IV. Case studies are then presented in sectionV
to analyse the performance of the developed algorithm.
Section VI concludes the article with a summary of the key
points and results from the article.

II. VOLT/VAR OPTIMIZATION PROBLEM FORMULATION
IN RECTANGULAR COORDINATES
Mathematically, Volt/VAR optimization is formulated as
a constrained nonlinear optimization problem, intended to
minimize a scalar objective function subject to equality
and inequality constraints [28]. The main elements of the
problem formulation, which need to be specified and defined
appropriately, are the system (state and control) variables, the
objective(s) of optimization, and the (equality and inequality)
constraints. Each of these elements is briefly outlined below,
before the full statement of the problem is presented.

A. OBJECTIVES
The primary objective of Volt/VAR optimization is to
facilitate the maintenance of network voltage profile within
the predetermined nominal range, and at the same time
optimize network reactive power dispatch so as to enhance
the economical operation of the power system. Key objectives
considered in the framework of Volt/VAR optimization
are [20]:

• Active power loss minimization
• Reactive power loss minimization
• Voltage profile improvement (e.g. minimization of bus
voltage deviation from nominal values)

• Voltage stability maximization
• Minimization of control effort to achieve a desired
system operating state

The problem may be formulated to have a single objective
or multiple objectives. The active power loss minimization
and voltage profile improvement objectives are considered in
this study.

B. SYSTEM VARIABLES
System variables can be classified into two types: state
(dependent) variables and control (independent) variables.
State variables include [29]:

• Load bus voltage magnitudes
• Load and generator bus phase angles
• Slack bus real power output
• Generator reactive power outputs
• Line flows
Control variables can in turn be classified into those

derived from voltage-regulating devices, and those derived
from reactive power sources, and include [30]:

• Generator terminal voltage magnitudes
• Under-Load Tap-Changing (ULTC) transformer tap
settings

• Shunt capacitors and reactors

• Flexible AC Transmission System (FACTS) devices
• Distributed Generation (DG).
Some of these variables are continuous, others are

discrete. A complete and most accurate formulation of the
VVO problem would thus be a Mixed Integer Nonlinear
Programming (MINLP) problem formulation [31]. Such
a problem formulation, although being very accurate (a
desirable characteristic), is also computationally intensive,
especially for a large-scale system.

C. SYSTEM CONSTRAINTS
The Volt/VAR optimization problem is solved subject to
both (generally nonlinear) equality and inequality con-
straints, which encompass operational and functional-type
constraints. The main equality constraints are the bus active
and reactive power balance equations, but may also include
such constraints as voltage magnitude and/or phase angle
imposed or required to be of a specified value at a given bus.

Inequality constraints are of two types: operational con-
straints that apply to the power system state variables, needed
to ensure the secure operation of the system, and physical
limits on the operating range of values for the control
variables [32]. Limits in the form of inequality constraints
are typically imposed on each of the following:

• Generator reactive power outputs
• Bus voltage magnitudes
• Shunt reactive power compensation device outputs
• Load tap changing transformer tap settings
• Line flows (in terms of either active/reactive power or
current)

D. GENERAL DEFINITIONS
Here a few definitions useful in the statement of the problem
to be presented in the next sub-section are stated. For a given
network, the following sets (of indices) can be defined:

N Set of (indices over) all buses in the network.
G Set of generators.
D Set of consumers (loads).
L Set of lines/branches in the network.

Voltage at bus i is a complex quantity, and can be
represented in rectangular form as:

V̄i = ei + jfi ∀i ∈ N (2.1)

where ei and fi are the real and imaginary components of

the complex voltage respectively,
∣∣V̄i∣∣ =

√
e2i + f 2i , and

θ = arctan
(
fi/ei

)
are the magnitude and phase angle of

the voltage at bus i respectively. The rectangular form of the
active (Pi) and reactive (Qi) power injections at bus i can be
expressed as [33]:

Pi = Gii
(
e2i + f 2i

)
+ ei

∑
j∈Li

Gijej − Bijfj

+ fi
∑
j∈Li

Gijfj + Bijej (2.2)
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Qi = −Bii
(
e2i + f 2i

)
+ fi

∑
j∈Li

Gijej − Bijfj

− ei
∑
j∈Li

Gijfj + Bijej (2.3)

where Gij and Bij are the real and imaginary components of
the ijth element of the bus admittance matrix Y , that is, Yij =

Gij+jBij. Li is the set of branches (or lines) directly connected
to bus i.

The active power losses (PL) in the transmission system
can be expressed as a summation of the losses over all the
branches of the network. In rectangular form, this can be
derived as [34]:

PL =

∑
(i,j)∈L

Gij
[
(ei − ej)2 + (fi − fj)2

]
(2.4)

The rectangular formulation has the main advantage that
for the Volt/VAR optimization problem, the objective and
constraint functions are quadratic functions of the bus volt-
ages (as can be deduced from (2.2) – (2.4)), and the Hessian
matrices are constant [32]. This turns out to be numerically
very efficient for a Newton-based optimization algorithm,
and enables direct handling of the strong nonlinearity typical
in some power system problems, such as the Volt/VAR
optimization problem, while keeping the computational effort
moderate.

E. STATEMENT OF THE VOLT/VAR OPTIMIZATION
PROBLEM
Based on the components of the problem formulation and
the general definitions presented in the preceding sub-
sections, the Volt/VAR optimization problem expressed in
the rectangular coordinates of the bus voltages can be stated
as [32] and [33]:

minPL (e, f , t) (2.5)

subject to:

Pi (e, f , t) + Pdi − Pgi = 0 (2.6)

Qi (e, f , t, q) + Qdi − qi − Qgi = 0 (2.7)

Y 2
ij

[
(ei − ej)2 + (fi − fj)2

]
≤

(
Imax
ij

)2
(2.8)(

Vmin
i

)2
≤ e2i + f 2i ≤

(
Vmax
i

)2 (2.9)

Qmin
gi ≤ Qgi ≤ Qmax

gi (2.10)

qmin
i ≤ qi ≤ qmax

i (2.11)

τmin
ij ≤ τij ≤ τmax

ij (2.12)

The mathematical symbols (not yet defined) in the
formulation above have the following definitions:

Pdi/Qdi Active/reactive power demand at bus i.
Pgi/Qgi Active/reactive power generation at bus i.
Iij Current magnitude in branch ij.
Vi Bus voltage magnitude at bus i.
qi Reactive power compensation at bus i.

τij Tap position of ULTC connected in branch ij.

In the problem formulation stated above (2.5) represents
the objective function, which is defined by (2.4). Equa-
tions (2.6) and (2.7) are the active and reactive power
balance equations, with Pi and Qi given by (2.2) and (2.3)
respectively. Equation (2.8) represents branch flow limits
expressed in terms of the maximum current limit, and (2.9) –
(2.12) constitute lower and upper bounds on the bus voltage
magnitudes, generator reactive power outputs, shunt reactive
power compensation, and ULTC transformer tap settings,
respectively.

To facilitate the development of the primal-dual interior-
point algorithm (PDIPA) to be presented later, the problem
formulation can be stated in compact form as the following
general nonlinear programming problem [28]:

min f (x) (2.13)

subject to:

g (x) = 0 (2.14)

h (x) ≤ 0 (2.15)

where (2.14) represents the equality constraints (2.6) – (2.7),
and (2.15) bundles together all the inequality constraints,
(2.8) – (2.12).

The developed PDIPA requires the execution of a load flow
computation at each iteration of the optimization algorithm.
The following section thus briefly discusses the design and
implementation of the load flow computation in rectangular
coordinates, in line with the problem formulation used in the
Volt/VAR optimization.

III. NEWTON-RAPHSON LOAD FLOW COMPUTATION IN
RECTANGULAR COORDINATES
The objective of a load flow computation for a power system
is to determine the system bus voltages (magnitudes and
phase angles) for a given generation, load and network
condition, while satisfying active and reactive power balance
equations (i.e. sum of active and reactive power injections
at each bus, each treated separately, must equal zero) [35].
Other than handling the active and reactive power balance
equations, the load flow algorithm does not enforce the
satisfaction of any other system constraints (such as limits on
bus voltage magnitudes and other state variables), which thus
needs to be taken care of as part of the Volt/VAR optimization.
Once the system voltages have been determined, other system
quantities such as line power flows and system losses can
be computed in turn as part of the load flow solution of the
system [36].
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TABLE 1. Classification of system buses for load flow computation based on specified and unknown variables.

The load flow problem is a nonlinear problem, and a
number of methods, most of them iterative, have been
developed and applied to it, prominent among them being
the Newton-Raphson, Gauss-Seidel, fast-decoupled, and
DC load flow methods, all of which are extensively
discussed in power system analysis textbooks (see, for
example, [37], [38]). The Newton-Raphson method is very
popular for its high efficiency, and it forms the basis for the
load flow computation in this study.

A load flow computation requires classifying each system
bus on the basis of the known and unknown variables at
the bus, as detailed in Table 1. All system buses essentially
fall broadly into two main categories, depending on whether
there is generation at the bus or not. Non-generator buses are
referred to as load (or PQ) buses, and the rest are referred to as
generator (or PV or regulated) buses. Among generator buses,
one bus (possibly more) is designated as the reference bus,
which is responsible for setting the reference voltage phase
angle for the system, as well as catering for the mismatch
between load demand (plus system losses) and scheduled
generation. Hence, it is also referred to as the slack bus or
swing bus [37].

As can be deduced from Table 1, both the voltage
magnitude and voltage phase angle are specified at the
reference bus, the voltage magnitude is specified at each
generator bus, whereas neither voltage magnitude nor phase
angle is specified at load buses. The load flow solution is thus
needed to compute voltage magnitudes and phase angles for
all load buses, as well as voltage phase angles for (non-slack)
generator buses [35].

To develop the Newton-Raphson-based load flow algo-
rithm, a vector of power (1Pi, 1Qi) and voltage (1V 2

i ) mis-
matches is constructed using the following expressions [36]:

1Pi = Pi + Pdi − Pgi

= Gii
(
e2i + f 2i

)
+ ei

∑
j∈Li

Gijej − Bijfj

+ fi
∑
j∈Li

Gijfj + Bijej + Pdi − Pgi (3.1)

1Qi = Qi + Qdi − qi − Qgi

= −Bii
(
e2i + f 2i

)
+ fi

∑
j∈Li

Gijej − Bijfj

− ei
∑
j∈Li

Gijfj + Bijej + Qdi − qi − Qgi (3.2)

1V 2
i = V 2

i −

(
e2i + f 2i

)
(3.3)

Equation (3.1) is the active power (or active power balance)
mismatch, and needs to be computed for each bus other
than the slack bus. Equation (3.2) is the reactive power
mismatch, and needs to be computed for each load bus.
Equation (3.3) is the voltage magnitude mismatch, and needs
to be computed for each generator bus except for the slack
bus, to ensure maintenance of the voltage magnitude set-
point at the voltage-regulated (i.e. PV) buses. For a system
with n buses, a total of 2(n − 1) equations are formulated
in order to solve for the load-bus voltage magnitudes and
phase angles, as well as PV-bus voltage phase angles [39].
The mismatch equations (3.1) – (3.3) have been expressed
in rectangular form, as the developed load flow algorithm
is based on the rectangular representation of system bus
voltages. Incidentally, (3.1) and (3.2) can be recognized as
the active and reactive power balance equations, which appear
as (2.6) and (2.7) respectively in the Volt/VAR optimization
problem formulation. The implication of this is that the
Volt/VAR optimization problem formulation need only treat
the inequality constraints, equations (2.8) – (2.12), since
the equality constraints are accounted for in the load flow
computation.

The basic idea of Newton-Raphson-based the load flow
computation is to drive the mismatches (otherwise referred to
as residues) toward zero in an iterative manner. This is done
by application of the Newton method, an iterative procedure
for finding the solution to a general nonlinear problem of the
form [36]:

F(X ) = 0 (3.4)

which involves generating the Taylor series expansion of
F(X ) about an initial estimated solution X0, subjected to
a small increment 1X0, then taking the first-order approx-
imation of the expansion, valid under certain assumptions
(see, for example, [35], for additional information on the
Newton method). The resulting first-order model that forms
the basis for the Newton-Raphson load flow computation can
be expressed as [38]:

J (X )1X = −F(X ) (3.5)

where F(X ) is a vector whose elements are based
on (3.1) – (3.3) as further discussed shortly, J (X ) is the
Jacobian of F(X ) (i.e. the first-order partial derivatives of
F(X ) with respect to the system bus voltages), and 1X is
the correction vector to be applied to the variable X (the
system bus voltages) in order to drive it towards the load flow
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solution, according to equation (3.6).

X k+1
= X k + 1X k (3.6)

For each ith PQ bus, the mismatch vector (FPQi ) and the
corresponding Jacobian (JPQij) are given by [36]:

FPQi =

[
1Pi
1Qi

]
(3.7)

JPQi =


∂1Pi
∂ej

∂1Pi
∂fj

∂1Qi
∂ej

∂1Qi
∂fj

 (3.8)

And for each ith PV bus, the mismatch vector (FPVi ) and
the corresponding Jacobian (JPVi ) are given by [36]:

FPVi =

[
1Pi
1V 2

i

]
(3.9)

JPVi =


∂1Pi
∂ej

∂1Pi
∂fj

∂1V 2
i

∂ej

∂1V 2
i

∂fj

 (3.10)

and the correction vector 1Xi is given by [36]:

1Xi =

[
1ei
1fi

]
(3.11)

for every bus other than the slack bus. The increment 1X k is
successively added to the current solution X k at each iteration
until the approximate solution reaches a sufficient level of
accuracy. Computation of the elements of the Jacobian based
on (3.1) – (3.3) is quite straightforward, but details are not
presented here to keep the length of the article reasonable.
A flowchart of the Newton-Raphson load flow algorithm is
depicted in Fig. 1.

IV. DESCRIPTION OF THE PRIMAL-DUAL
INTERIOR-POINT-ALGORITHM FOR VOLT/VAR
OPTIMIZATION
The primal-dual interior-point method (PDIPM) effectively
combines three key concepts to provide an approach for solv-
ing constrained nonlinear optimization problems: (i) handling
of inequality constraints by means of logarithmic barrier
functions, (ii) application of Lagrangian theory of optimiza-
tion to the solution of an equality-constrained optimization
problem, and (iii) application of the Newton method to solve
the resulting unconstrained optimization problem, which can
be treated as a general nonlinear problem [32]. Themain steps
of the technique can be outlined as:

1. Deriving the first-order optimality (KKT) conditions,
which in turn comprises the following steps:
1.1. Transforming all inequality constraints into

equality constraints by adding a nonnegative
slack variable to each inequality constraint

1.2. Implicit handling of the non-negativity condition
of slack variables by augmenting each of them to

the objective function using a logarithmic barrier
function

1.3. Transforming the resulting equality-constrained
optimization problem into an unconstrained one
using the Lagrangian-multiplier method

1.4. Taking the first-order partial derivatives of the
Lagrangian function with respect to the primal
and dual variables, and equating them to zero

2. Solving the resulting perturbed KKT system using the
Newton method

A detailed description of the primal-dual interior-point
algorithm is presented in the following sub-sections. The
steps of the algorithm are then summarized in the form of
a flowchart, presented in Fig. 2.

A. DERIVING THE FIRST-ORDER OPTIMALITY
CONDITIONS
As outlined above, the first step in the derivation of the first-
order optimality conditions is to transform each inequality
constraint into an equality constraint by adding to it a
non-negative slack variable (s). Using the general nonlinear
programming problem formulation (2.13) – (2.15), this step
results in the following form of the problem:

min f (x) (4.1)

subject to:

g (x) = 0 (4.2)

h (x) + s = 0 (4.3)

s ≥ 0 (4.4)

The next step is to implicitly handle the non-negativity
condition of the slack variables (4.4) by augmenting them
to the objective function by means of logarithmic barrier
functions. This transforms the problem into the following
form:

min f (x) − µ

p∑
i=1

ln (si) (4.5)

subject to:

g (x) = 0 (4.6)

h (x) + s = 0 (4.7)

where µ is a positive scalar, referred to as the barrier
parameter, which is progressively decreased to zero as the
iteration progresses. It has been shown by Fiacco and
McCormick [23] that as µ tends to zero, the solution of the
problem (4.5) – (4.7), x(µ), approaches the optimizer x∗ of
the original problem (2.13) – (2.15).

Following the previous step, the problem has been trans-
formed into an equality-constrained optimization problem.
The next step is to transform it into an unconstrained opti-
mization problem by constructing the Lagrangian function
as a linear combination of the logarithmic barrier-augmented
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FIGURE 1. Flowchart of the Newton-Raphson load flow algorithm.
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FIGURE 2. Flowchart of the primal-dual interior-point algorithm for VVO.
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objective function and the equality constraints, according to
the following expression [40]:

Lµ = f (x) − µ

p∑
i=1

ln (si) + λ
T
E g(x) + λ

T
I (h(x) + s)

(4.8)

where λE and λI are the Lagrange multipliers for the
equality and inequality constraints respectively. The first-
order optimality (KKT) conditions of the problem can now
be derived by taking the first-order partial derivatives of (4.8)
with respect to each of the primal and dual variables (i.e. the
variables x, s, λE , λI ), and equating each of them to zero, with
the following result [40]:

∇xLµ = ∇f (x) + ∇gT (x)λE + ∇hT (x)λI = 0 (4.9)

∇sLµ = −µS−1e+ λI = 0 (4.10)

∇λELµ = g(x) = 0 (4.11)

∇λI Lµ = h(x) + s = 0 (4.12)

where e is a vector of ones of appropriate length (i.e.
e = [1, 1, . . . , 1]T ), S is a diagonal matrix with the slack
variables on the diagonal (i.e. S = diag

(
s1, s2, . . . , sp

)
). The

KKT conditions (4.9) – (4.12) can be written in a compact
form as:

F(X ) =


∇xLµ

∇sLµ

∇λELµ

∇λI Lµ



=


∇f (x) + ∇gT (x)λE + ∇hT (x)λI

SλI − µe
g(x)

h(x) + s

 = 0 (4.13)

The second row in (4.13) is obtained by multiplying (4.10)
by S, which has the advantage (particularly for the Newton
method) of decreasing the relative nonlinearity of the primal-
dual system near the solution as s → 0 [41].

Equation (4.13) constitutes the KKT conditions that are
needed to be derived as the first step in the primal-dual
interior-point method. The next step is to solve this system in
an iterative process, which involves the following steps [33]:

• Determining the search direction (by the Newton
method)

• Determining the step size to be taken in the already
computed search direction, then updating the primal and
dual variables

• Updating the barrier parameter, which should mono-
tonically be decreased to zero as the iterative process
proceeds

• Checking the stopping criteria that indicate the algo-
rithm’s convergence to the solution of the problem

B. DETERMINING THE SEARCH DIRECTION BY THE
NEWTON METHOD
Computing the search direction for the KKT system based
on the Newton method follows a procedure similar to that

outlined in section III for the Newton-Raphson load flow
algorithm. In this case, (3.5) is applied with F(X ) given by
(4.13), the Jacobian of the system J (X ) and the correction
vector 1X given by (4.14) and (4.15) respectively.

J (X ) =


∇

2
xxLµ ∇

2
xsLµ ∇

2
xλE

Lµ ∇
2
xλI
Lµ

∇
2
sxLµ ∇

2
ssLµ ∇

2
sλE

Lµ ∇
2
sλI
Lµ

∇
2
λE x

Lµ ∇
2
λE s

Lµ ∇
2
λEλE

Lµ ∇
2
λEλI

Lµ

∇
2
λI x
Lµ ∇

2
λI s
Lµ ∇

2
λIλE

Lµ ∇
2
λIλI

Lµ



=


∇

2
xxLµ 0 ∇gT (x) ∇hT (x)
0 3I 0 S

∇g(x) 0 0 0
∇h(x) I 0 0

 (4.14)

1X =


1x
1s
1λE

1λI

 (4.15)

∇
2
xxLµ = ∇

2
xx f (x) + ∇

2
xxg

T (x)λE + ∇
2
xxh

T (x)λI (4.16)

where 3I is a diagonal matrix with the Lagrange multiplier
vector for the inequality constraints, λI , on the diagonal (i.e.
3I = diag

(
[λI ]

)
). Equation (4.16) defines the Hessian

matrix of the Lagrangian function with respect to the decision
variable, ∇2

xxLµ, which appears in (4.15). Based on (3.5) and
(4.13) – (4.16), the primal-dual system can be expressed as in
(4.17). Using elimination and substitution, a reduced-order
equivalent system can be derived from (4.17), where 1s is
expressed in terms of 1x and 1λI in terms of 1s [41].

∇
2
xxLµ 0 ∇gT (x) ∇hT (x)
0 3I 0 S

∇g(x) 0 0 0
∇h(x) I 0 0




1x
1s
1λE

1λI

 · · ·

= −


∇f (x) + ∇gT (x)λE + ∇hT (x)λI

SλI − µe
g(x)

h(x) + s

 (4.17)

Considering the second and fourth rows of equation
(4.17), expressions for the slack variable (1s) and Lagrange
multiplier (1λI ) mismatches can be derived as:

1s = −h(x) − s− ∇h(x)1x (4.18)

1λI = S−1 (
−SλI + µe− 3I1s

)
(4.19)

The reduced-order equivalent system results from substi-
tuting (4.19) into the first row of (4.17), simplifying and then
combining with the third row of (4.17) to result in:[

A∇gT (x)
∇g(x)0

] [
1x
1λE

]
= −

[
B
g(x)

]
(4.20)

A = ∇
2
xxLµ + ∇hT (x)S−13I∇h(x) (4.21)

B = ∇xLµ + ∇hT (x)S−1 (µe+ 3Ih(x)) (4.22)
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TABLE 2. Main dimensions of the test cases.

FIGURE 3. 6-bus system comparison of real power loss with slack-bus active power (3a)
and with total generated reactive power (3b).

Incidentally, since the Volt/VAR optimization as designed
in this study handles only the inequality constraints,
as explained in section III, the reduced-order equivalent
primal-dual system (4.20) further reduces to:

A1x = −B (4.23)

Thus, to determine the Newton direction for the primal-
dual system (4.17), we can alternatively solve the reduced-
order equivalent system (4.21) – (4.23), along with (4.18)
and (4.19). The reduction in the order of the system has
the advantage of incurring relatively lower computational
expense [41].

Once the Newton direction has been computed, a number
of other algorithm implementation aspects need to be
addressed, specifically [33]:

• Determination of the step length to be taken in the
Newton direction

• Adjustment of the barrier parameter
• Checking the convergence of the algorithm
• Initialization of the algorithm parameters

Each of these implementation issues is briefly discussed
next.

C. DETERMINING THE STEP LENGTH
Once the Newton direction has been computed as in the
previous sub-section, the primal and dual variables are
updated according to the following expressions [42]:

xk+1
= xk + αkp1x

k (4.24)

sk+1
= sk + αkp1s

k (4.25)

λ
k+1
I = λ

k
I + αkd1λ

k
I (4.26)

αp ∈ (0, 1] and αd ∈ (0, 1] are the step lengths taken
in the Newton direction for the primal and dual spaces
respectively, and effectively constitutes incorporating a line
search into the Newton method, with the dual objective of
advancing the iterates towards optimality while maintaining
feasibility (specifically the strict positivity condition of
the slack variables and their corresponding dual variables).
A commonly used line search method for the step lengths is
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FIGURE 4. 14-bus system comparison of real power loss with slack-bus active power (4a)
and with total generated reactive power (4b).

by means of the expressions [32]:

αp = min
(
1, ζ min

1si<0

(
−

si
1si

))
(4.27)

αd = min
(
1, ζ min

1λIi<0

(
−

λIi

1λIi

))
(4.28)

where ζ ∈ (0, 1) defines a safety factor, intended to ensure
strict positivity of the slack variables and their corresponding
dual variables. It is commonly set to be as close to unity
as possible, to enable taking a sufficiently large step in the
Newton direction. A value of ζ = 0.9995 has been used in
this study.

It is also worth pointing out that in the case of primal-
dual interior-point methods for nonlinear programming,
close coupling between the primal and dual variables
provides for the possibility of using a common step length
adjustment [32], which is then taken as the minimum of the
two, that is:

α = min
(
αp, αd

)
(4.29)

Use of a common step length usually works well provided
there isn’t a great discrepancy in the magnitudes of the two
step lengths, otherwise the convergence characteristics of the
algorithm might be adversely impacted [32].

D. DECREASING THE BARRIER PARAMETER
The KKT conditions represented by (4.13) are referred to
as the perturbed KKT conditions [41], due to the presence
of the barrier parameter µ. For the solution of this system
to coincide with that of the original problem, a scheme is
required to monotonically decrease µ towards zero as the
iterations progress. The scheme employed to decrement µ

has a significant impact on the convergence characteristics
of the algorithm. If decreased too slowly, the number of
iterations required for the interior-point algorithm becomes
large. If decreased too quickly, some of the slack or dual
variables may approach zero prematurely, again slowing
down the rate of progress of the iterations [43]. Most
(modern) implementations of the interior-pointmethod use an
adaptive strategy for updating the barrier parameter, varying
it at every iteration as a function of the progress of the
algorithm, based on the complementarity gap, that is, the
residue of the complementarity constraints:

ρ = sTλI (4.30)

The barrier parameter is adjusted proportionately to the
complementarity gap (4.30) according to [32]:

µk+1
= σ k

ρk

2(m+ p)
(4.31)

where m and p are the numbers of equality and inequality
constraints respectively, σ defines a centering parameter,
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FIGURE 5. 30-bus system comparison of real power loss with slack-bus active power (5a) and
with total generated reactive power (5b).

another parameter that acts as a proxy for the dual objectives
of achieving optimality (i.e. making substantial advance
in the Newton direction) and feasibility (i.e. improving
centrality of the iterate). A value in the range σ ∈ [0.1, 0.2]
has been found to work well in many cases [33]. σ = 0.15 has
been used in this study.

E. CHECKING CONVERGENCE OF THE ITERATES
The main criteria used for checking the convergence of
the algorithm are the primal feasibility (4.32), gradient
condition (4.33), objective function variation (4.34), and the
barrier parameter (4.35), all of which are required to satisfy
predetermined tolerances [44].

max
(
∥g(x)∥∞ ,max (h(x))

)
≤ ε1 (4.32)∥∥∇f (x) + ∇gT (x)λE + ∇hT (x)λI

∥∥
∞

1 + ∥x∥∞ +
∥∥λE

∥∥
2 +

∥∥λI
∥∥
2

≤ ε1 (4.33)∣∣f (
xk

)
− f

(
xk−1

)∣∣
1 +

∣∣f (
xk

)∣∣ ≤ ε2 (4.34)

µk
≤ ε2 (4.35)

Typical values for the tolerances are ε1 = 10−4,
ε2 = 10−6. Besides satisfying optimality conditions as
stated above, the algorithm may also terminate unsuccess-
fully, either due to numerical infeasibility (e.g. when the
primal/dual step lengths become so small that no further

progress can be made either towards reaching optimality or
decreasing the barrier parameter), or the predetermined max-
imum number of iterations being reached before convergence
of the algorithm [40].

F. PARAMETER INITIALIZATION FOR THE ALGORITHM
The primal-dual interior-point algorithm is referred to as an
infeasible interior-point method, in the sense that it need
not start from a feasible initial point, the only requirement
being the satisfaction of the strict positivity condition on the
slack variables and their corresponding dual variables [42].
In spite of this fact, initialization tends to have a significant
impact on the convergence characteristics of the algorithm,
and thus problem-specific heuristics are usually applied to
come up with a ‘good’ initial point. Such a ‘good’ initial
point should ideally be well-centered (such that values of
complementarity products skλ

k
I are comparable for every

iteration index k), and should not be ‘too infeasible’ (as
measured by the complementarity gap).

For the OPF problem, a candidate for the initial decision
vector x0 is the solution of a load flow computation,
if available. Otherwise, a flat start may also be used, with
the likelihood that the number of iterations to convergence
is relatively higher [39], [42]. The slack variable vector and
its corresponding dual variable vector are set as follows for
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FIGURE 6. 118-bus system comparison of real power loss with slack-bus active power (6a)
and with total generated reactive power (6b).

FIGURE 7. Voltage profiles of the 6-bus and 14-bus systems prior to and following Volt/VAR
optimization.
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the present study:

s0 =
1
2
min

(
max

(
h

(
x0

)
− hmin, hmax

− h
(
x0

)))
(4.36)

λ
0
I = µ0

(
S0

)−1
e (4.37)

Note that the Lagrangian multiplier vector for the equality
constraints (λE ) need not be initialized, since the design of the
algorithm in this study is such that only inequality constraints
are handled by the Volt/VAR optimization algorithm.

The flowchart in Fig. 2 summarizes the primal-dual
interior-point method-based Volt/VAR optimization algo-
rithm (PDIPM-VVO), as detailed in this section.

V. CASE STUDIES AND DISCUSSION OF RESULTS
A. DESCRIPTION OF THE CASE STUDIES
The designed algorithm is analysed by means of four case
studies on the 6-bus, and the IEEE 14-bus, 30-bus and 118-
bus test systems. The selection of the test systems enables
evaluating how efficiently the algorithm scales with the
system size. The performance analysis is done with particular
attention paid to the following aspects:

• Magnitude of loss minimization achieved
• Voltage profile improvement due to the Volt/VAR
optimization

• Efficiency and speed of convergence of the algorithm,
measured by the number of iterations taken for the
algorithm to converge, and the execution time

• Impact of generator reactive power output variation on
both the power loss minimization and the voltage profile
improvement

The algorithm is implemented in MATLAB R2022a by
MathWorks Inc. [45], and tests are conducted on a computer
running the Intel(R) Core(TM) i7-7700HQCPU@2.80GHz,
with 8,00 GB of RAM. The 6-bus case study is taken from
[46]. Each of the IEEE sample systems considered in the
case studies represents a portion of the transmission system
in the Midwest United States, as of 1961 [47]. The data
for the IEEE 14-bus and 30-bus systems is taken from [36],
whereas that for the IEEE 118-bus is taken from an appendix
available online, attributed to Springer Verlag [47]. The
main dimensions of the test systems (i.e. number of buses,
generators, lines and loads) are tabulated in Table 2.

B. ANALYSIS AND DISCUSSION OF RESULTS
The simulation results for all the case studies are summarized
in Figs. 3 to 9. In Fig. 3a, the real power loss and the slack-
bus active power trajectories for the 6-bus system are plotted
against the iteration count of the algorithm. To account for the
difference in the scale of the two quantities, a separate y-axis
is used for each of the plots (but on the same set of axes).
As can be observed from Fig. 3a, the real power loss and
slack-bus active power trajectories actually coincide, which
is expected, because any change in the system active power
losses is compensated for by an equal change in the slack-
bus active power output, hence the designation of ‘‘slack’’

FIGURE 8. Voltage profile of the 30-bus system prior to and following
Volt/VAR optimization.

FIGURE 9. Voltage profile of the 118-bus system prior to and following
Volt/VAR optimization.

bus. A real power loss reduction of 3.372% is achieved as
a result of the Volt/VAR optimization. In Fig. 3b, the real
power loss and total generated reactive power trajectories
are plotted together against the iteration count, again using
different y-axes to account for the difference in scale of the
two quantities. The comparison is useful, as it reveals that the
real power loss minimization objective simultaneously leads
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TABLE 3. Performance of the PDIPM-VVO algorithm for all four test cases.

TABLE 4. Performance comparison of the PDIPM-VVO algorithm presented in this article with other algorithms from the literature for the IEEE 14-bus
system.

TABLE 5. Performance comparison of the PDIPM-VVO algorithm presented in this article with other algorithms from the literature for the IEEE 30-bus
system.

to reduction in the reactive power generation in the system,
which is an additional benefit of the Volt/VAR optimization.

Figs. 4 to 6 depict similar information for the IEEE 14-
bus, 30-bus and 118-bus systems, respectively. Real power
loss reductions can be observed for all cases, with the real
power loss and slack-bus active power trajectories coinciding,
and the total generated reactive power output of the system
tracking the reduction in the system real power loss.

Fig. 7 depicts the pre- and post-optimization voltage
profiles for the 6-bus and 14-bus systems. It can be observed
that in both cases, the post-optimization voltages are higher,
with only one exception in the case of the 14-bus system
(specifically bus-8 voltage). Figs. 8 and 9 have similar
plots for the 30-bus and 118-bus systems respectively.
These two cases more clearly show improvement in the
voltage profiles after optimization, particularly in terms
of eliminating most of the low-voltage violations. In all
cases, the bounds on the voltage magnitudes are taken to
be 0.95 to 1.1 p.u. respectively, and the post-optimization
voltage profiles respect these limits for all the cases.

The results of the simulations for all the cases are
summarized in Table 3. Besides the percentage loss reduction,
the table also lists information useful in evaluating the
efficiency and scalability of the developed algorithm. The
first observation that can be made is that the relationship
between the number of iterations and the execution time is
not strictly proportional. Thus, the 118-bus system requires
the least amount of iterations to converge (8 to be precise)

compared with the rest of the cases, but has the longest
execution time, which is expected, since it is also of the
largest size. Secondly, the algorithm also exhibits good
scalability properties, in the sense that the 14-bus system
requires about twice the execution time of the 6-bus system,
the 30-bus system requires about three times that of the
14-bus system, and the 118-bus system has an execution time
that is about seven times that of the 30-bus system. This shows
that the algorithm scales quite well with the increase in the
problem size. This applies at least to the studied cases, and
further tests would need to be made in order to be able to
state anything conclusive about such desirable performance
of the algorithm.

Finally, the efficacy of the presented algorithm is demon-
strated by comparing with results reported in the literature.
The results are tabulated in Tables 4 and 5 for the IEEE
14-bus and IEEE-30-bus systems respectively. It can be
deduced from the comparative analysis that the primal-dual
interior-point algorithm presented in this article has superior
performance, both in terms of solution quality (i.e. magnitude
of real power loss minimization) and efficiency (i.e. required
execution time).

VI. CONCLUSION AND FUTURE WORK
A detailed and thorough account of the design of a primal-
dual interior-point algorithm for the Volt/VAR optimization
problem formulated in rectangular coordinates has been
presented in this article. The design of the algorithm
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incorporates the Newton-Raphson load flow computation,
also formulated in rectangular coordinates, the development
of which has been presented as well. Primal-dual interior-
point methods are among the most efficient classical methods
for large-scale nonlinear optimization, characterized by fast
convergence, and effective handling of inequality constraints.
The efficiency and effectiveness of the designed algorithm
has been demonstrated bymeans of four case studies, selected
to analyse the computational efficiency and scalability of the
algorithm as it is applied to systems of various sizes. Indeed,
the extensive analyses that have been conducted reveal the
algorithm’s effectiveness and efficiency, particularly in being
able to successfully solve the Volt/VAR optimization problem
for systems of widely varying sizes without disproportionate
increase in computational cost or deterioration in the quality
of the results. Based on the case studies conducted in this
article, the developed algorithm exhibits characteristics of
fast convergence, high efficiency, and scalability to large-
scale problems. The results obtained are very encouraging,
and suggest carrying out more analyses with the goal of
possibly further optimizing it so as to be able to effectively
handle a wide variety of operational scenarios. The authors
intend to conduct more research in this direction, which will
be covered in a future article.
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