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ABSTRACT Video anomaly detection aims to identify anomalous segments in a video. It is typically
trained with weakly supervised video-level labels. This paper focuses on two crucial factors affecting the
performance of video anomaly detection models. First, we explore how to capture the local and global
temporal dependencies more effectively. Previous architectures are effective at capturing either local and
global information, but not both. We propose to employ a U-Net like structure to model both types of
dependencies in a unified structure where the encoder learns global dependencies hierarchically on top of
local ones; then the decoder propagates this global information back to the segment level for classification.
Second, overfitting is a non-trivial issue for video anomaly detection due to limited training data.We propose
weakly supervised contrastive regularization which adopts a feature-based approach to regularize the
network. Contrastive regularization learns more generalizable features by enforcing inter-class separability
and intra-class compactness. Extensive experiments on the UCF-Crime dataset shows that our approach
outperforms several state-of-the-art methods.

INDEX TERMS video anomaly detection, weakly supervised learning, contrastive-based regularization,
multi-instance learning, deep learning.

I. INTRODUCTION
Recent studies have shown that closed circuit television
(CCTV) camera, when strategically installed, leads to a
significant drop in crime rate [1]. However, large-scale
deployment of CCTV may lead to data overload, making it
difficult for the surveillance operators to pick up suspicious
or abnormal activities hidden amidst the enormous streams
of live CCTV footages. Therefore, there is a need for intelli-
gent systems to automatically detect suspicious or anomalous
activities.

Given a video, video anomaly detection (VAD) aims to
localize the abnormal segments within a video. Unfortu-
nately, abnormal events are rare and difficult to collect, lead-
ing to scarcity of positive samples. To overcome this issue,
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video anomaly detectors are normally trained with unsuper-
vised learning [2], [3], [4] or weakly supervised methods [5],
[6], [7], [8]. In the weakly supervised setting, the labels are
provided at the video level. The label only specifies if a video
contains anomalous event which may occur at any segments
in the video. Fig. 1 shows the pipeline of a weakly supervised
learning for VAD. The backbone network, e.g., C3D [9] and
I3D [10], extracts segment-level generic features. Then, the
anomaly feature extraction block transforms the generic fea-
tures into specialized features, which in turn are used by the
anomaly classifier to generate segment-level anomaly scores.
In the absence of segment-level labels, the multiple-instance
loss (MIL) formulation is normally applied on the segment
scores for each video.

In this work, we focus on improving two aspects of
the VAD network in a weakly supervised setting. First,
we explore how to model the local and global temporal
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FIGURE 1. General pipeline for weakly supervised learning VAD.

dependencies when generating specialized features in the
anomaly feature extraction block. Local information cap-
tures immediate anomalous traits, e.g., abrupt motion, suspi-
cious human actions and changes in the environment, while
global information provides the global context allowing the
network to contrast normal and abnormal scenes in the
videos.Previous methods such as stacked RNN [11], tempo-
ral consistency [12] and ConvLSTM [13] can only capture
short range dependencies. GCN-basedmethods [14], [15] can
model long-range dependencies but they are slower and more
difficult to train. RTFM [7] captures both the short and long
temporal dependencies using two parallel structures, one for
each type. However, the two dependencies are considered
separately, neglecting the close relationship between them.
In this aspect, we propose to use U-Net like structure [16]
to model both local and global dependencies for specialized
features generation.

Second, we explore contrastive regularization as a new
strategy to reduce overfitting. Overfitting is a dominant issue
encountered when training VAD models due to the scarcity
of positive samples. Traditionally, regularization is achieved
by suppressing the complexity of the network [17], [18],
injecting noise into the network [19], [20], [21], [22] or
data [23], [24], and augmenting the training set [25]. For
VAD, previous work has also applied special heuristics such
as sparsity constraint and temporal smoothness [5] to regulate
the output of the network. Our model adopts a feature-based
approach to regularization where the strategy is to learn more
generalizable features. Enhanced separability between nor-
mal and abnormal features makes the network less vulnerable
to overfitting. To achieve this, we reformulate the contrastive
regularization in [26] for VAD.

The main contributions of this work are highlighted as
follows:

• We propose a U-Net like structure [16] to perform
specialized feature extraction. U-Net has mainly been
applied to image segmentation and trained in a super-
vised setting. In our model, U-Net is novelly used to
localize abnormal segments in a video and trained with
a weakly supervised setting. The network learns to gen-
erate segment-level pseudo labels to facilitate training
with only video-level labels. The interaction between the
two types of dependencies are embedded naturally in

the network structure - the encoder learns global depen-
dencies on top of local dependencies through successive
convolution operations while the decoder propagates
these global information back to the local level through
transposed convolutions.

• We propose a novel weakly supervised contrastive reg-
ularization technique to reduce overfitting. Previously,
contrastive regularization [26] was applied in the image
domain under a supervised setting. For VAD, contrastive
regularization is extended to a weakly supervised set-
ting. Contrastive regularization is reformulated as a
multiple-instance learning (MIL) problem where each
video is a bag of segments. A negative bag (normal
video) only comprises negative instances (segments)
while a positive bag (abnormal video) contains both pos-
itive and negative instances whose labels are unknown.
The loss function learns two sets of centers to represent
normal and abnormal events, respectively. By enforcing
intra-center compactness and inter-center separability
among the samples, contrastive regularization enhances
the discriminability and generalizability of the learnt
feature. The model has good explainability since the
centers represent different kinds of events by mapping
a segment to the nearest center, we can justify why the
segment is classified as such.

• Our work achieves state-of-the art performance on the
UCF-Crime bench-mark. In the experiments, the pro-
posed U-Net-based architecture captures the temporal
information more effectively than existing methods,
while the contrastive regularization learns more general-
izable features, resulting in less overfitting and improved
test performance.

The remaining of this paper is organized as follows. Sec-
tion II discusses related works. Section III explains the pro-
posed U-Net based feature extractor (Section III-A), the
anomaly classification block (Section III-B) and weakly
supervised contrastive-based regularization (Section III-C).
Section IV presents the experimental results over the UCF-
Crime benchmark. Finally, Section V summarizes the paper.

II. LITERATURE REVIEW
Video anomaly detection (VAD) is challenging due to the
absence of training samples. To alleviate the issue, VAD has
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traditionally relied on unsupervised [27], [28], [29] or weakly
supervised learning [5], [6], [7] for training. Regularization is
another critical step to overcome the overfitting issue preva-
lent in VAD models. In this section, we review related works
in these areas.

A. UNSUPERVISED ANOMALY DETECTION
Unsupervised anomaly detection focuses on one-class clas-
sification where the model is trained exclusively on normal
training data. The strategy is to build a model that special-
izes at reconstructing normal samples with small reconstruc-
tion error. These methods make the assumption that unseen
abnormal videos are difficult to reconstruct accurately and
regard samples with high reconstruction errors as an anomaly.
Reconstruction can be done through sparse coding [27], [28],
[30], [31] or auto-encoder [2], [12], [29], [32]. Sparse coding
encodes normal patterns with a dictionary and the sample
is reconstructed by linearly combining the dictionary bases
[30], [31] such that the reconstructed feature is as close to the
original feature. A sparse representation allows the model to
represent high-dimensional samples with less training data.
For the auto-encoders, the encoder compresses a sample
into an encoded representation, which in turn is used by
the decoder to reconstruct it. More complex schemes such
ALOCC [35] and AVID [36] use adversarial training to train
the encoder-decoder network to reconstruct an input data that
fools the discriminative network into thinking that it is the
original one. To do this, ALOCC enhances the inliers and
distorts the outliers to enhance their separability while AVID
in-paints the input data to remove pixel-wise irregularity
from the input frame. To enhance the result, [32] proposes
a two-stage cascade classifier based on sparse filtering and
auto-encoder network such that anomalous regions have low
sparsity value and high reconstruction cost. To tackle the
lack of positive samples, G2D [37] uses generative adver-
sarial network (GAN) to generate outliers. However, the
generated outliers are not based on true realistic anomalous
events. In general, unsupervised models are unable to handle
complex or unseen environments. They typically suffer from
higher false positive since it is unrealistic to capture all nor-
mal samples.

B. WEAKLY SUPERVISED ANOMALY DETECTION
Current state-of-the-art VAD systems are based on weakly
supervised approaches [5], [6], [7], [14], [15] where
video-level labels are leveraged to train the network. The
multiple-instance learning (MIL) formulation is typically
employed to cater for the absence of segment-level labels.
For example, the classical multi-instance ranking loss trains
the network to rank the top segment in a positive (abnormal)
video to be higher than that in the negative (normal) video [5].
However, the top segment may not be an abnormal seg-
ment as desired, and the max operator cannot handle videos
with multiple abnormal segments. To resolve this, Zhu et
al. [38] extends the ranking loss by incorporating a temporal

mechanism to localize anomalies. Several recent works trains
the network to generate segment-level pseudo labels as super-
visory signals [6], [7]. This allows the VAD to be trained with
classical supervised learning. For example, Yu Tian et al. [7]
selects top-k segments with the highest feature magnitude
whereas Feng et al. [6] trains a MLP-based structure to gen-
erate pseudo-labels via multiple instance learning.

C. TEMPORAL DEPENDENCIES
It has been shown that temporal relationship between seg-
ments is critical towards the performance of VADmodels [7],
[11], [12], [14], [15]. Different networks have been used to
capture the temporal information including recurrent models
in [11], graph convolutional network methods (GCN) in [14],
[15] and transformer in [7]. The recurrent models mainly
model short-term relationship effectively whereas the trans-
former focuses on long-range relationship. Reference [15]
enforces temporal consistency to clean up noisy labels where
by propagating supervisory signals from high-confidence
snippets to its neighbouring low-confidence snippets. High-
order Context Encoding [8] enriches the features by using a
moving window to capture the local dynamics of a video.
RTFM [7] models the local and global temporal depen-
dencies explicitly with two parallel structures. The pyramid
of dilated convolutions (PDC) [39] is used to model local
temporal dependency. The other branch uses the tempo-
ral self-attention module (TSA) [40] to capture the global
temporal dependencies. However, RTFM neglect the close
relationship between the two dependencies. Although local
dependency is good at capturing local temporal dynamics
variations, some anomalies are subtle and may not be dis-
cernable unless viewed in relationship to the other parts of the
video. In this paper, we propose a unique approach to model
global and local dependencies in a unified structure based on
the U-Net architecture.

Regularization. Overfitting is a long-standing issue for
VAD systems, mainly due to the scarcity of positive samples.
Therefore, regularization is the key to successful training of
VAD models. Structure-based regularization methods regu-
larize the networks by manipulating the network structure.
For example, L2 penalty [17] or elastic net loss [18] are
imposed to suppress the complexity of the network. More
recent methods drop subnet [41], path [42], channels [22]
or layers [43] to reduce co-adaptation between the various
computational units in the network during training. On the
other hand, data-based regularization methods increase the
diversity and size of the training set by creating transformed
version of the training samples [25]. To increase the robust-
ness of the system to handle real-world noise, it is useful to
inject artificial noise to the data. For example, cutoff [23] and
random erasing [24] cut out random portion of the image to
avoid co-adaptation of the features and learn stronger fea-
tures. Recently, feature-based regularization has been shown
to improve generalization performance. Contrastive regular-
ization [26], [44], [45] imposes geometric constraints such
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FIGURE 2. Proposed weakly supervised contrastive regularized UNet for VAD.

that the learnt features display good intra-class compactness
and inter-class separability. However, contrastive regulariza-
tions have mainly been studied under the supervised learning
for image classification. In this work, we extend contrastive
regularization technique to weakly supervised setting for
video anomaly classification.

III. THE PROPOSED METHOD:
CONTRASTIVE-REGULARIZED U-NET
Fig. 2 shows the system overview of the proposed contrastive-
regularized U-Net method. The network aims to localize
abnormal segments using only weak video-level label where
segment-level annotations are not available. The Ftraining
data is denoted as T = {(Xi, yi)}

|T |

i=1 where each video
Xi ∈ RT×Dg is a sequence of T segment-level features each
with a dimensionality Dg, and yi ∈ {0, 1} is the correspond-
ing video-level label to indicate the absence or presence of
anomalous segments in the video. The input features are
generic features extracted from a pre-trained 3D-CNN net-
work such as C3D [9] or I3D [10].

The segment-level input features are first processed by
the U-Net feature extractor to capture the local and global
temporal dependencies between the segments in the video.
The local dependencies are captured in the lower layers and
the global dependencies in the higher layers. The output of the
U-Net feature extractor is the U-Net features Ui ∈ RT×Du

which has been enrichedwith temporal information. Note that
Ui preserves the temporal resolution as in Xi.
The U-Net features are then passed to the anomaly classi-

fication block which generates the segment-level anomalous
scores si ∈ RT indicating if each segment is normal or
anomalous. The block also outputs the segment-level features
Fi ∈ RT×Df which are used to regularize the network.
The network is trained with a weakly supervised setup

where only video-level annotations are provided. To do
this, the U-Net based classifier is used to generate

pseudo-labels. For positive videos, the top-k segments
with the highest anomalous scores are selected as
pseudo-positive samples and the bottom-k segments as
pseudo-negative samples. The features and scores of the
selected pseudo-positive and pseudo-negative segments are
denoted as

{(
F̂+

i , ŝ+i
)

,
(
F̂−

i , ŝ−i
)}

, respectively. For nega-

tive videos, only the top-k segments
(
F̂−

i , ŝ−i
)
are selected

and they represent hard negative normal segments that the
network has more difficulty fitting (their anomaly scores are
higher although they should ideally be lower). The anomaly
scores ŝ =

{
ŝ+i , ŝ−i

}
are used to compute the data loss and

train the model. Meanwhile, the generated features F̂ ={
F̂+

i , F̂−

i

}
are used to perform contrastive regularization to

reduce overfitting.

A. MODELING LOCAL AND GLOBAL TEMPORAL
DEPENDENCIES WITH U-NET
Temporal relationship has been shown to be critical to the
performance of VAD models [7], [11], [12], [14], [15].
Local temporal dependencies capture short-term and tangi-
ble anomalous cue (e.g., abrupt motion or scene change,
and suspicious actions) while global temporal dependencies
provide the global context to expose more subtle abnormal
events. Different structures have been proposed to model
temporal dependencies, e.g., pyramid of dilated convolu-
tions (PDC) [39], temporal self-attention module (TSA) [40],
High-order Context Encoding (HCE) [8], Temporal Consis-
tency Graph (TCG) [15]. However, each of them special-
izes at capturing either local and global information, but not
both. For example, PDC and HCE focuses on local temporal
information, while TSA is more effective at modeling global
relationship. TCG captures both relationships but the model
is inefficient and difficult to train.

In this section, we novelly employ the U-Net [16] to cap-
ture both types of dependencies in a unified manner. While
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FIGURE 3. Modeling local and global dependencies with UNet.

U-Net has been widely adopted for image segmentation tasks
such as medical imaging [46], our work is the first to apply
U-Net to localize anomalous segment in a video. Fig. 3
shows the proposed U-Net adapted for VAD. The input to the
network isXi ∈ RT×Dg which stores the sequence of snippet-
level features from the backbone network. U-Net captures
the temporal dependencies among the snippets to enrich the
output features Ui ∈ RT×Du . The network comprises a
downstream path (encoder) which encodes the input features
into a temporally compact representation, and an upstream
path (decoder) which restores the segment-level features.
The encoder network captures the local dependencies at the
shallower layers and global dependencies at the deeper layers.
This is because the effective receptive fields in a CNN are
local at shallower layers and grows gradually as the network
grows deeper [47]. At the decoder network, the activation
maps from deeper layers are concatenated with those of the
current layer to learn more fine-grained representation. Thus,
the decoder combines the global and local information.

The height of the network is fixed to L = 4 where the
temporal resolution T (l)

=
T

2l−1 , l = {1, . . . ,L} is halved
from one height level to another. Different from conventional
U-Net which increases the channels with increasing height,
our network uses a regular channel size of Du for all blocks.
The network is constructed with a common residual block
structure. The block contains 3 1-D convolutional layers
activated by the ReLU function and has a skip connection
to facilitate training. The convolutional layers are configured
such that the activation maps in the same block have a regular
shape of T (l)

× Du.

1) ENCODER
The encoder learns the local and global temporal depen-
dencies in the input sequence. The local dependencies are
captured through 1-D convolutional operations where the
optimal kernel size is empirically determined to be 5. Stack-
ing multiple convolutional operations allows the network
to learn the global context in a hierarchical manner. The
effective receptive field in the network grows incrementally
from one layer to the next, allowing the network to learn
increasingly global information from local ones in previous
layers. Following conventional U-Net design, the tempo-
ral resolution is halved from one layer to another through
max pooling. In the end, the output of the encoder is a
temporally compact representation with high semantic value
and global temporal coverage. This encoding process has
been shown to be effective at removing noise and captur-
ing common patterns that are representative of the training
samples.

2) DECODER
The decoder takes the encoded message and restores it to
segment-level features. Transposed convolution is applied
to increase the temporal resolution from one layer to the
next. The up-sampled features are concatenated with the
encoder output at the same height level, and then passed to
the decoder block for further feature extraction. Through this
process, high-level global information is propagated through
the layers back to the local segments. Thus, the segment-level
features generated by decoder are infused with high-level
local and global temporal information.
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3) DESIGN CONSIDERATION
Both Convolutional Neural Networks (CNN) and Trans-
formers are able to capture local and global information in
their layer representations. However, they have very different
characteristics. By design, a CNN-based network such as
U-Net attends only locally in the lower layers and gradually
builds up global-level attention at higher layers. In contrast,
the transformer receptive field spans the whole temporal
sequence in a single layer. It has been shown that a properly
trained Visual Transformers (ViT) contains local heads and
global heads even in the lowest layers [47]. However, without
large-scale pre-training, ViT is empirically found to be weak
at attending locally in the earlier layers, leading to much
lower performance. For VAD, training data is scarce and
therefore, U-Net structure is better suited for VAD than trans-
formers under such constraint. For a more detailed reading on
the difference between how transformers and CNN attends to
local and global information, please refer to [47].

Another design consideration is the number of channels.
Conventional U-Net increases the channels in the down-
stream path, and then decreases it in the upstream path. In our
network, the number of channels in all blocks is fixed to Du.
This is because the input to a conventional U-Net are low-
level 3-dimensional features (raw image input) whereas our
network receives high-level high-dimensional features from
the backbone network. While the conventional U-Net is orig-
inally designed to convert low-level input to high-level fea-
tures, our network serves a different purpose of enriching an
already high-level input features with temporal information.
In addition, doubling the channels results in an unreasonably
massive network and aggravates overfitting. Another option
is to add a reduction layer before U-Net. However, the design
results in information I and leads to lower performance in
practice. Among these options, fixing the number of channels
to Du is found to yield the best performance.

B. SEGMENT-LEVEL ANOMALY CLASSIFICATION
The output of the U-Net is then fed into the anomaly classi-
fication block to generate the anomalous scores si ∈ RT for
all T segments in the video. The block is a simple 3-layered
multi-layer perceptron (MLP) network. ReLU activation is
used for the first and second layers which functions as feature
extractor, and sigmoid activation for the last layer which
functions as a binary classifier. In addition, the features from
the second layer Fi ∈ RT×Df are extracted and subjected
to contrastive regularization to reduce overfitting. To train
the model, we adopt a weakly supervised framework where
only weak video level annotations are available to train the
segment-level classification network. This will be discussed
in the next section.

C. WEAKLY SUPERVISED CONTRASTIVE REGULARIZATION
Since positive samples are scarce, VAD are especially vulner-
able to overfitting issues. Therefore, regularization is a crucial
step to improve generalization performance of the trained

model. In this work, we propose a feature-based approach for
regularization. The network is trained to generate more robust
feature where events of the same nature generate similar
features which are very different from features from other
types of events. The more robust the generated features are,
themore generalizable and noise-tolerant themodel becomes.

1) TRAINING UNDER UNCERTAINTY
We extend contrastive regularization [26] to a weakly super-
vised setting where only the video label yi ∈ {0, 1} is pro-
vided. A video Xi ∈ RT×Dg is labeled as positive if any of its
segments is anomalous, and negative if none. Since segment-
level labels are not available, the location of the abnormal
event in a positive video is unknown. To deal with the uncer-
tainty, the segment-level anomaly scores si ∈ RT output by
the anomaly classification head can be employed to generate
pseudo labels for each segment following the multi-instance
learning (MIL) framework. Given a positive video, we extract
pseudo-positive samples and pseudo-negative samples. The
former is the set of top-k segments with the highest anomaly
scores, while the latter is the set of bottom-k segments. For
negative video, only the top-k segments are extracted. They
represent hard negative samples that the network has diffi-
culty classifying and needs more training. Despite possessing
strong labels, not all segments from a negative video are
selected to avoid data imbalance issue.

With the generated labels, the network can now be trained
with traditional supervised learning. The multi-instance
learning framework assumes that there exists common pat-
tern (e.g., sudden movements, scene change, abnormal
actions) among positive (abnormal) segments. When cor-
rectly selected as pseudo-positive samples, they update the
network parameters in a coherent manner. In contrast, neg-
ative (normal) segments in different videos tends to be dis-
similar to one another (e.g., different scenes and activities).
When erroneously selected as pseudo-positive samples, they
update the network in an incoherent manner. Consequently,
over time, the network gradually becomes more adept at
identifying the positive segments.

2) CONTRASTIVE REGULARIZATION WITH PSEUDO-LABELS
Fig. 4 shows how the original contrastive loss [26] is
extended to a weakly supervised setting. Suppose the
batch size is B. The features for the positive samples

F̂+
=

⋃ {
F̂+

i |yi = 1
}B
i=1

are collected by extracting pseudo-
positive segments from positive videos in the batch. On the

other hand, negative samples F̂−
=

⋃ {
F̂−

i

}B
i=1

are collected
from all videos which includes bottom-k segments from pos-
itive videos and top-k segments from negative videos. This
gives us the training set F̂ =

⋃ {
F̂+, F̂−

}
.

The contrastive regularization regularizes the network by
learning discriminative features so that normal features are
well separated from abnormal ones. To do this, we define
C centers for each class to explicitly model different types
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FIGURE 4. (a) Original (supervised) contrastive regularization [26] enforces intra-class compactness such
that samples are near to the nearest centers of the same class, and inter-class separability by ensuring all
centers are far from each other (b) Weakly supervised contrastive regularization extends [26] to handle
weak video-level labels. For positive videos, top-k segments (light red) are selected as pseudo-positive
samples, and bottom-k segments (light blue) as pseudo-negative samples. For negative video, the top-k
segments (strong blue) are selected so that the network trains with hard normal samples that are difficult
to classify. Some segments (white) are not used for training.

of normal and anomaly events, respectively. The centers
are essentially network parameters and discovered through
training. Let H =

{
H+,H−

}
where H+

=
{
h+

i

}C
i=1 and

H−
=

{
h−

i

}C
i=1 are the set of all positive and negative centers,

respectively. The proposed contrastive regularization is given
by:

Rcontrast
(
F̂,H

)

= λ

 1∣∣∣F̂+

∣∣∣
∑

f+∈ min
h+∈H+

F̂+

∥∥f+ − h+
∥∥2
2

+
1∣∣∣F̂−

∣∣∣
∑

f−∈ min
h−∈H−

F̂−

∥∥f− − h−
∥∥2
2


+ β

1
C (C − 1)

×

∑
hi∈H

∑
hj∈H,j̸=i

max
(
0,m−

∥∥hi − hj
∥∥2
2

)
(1)

where λ is the compactness strength, β is the separability
strength, |·| is the cardinality of a set, and ∥·∥2 is the L2-norm.
The first two terms enforce intra-center compactness

which minimizes the distance between the sample fi and its
nearest center hi of the same class. The first term ensures that
pseudo-positive samples from positive videos are positioned
near positive centers, whereas the second term ensures neg-
ative samples are distributed around negative centers. There

are two types of negative samples, namely pseudo-negative
samples from positive videos and hard-negative samples from
negative videos. The pseudo-positive and pseudo-negative
segments, both from positive videos, are pulled towards dif-
ferent types of class centers, allowing them to distinguish
between the abnormal and normal events within the same
video. This phenomena is indeed observed in our experiments
(cf. Section IV).

The third term imposes inter-center separability such that
all centers are well separated. If the distance between any two
centers is smaller thanm, it will incur a cost. The term ensures
that the network learns a more diverse set of features, each
representing different types of anomaly or normal events.
In addition, explainability of the network is enhanced as the
network’s classification decision can be associated with the
events associated with the nearest class center.

The role of the learnt centers is to generalize the different
common patterns within each class and at the same time
distinguish the two classes. Therefore, when the network
generates feature that are near such centers, this results in
reduction of overfitting.

D. LOSS FUNCTION
During training, the network generates pseudo-labels and
assembles the batch F̂ =

{
F̂+, F̂−

}
with the correspond-

ing anomaly scores Ŝ =

{
Ŝ+,S−

}
. To reduce overfitting,

contrastive regularization is performed with the learnt class
centersH =

{
H+,H−

}
. The training loss function is defined
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as follows:

L
(
F̂, Ŝ,H

)
= L

(
Ŝ
)

+ Rcontrast
(
F̂,H

)
+ γ

∑
ŝi∈Ŝ

T∑
t=1

(
ŝi (t) − ŝi (t − 1)

)2
+ η

∑
ŝi∈Ŝ

T∑
t=1

ŝi (t) (2)

L
(
Ŝ
)
is the binary cross entropy loss which minimizes the

data loss to train the VAD model. Rcontrast
(
F̂,H

)
is the

contrastive regularization used to regulate the network and
reduce overfitting (Eq. 1). The third term is the temporal
smoothness constraint such that the anomaly score of adja-
cent segments should be similar to each other. This avoids the
anomaly scores fromfluctuating irregularly. Lastly, the fourth
term is the sparsity constraint which assumes that only a few
segments in a positive video are anomalous. The strength of
these different constraints can be finetuned by adjusting the
intra-center compactness strength λ , inter-center separability
strength β, temporal smoothness strength γ and sparsity
strength η.

IV. EXPERIMENTS AND EVALUATION
A. DATASET DESCRIPTION AND EVALUATION MEASURE
1) UCF-CRIME
We evaluate our proposed network UCF-Crime [5], cur-
rently one of the largest public VAD dataset. The dataset
consists of 1900 surveillance videos with equal number of
abnormal and normal videos. It is split into 1610 training
videos and 290 testing videos. The dataset is weakly labeled
where the training set comes only with video-level labels
whereas the testing set comes with frame-level labels for
evaluation. The dataset is diverse and challenging. The videos
are real-world surveillance data with complex and diverse
background. There is a total of 13 types of anomalies in the
dataset including explosion, arrest, abuse, fighting, shoplift-
ing, stealing, and vandalism. The videos are untrimmed with
a wide range of duration from 8 seconds to 9 hours.

2) EVALUATION
Following previous work on VAD [5], [6], [7], we evaluate
our system (CR-U-Net) using the frame-level AUC measure,
i.e., the area under the ROC curve. A larger AUC implies
better performance. The AUC is computed at the frame level.
Since the anomaly score is at the segment (clip) level, the
same score is expanded to all frames in the segment for
AUC computation. We also provide some qualitative result
to evaluate the localization performance of our system and
the effect of contrastive regularization. Comparison is made
with unsupervisedmethods [2], [12], [30], [48], [49], [50] and
weakly-supervised methods [5], [6], [7], [8], [15] including
recent state-of-the-art methods such as MIST [6], RTFM [7]
and HCE [8]. In particular, the evaluated weakly-supervised

methods employ different structures to model temporal infor-
mation. For example, GCN [15] uses a similarity graph,
RTFM uses a combination of dilated convolution and trans-
formers, and HCE uses windowing approach to encode local
variations in time series.

B. IMPLEMENTATION DETAILS
Two types of backbone network, namely C3D [9] and
I3D [10] are used to extract the segment-level features from
a video. The network extracts features for every 16-frame
clip in the video. For C3D, the feature dimension Dg =

2048, and for I3D, Di = 1024. Following [5], the clips in
a training video are grouped into 32 non-overlapping seg-
ments. The segment-level feature is obtained by averaging the
clip features in each segment. For short videos (<32 clips),
duplicate clips are inserted to the video. Through the process,
all training videos have a uniform temporal resolution of
32 segments. For the testing set, no grouping is performed.
Each clip is essentially a segment. So, the test videos have
varying temporal length. For data augmentation, 10-crop aug-
mentation is performed to bolster both the training data and
testing data. The cropped frame size is 210×280 pixels which
are 87.5% of the original size.

For the U-Net feature extractor, the number of channelsDu
is set to 1024 for all blocks. For the classification layer, the
number of neurons in the MLP is set to 512 units, 32 units
and 1 unit, respectively. Dropout layer (drop_ratio = 0.7) is
inserted between the fully connected layers.

Unless specified otherwise, the learning rate is set to
0.0001 and the model is trained using Adam optimizer for
500 epochs with a weight decay of 0.01 and batch size of
64. In each batch, we ensure that the number of normal and
abnormal samples are equivalent to ensure balanced training.
For contrastive regularization, the following settings are used:
the number of centers C = 16, the intra-center compactness
strength λ = 0.0001, the inter-center separability strength
β = 0.0001, and the margin m = 1.25. The smoothness and
sparsity constraints are set to γ = η = 0.008.

C. RESULTS ON UCF-CRIME
Table 1 shows the AUC results on UCF-Crime, which is
currently one of the most realistic and largest VAD bench-
mark dataset. For the UCF-Crime dataset, we compare our
system against unsupervised methods [2], [30], [48] and
weakly supervised methods [5], [6], [7], [8], [15].We use I3D
features to build our model.

In general, the weakly supervised methods far outperform
the unsupervised methods [2], [30], [48]. This shows that
additional supervisory labels, even weak ones, are indispens-
able to train better models. In addition, I3D features delivers
superior performance than C3D features due to a more pow-
erful backbone network and large-scale pre-training.

The proposed CR-U-Net achieves state-of-the-art perfor-
mance with an AUC of 85.24%. This is the second highest
AUC among the evaluated methods. It outperforms MIL-
Ranking [5] by 7.32%, MIST [6] by 2.94% and RTFM [7]

VOLUME 11, 2023 36665



K. Y. Gan et al.: Contrastive-Regularized U-Net for Video Anomaly Detection

TABLE 1. AUC performance on UCF-Crime.

by 0.94%. Out of all evaluated methods, HCE [8] delivers
the highest AUC of 85.38%. However, HCE’s superior per-
formance is attributed to its augmentation strategy where
hand-crafted anomalies (HC) and noise simulation (NS) are
injected into the training set. Without HC and NS, the per-
formance of HCE drops to 84.44%. Therefore, the proposed
CR-U-Net actually outperforms HCE by 0.71% on the same
original training set. HCE mainly captures local temporal
information. This makes CR-U-Net one of the top performing
models for the UCF-Crime dataset. This indicates the effi-
cacy of U-Net whose structure is able to capture both local
and global temporal information. In comparison, Although
RTFM captures both local and global dependencies, they
are implemented in two parallel independent structures and
are unable to model the interaction between the two depen-
dencies. In contrast, U-Net models both dependencies more
effectively, resulting in state-of-the-art performance.

D. COMPARATIVE AND ABLATION STUDY
We performed an ablation study on UCF-Crime to evaluate
the effectiveness of the proposed U-Net anomaly classifier
as well as contrastive regularization. First, we replace the
U-Net anomaly classifier with other kinds of structure. The
first is a 3-layered MLP network from [5] which does not
model any temporal information. The second is a combina-
tion of pyramid of dilated convolution (PDC) and transformer
structure (TSA) [7]. The former models the local temporal
dependencies while the latter models the global temporal
dependencies separately in two branch. To ensure fairness,
the training of the compared models are standardized using
binary cross entropy loss and top-k pseudo labels without
contrastive regularization. Lastly, the fourth model applies
contrastive regularization on top of the network with U-
Net-based anomaly classifier, which represents our optimal
model. Table 2 shows the results of the AUC of the three
model.

TABLE 2. Comparative and ablation studies.

As expected, the MLP-based classifier has the lowest AUC
of 81.74%. When the MLP is replaced with PDC and TSA,
the AUC improves by 0.46% to 82.20%. This shows that
learning temporal dependencies is useful to detect anomalies
in VAD. However, PDC+TSA models the local and global
temporal dependencies separately, neglecting the close rela-
tionship between them. The proposed U-Net-based network
resolves this problem bymodeling both dependencies in a sin-
gle structure. Compared to PDC+TSA, the U-Net structure
improves the AUC by 1.23% to 83.43%.

Next, we evaluate the effectiveness of contrastive regular-
ization aimed at reducing overfitting by learning more gener-
alizable features. When contrastive regularization is applied,
theAUC jumps significantly by 1.81% to 85.24%. This shows
that features that are more class separable are indeed more
generalizable. Section IV-F provides more analysis on this
property of contrastive regularization.

E. FINE-RUNNING THE MODEL
In this section, we evaluate the impact of channel and filter
size in the U-Net classification block, and the number of
centers in contrastive regularization.

1) NUMBER OF CHANNELS
To study the impact of the channel sizesDu in U-Net, we eval-
uate with the following channel sizes: 256, 512, 1024 and
2048. Different from traditional U-Net, in our design, all
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TABLE 3. Impact of convolutional channel size.

TABLE 4. Impact of filter size in residual block.

convolutional layers have the same channel size. In our imple-
mentation, the input to U-Net from the backbone network has
a channel size of 1024. So, the first two settings (f = 256 or
512) shrink the channels while the last setting (f = 2048)
expands the channels. Table 3 shows the experimental result.
The best AUC is achieved when U-Net uses the same

channel size as the backbone network feature (Du = 1024).
Setting to a lower channel size, Du = 256 or 512, lowers the
AUC performance. This may be due to information bottle-
neck where useful information are lost when the channels
are compressed. Setting a bigger channels size, Du = 2048,
decreases the performance as well because a bigger network
is more difficult to optimize and easier to overfit without
sufficient training samples.

2) FILTER SIZE
Next, we evaluate the impact of filter size in U-Net. The filter
sizes of 3, 5 and 7 are evaluated. The filter size affects the
range of the temporal coverage. The filter size should neither
be too big nor too small.

As shown in Table 4, the optimal filter size is f = 5. Using
a larger filter size f = 7 makes it less sensitive to subtle
local cues. It also incurs more parameters, and therefore takes
longer and more resources to train and is easier to overfit
when training samples are insufficient. On the other hand,
a smaller filter size f = 3 has a limited temporal range, hin-
dering it from extracting longer-range temporal dependencies
effectively with the current depth level.

3) NUMBER OF CENTERS
The number of centers C in contrastive regularization sig-
nifies the number of representative events captured by the
model. We evaluate C = 0, 2, 4, 8, 16 and 24. When
C = 0, contrastive regularization is disabled. Table 5 shows
the experimental results.

When the contrastive regularization is enabled (C ≥ 2),
the performance of the model improves. With C = 2 (one
center per class) the AUC improves by 0.87%. The optimal
number of centers isC = 16 where the AUC improves signif-
icantly by 2.1% to 85.24%. Increasing the number of centers
any further to 24 does not yield any further performance

TABLE 5. Impact of number of centers on UCF-Crime.

improvement. This is because 24 centers are more difficult
to train and 16 centers are sufficient to explain the anomalies.

F. QUALITATIVE ANALYSIS
In this section, we perform qualitative analysis of the model.
Fig. 5 shows the frame anomaly scores in the test videos
produced by our model. Fig. 5(a) – (e) shows the scores for
six anomalous videos. In general, the anomaly scores align
successfully with the ground truth where the network outputs
high anomaly scores for anomalous regions and low scores
for normal regions. Fig. 5(f) shows that the network correctly
outputs low anomaly scores for all frames in a normal video.
Our system is not perfect. Fig. 5(g) shows a missed detection
where the network misses a shop-lifting event where a man
put a stolen watch into his pocket. Our model fails to detect
the shop-lifting event because the action is subtle and the
stolen item is occluded, making it difficult to detect even
for a non-observant human. Fig. 5(h) shows a false alarm
when a group of people made some body contact. The model
confuses it to be a fighting event for a short time duration.

Fig. 6 looks deeper into the chronology of events for
2 test videos containing burglary and explosion events. The
first video ‘‘Burglary037’’ starts with an empty cashier
counter (Frame 78). Then, a man appears and climbs over
the counter (Frame 257), passes several stolen wines to
his accomplice (Frame 796), ransacks the cash register and
then fleets (Frame 1815). The network correctly predicts the
initial scene as normal and a higher anomaly scores con-
stantly after the burglar appears. The model predicts a lower
anomaly score after the burglars leave. The second video
‘‘Explosion033’’ contains two different explosion events. The
anomaly scores are lower for the scenes preceding the two
explosions at their respective locations (frames 499 and 1505)
and high anomaly scores when the explosions occur (frames
1075 and 2095). This shows that the model is able to detect
anomalous events in the frame despite being trained with
video-level labels.

G. IMPACT OF CONTRASTIVE REGULARIZATION
To evaluate the effectiveness of contrastive regularization,
we compare the distance between a segment feature f to its
nearest normal center h−

∈ H− and its nearest anomaly
center h+

∈ H+. The relative distance is computed as
follows:

Dist (f,H) = min
h−∈H−

∥∥f − h−
∥∥2
2 − min

h+∈H+

∥∥f − h+
∥∥2
2 (3)
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FIGURE 5. The anomaly scores for our method on test videos from UCF-Crime. The red colour region indicates the region where an anomaly event
occurs. (a) – (e) shows that the anomaly scores generated by the model aligns with the anomalous regions containing arson, road accident, robbery,
shooting and shoplifting. (f) show a normal video without an anomaly event. (g) and (h) show 2 failure cases where (g) is a missed detection and (h) is a
false alarm.

FIGURE 6. Chronology of events and their corresponding anomaly scores for two UCF-Crime test videos.

A negative value indicates that f is nearer to a normal cen-
ter than to an abnormal center. Conversely, a positive value
indicates that it is nearer to an abnormal center. Fig. 7 shows
the computed relative distance of the segments in eight test
videos. Fig. 7(a) - (e) show 5 test videos with anomaly
events while (f) show a test video without anomaly events.
The embedding feature of the normal event (white region) is
closer to the normal center (below the horizontal line) while
the embedding feature of the anomaly event (red zone) is

closer to the anomaly center (above the horizontal line). This
shows that the features generated wth contrastive regular-
ization are more discriminative and aligns very well to the
correct event type. Fig. 7(g)-(h) show 2 failure cases on a
test video with and without an anomaly event, respectively.
For the former, the features clearly fails to capture the subtle
anomalous event. For the latter, the features generated shows
that the normal actions are occasionally confused as abnormal
due to high level of activities in the scene.
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FIGURE 7. Relative distance between video segments and the normal vs abnormal centers. The red colour region shows the groundtruth
location of the anomaly event in a video. When a segment’s relative distance is above the dotted line (positive value), the segment is
nearer to an anomaly center. When it is below the dotted line (negative value), it is nearer to a normal center. (a)-(f) shows the successful
cases where the segments are generally nearer to the correct class centers. For the normal video (f), the distance for all segments are all
negative (near to a normal center). (g)-(h) show 2 failure cases where the segments are not near to the correct centers.

V. CONCLUSION
This work novelly applies U-Net to capture both local and
global temporal information for detecting anomalous seg-
ments in a video. U-Net learns global temporal dependencies
on top of local dependencies in the encoder, and this global
information is then propagated back to the local level in
the decoder. This intricate way of modeling the two types
of dependencies are found to be superior to RTFM which
models the two types of dependencies separately. To reduce
overfitting issues, we propose weakly supervised contrastive
regularization. The loss function enforces inter-class sepa-
rability and intra-class compactness. The resultant features
are found to be discriminative and generalizable, resulting in
improved test performance. For future work, it is interesting
to explore 3D U-Net structure which additionally considers
the spatial dimension, and to study how different distance
metrices affect contrastive regularization.
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