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ABSTRACT The prevalence of heart disease has remained a major cause of mortalities across the world
and has been challenging for healthcare providers to detect early symptoms of cardiac patients. To this end,
several conventional machine learning models have gained popularity in providing precise prediction of
heart diseases by taking into account the underlying conditions of patients. The drawbacks associated with
these methods are a lack of generalization and the convergence rate of these methods being much slower.
As the healthcare data associated with these systems scale up leading to healthcare big data issues, a Cloud-
Fog computing-based paradigm is necessary to facilitate low-latency and energy-efficient computation
of the healthcare data. In this paper, a DeepMist framework is suggested which exploits Deep Learning
models operating over Mist Computing infrastructure to leverage fast predictive convergence, low-latency,
and energy efficiency for smart healthcare systems. We exploit the Deep Q Network (DQN) algorithm
for building the prediction model for identifying heart diseases over the Mist computing layer. Different
performance evaluation metrics, like precision, recall, f-measure, accuracy, energy consumption, and delay,
are used to assess the proposed DeepMist framework. It provided an overall prediction accuracy of 97.6714%
and loss value of 0.3841, along with energy consumption and delay of 32.1002 mJ and 2.8002 ms
respectively. To validate the efficacy of DeepMist, we compare its outcomes over the heart disease dataset in
convergence with other benchmark models like Q-Reinforcement Learning (QRL) and Deep Reinforcement
Learning (DRL) algorithms and observe that the proposed scheme outperforms all others.

INDEX TERMS Deep learning, mist computing, heart disease prediction, performance evaluation, latency,
energy efficiency.

I. INTRODUCTION

The development of cutting-edge means of communication
and storage, the medical, agricultural, and other fields have
significantly benefited from incorporating smart gadgets into
everyday life [1]. Because of the tremendous progress made
in digital technology over the past few years, the Internet of
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Things (IoT) has had a significant influence on our every-
day life. The 10T is often conceptualized as a network of
interconnected computing systems that share information to
achieve specific goals. These systems often include sensors,
actuators, and processors [2]. IoT-enabled devices employ
sensing technologies to produce extensive data, which is
then transferred via fog computing or cloud computing to
locations where deep learning algorithms can be used to
make decisions accurately. Fog computing, which includes
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cloud computing standards, has become the foundation of an
advanced economy relying on the Internet to provide cus-
tomer services [3]. However, owing to the significant setback
to speed of reaction, cloud computing is unsuitable for appli-
cations that require regular feedback. Big data management
in the context of this IoT, fog, and cloud computing have all
risen to prominence due to their user-friendliness and ability
to provide reaction features dependent on the tracked target
applications. These new technologies give edge devices the
ability to store, compute, and communicate with each other.
This improves mobility issues, security, and privacy along
with optimizing latency and network bandwidth so that fog
computing can work well with real-time or latency-sensitive
applications [4], [5].
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FIGURE 1. An overview of loT-based health monitoring system with mist,
fog, and cloud computing layers.

Instead of merely making wearable devices, it’s important
to build a full community wherein sensors in a body-area
network may link up data to cloud storage with the help of this
IoT network [6], [7], [8]. Figure 1 depicts the architectural
components often required in IoT systems for healthcare
(Health-IoT). The three key parts of the architecture are the
body area sensor networks, the Internet-connected access
points, and the edge as well as cloud computing components.
Through this system, several applications offer services to
various system stakeholders. Caregivers, family members,
and other approved parties have access to data generated
by sensors attached to users, allowing them to monitor the
subject’s vital signs whenever and wherever they choose [5].

Recently, deep learning [9] has been demonstrated to be
effective in mixed-modality data settings, natural language
processing, and sequence prediction, adding to its already
widespread use in areas such as computer vision [10] and
speech synthesis. Additionally, ensemble learning [9] is uti-
lized to combine the strengths of various classifiers. Classi-
fiers can be improved by ensemble learning [11]. The bagging
classifier ensemble method uses randomized data samples to
learn the base classifier, and then uses majority or average
polling to reach a consensus on the best course of action.
Compared to using a single estimator, variance is reduced
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when datasets are distributed randomly. Deep learning can
accurately forecast and classify healthcare data [9].

In the present work, we offer DeepMist framework,
which is a computationally-aware model to facilitate com-
prehensive identification and automated diagnosis of car-
diac illness by incorporating IoT paradigms and Deep Q
Network (DQN) algorithm. DeepMist administers medical
care over light-weight mist computing nodes in the IoT phys-
ical layer and connects to the fog layer for dissemination
of information about cardiac patients intelligently captured
from other IoT-enabled devices. By exemplifying the use of
the iFogSim paradigm [12], as well as demonstrating the
use, together with design to implement the mist features to
achieve the objectives, DeepMist offers the following kind of
support:

« Develop a deep learning ensemble method that works
with a broad framework architecture to promote mist-
fog processing of acquired data.

o Using the deep learning ensemble technique Deep-
Mist, a framework for lightweight computing of cardiac
patient diagnosis was built over the mist computing
layer. Relevant data processing is modelled with the help
of a system that integrates the IoT, mist computing, fog
computing environment, and the cloud.

o This efficacy of DeepMist deployment is done through
various performance indicators, such as precision, recall,
f-measure, accuracy, energy efficiency, and transmission
delay.

o The fundamental objective is to reduce the computa-
tional load over resource constrained IoT devices and
offload the computationally intensive workloads to the
mist computing devices for timely dissemination of crit-
ical healthcare information.

The research is segmented into 6 sections, and section II
reviews previous studies that are pertinent to the topic at
hand. Section III emphasizes the work’s technical signifi-
cance and illustrates the DeepMist framework’s workflow.
The system infrastructure for the DeepMist model is covered
in section IV. Section V summarizes the model’s essential
implementation modules and simulation outcomes along with
the performance evaluation strategies adopted in this work.
Section VI concludes the experimental outcomes of Deep-
Mist framework and discusses future studies.

Il. RELATED WORK

The related work section of the research article likely dis-
cusses prior studies that have explored the use of mist com-
puting and deep learning in healthcare or associated domains.
It may also discuss existing healthcare big data management
frameworks and their limitations, highlighting the need for
a mist computing framework that leverages deep learning to
address these limitations. In recent years, there has been an
increase in the use of deep learning techniques to analyze
healthcare big data, such as electronic health records, medical
images, and sensor data from wearable devices. An emerging
field called “mist computing” has shown great promise for
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processing data at the network’s edge, closer to where the data
is generated, to reduce latency and bandwidth requirements
and improve privacy and security. The application of deep
learning to healthcare data management is an emerging topic
of study, and there have been several publications in this area.
It presents a framework that employs a mist computing strat-
egy to manage extensive healthcare data using deep learn-
ing techniques. Mist computing is a distributed computing
model that combines cloud computing and edge computing to
process data at the network’s edge in a resource-constrained
environment near where the data is generated.

Fog computing provides a fundamental paradigm for effi-
ciently processing healthcare data in the medical area, which
may be retrieved from a range of IoT-empowered devices.
Due to the proximity of fog computing enabled devices to
IoT-enabled devices, much lower latency, delay, or reac-
tion time can be achieved when using these devices to
handle cardiac patients’ data as opposed to cloud-based
datacentres.

There have been efforts to combine deep learning and
fog computing to manage big data in healthcare. For
instance, [12] Journal of Medical Systems study proposed a
deep learning-based framework for analyzing EEG data at
the network’s edge. The authors processed the EEG data in
real-time using mist computing and a deep learning model
to classify the EEG signals and detect epileptic seizures.
In [13] study proposed a mist computing framework for
the remote monitoring of Parkinson’s disease patients. The
framework employed wearable sensors to gather data on
patients’ movements and a deep learning model to analyze
the data and detect motor symptoms of the disease. In addi-
tion, Ali and Ghazal [14] present an IoT-based platform for
e-health monitoring services. This architecture is predicated
on a software-defined network (SDN) that can gather data
employing a smart phone and by leveraging voice control
system, to improve the patient’s wellbeing.

Rajasekaran et al. [15], proposed an Autonomous-
Monitoring-System (AMS) paradigm for IoMT applications
(IoMT). This model has the potential to serve the healthcare
industry. This study utilizes a reward scheme and exploits the
Analytics-Hierarchy-Process (AHP) to distribute resources
fairly among the many nodes of the model under consider-
ation. In terms of energy consumption, a cloud-based sim-
ulation and testing framework has demonstrated that the
autonomous monitoring system is preferable to the FGCS
technique. Even still, the lag time between terminals depicts
the long latency time of patient planning. The SMART-For-
Gateway (SFG) concept described by Constant et al. [16]
offers a prospective filter, towards developing an intelligent
filtering system, in-depth analysis, and targeted data transfers
between IoT-enabled devices (wearable) and a data model-
ing system. While the suggested methodology streamlines
the display of system execution time and energy usage,
itignores critical performance characteristics such as latency.
For patent records of FHIR-based electronic health data,
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Rajkumar et al. [17], suggested an approach based on deep
learning framework with great scalability and precision.
Accurate analysis of several clinical prospects from various
perspectives is made possible by the suggested model’s usage
of FHIR delineation, which operates over a strategic environ-
ment by leveraging deep learning algorithm without the need
to harmonize site-specific data.

The work proposed by Moosavi et al. [18] suggested
the use of an end-to-end handshake protocol for security
analysis of IoT-enabled healthcare systems over datagram
transport layer security (DTLS) by facilitating segrega-
tion without reintegrating the devices in the physical layer.
Based on the findings, it was determined that the sug-
gested strategy successfully cut transmission cost by 25%
and latency by less than 16%. Despite the availability of
an IoT-enabled framework, Azimi et al. [19] studied the
efficiency of deep learning techniques based on Convolu-
tional Neural Network (CNN) modeling in tandem with
some classification-based approaches for investigation of
Hierarchical-Edge-Based-Deep-Learning (HEDL) towards
edge computing-enabled medical applications [20], [21].
Further, Adelmoneem et al. [22], proposed a task scheduling
and allocation method to efficiently distribute healthcare jobs
for processing healthcare data. The performance of CBFA
is solely examined in terms of latency using the iFogSim
simulator. Research created general healthcare applications
on a modest scale, and the studies focused on something other
than healthcare apps for diagnosing the health state of heart
patients.

To develop deep learning tools and implement robotic
monitoring, Verma et al., [21] propose a FETCH model
that communicates with edge computing devices. It pro-
vides a useful framework for dealing with real-world health-
care issues including heart disease and others. FogBus is
used by the developed Fog enabled cloud computing frame-
work to present the values for metrics such as power con-
sumption, jitter, network bandwidth, latency, accuracy and
execution time. In Table 1, the comparison for the related
studies is presented in contrast with the proposed DeepMist
framework.

To realize the full potential of the IoT-based mist comput-
ing for healthcare systems, it is necessary to find solutions to
the following difficulties [11], [12], [19], [21], [25]:

1. In order to effectively treat cardiac patients, we need a

healthcare application built on the Internet of Things
(IoT) that can handle massive amounts of data with
minimal energy requirements and quick response
times.

2. For client workloads to be executed in mist computing
settings with maximum resource utilization and within
their respective deadlines, a well-organized resource
scheduling approach is essential.

3. Auto-assessing the severity of the cardiac disease calls
for a mist computing model based on an ensemble of
deep learning algorithms.
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TABLE 1. Comparison table for proposed DeepMist model features with benchmark models and frameworks.

Proposed Authored Features
Models by Mist Fog Deep IoT Energy Training Testing Delay
computing computing learning consumption Accuracy Accuracy
AMS Rajasekara v v v
netal.,
[15]
EOTC Alam et v v
al.,[20]
FETCH Verma et v v v v v v
al.,[21]
FIH Mahmud v v v v
etal.,[12]
CFBA Randa M v v v
etal., [22]
DeepMist Proposed v 4 v 4 4 4 4
Work

§ -m,. :

Intelligent
Learning

FIGURE 2. Proposed DeepMist Framework along with its functional
modules.

lIl. PROPOSED FRAMEWORK

The proposed DeepMist framework is illustrated in this
section along with an emphasis on the integration of IoT
application layer, mist computing layer, fog layer and cloud
layer [23], [24]. The DeepMist framework incorporates intel-
ligence by exploiting the DQN algorithm to facilitate predic-
tion of heart disease in a distributed manner over the mist
computing devices. The proposed paradigm is four layered
namely, the IoT physical layer, communication layer, fog
computing layer, and cloud computing layer [25], [26], [27].
Figure 2 illustrates the proposed DeepMist framework along
with all its functional modules.
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We start with illustrating the functionality corresponding
to individual layers in a bottom up approach. The IoT phys-
ical layer is placed at the bottom most layer and is further
subdivided into three sub-layers viz., IoT application layer,
the mist computing layer, and processing layer. The IoT
application layer comprises of all the sensory devices like
heart rate sensors, accelerometer, gyroscopes, GPS sensors
for providing location information, and proximity sensors.
The mist computing layer is in charge of maintaining the IoT
devices and capturing situational data from them [23], [24],
[28], [29]. The mist computing devices perform computations
locally over the real-time sensor data or non-real-time data
furnished by the end users via end devices like smart phones,
laptops, or PCs. The DeepMist framework is incorporated at
the mist computing layer to acquire bulk sensory data from
a distributed network of IoT devices or end devices. The
mist computing layer facilitates processing of the offloaded
data from low power and resource constrained IoT devices
and also reduces the amount of data transmitted over the
communication network to the higher layers like fog and
cloud computing layers. By exploiting the mist computing
paradigm, the aforementioned IoT application layer devices
can both pre-process and execute the IoT generated tasks
locally with minimal latency and energy consumption [23].
The IoT physical layer facilitates processing of the sensor
data and incorporates the pre-processing and intelligent pre-
diction module.

The second layer of the DeepMist architecture i.e., the
communication layer is responsible for connecting the IoT
devices and mist computing devices to the higher lay-
ers like fog and cloud computing layers. The IoT devices
entail restrained storage resources, bandwidth, and comput-
ing power and consequently require to be connected to its
higher layers. This optimizes the network and computing
resources as during situations when the computational load
on the IoT devices increase, they can efficiently exploit the
communication layer to offload their computational work-
loads to nearby devices or fog nodes [28], [29], [30].
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The third layer in the DeepMist architecture is the fog
computing layer and constitutes of the following components:
fog nodes, gateways, and access networks. The gateways
comprise of operating system and processing unit of this layer
which may include hardware, microcontrollers, and signal
processing unit. It provides the necessary infrastructure and
resources to the fog nodes for execution of tasks generated
by IoT physical layer. The access network is further respon-
sible for specifying the form communication incorporated by
mist devices to transmit data to the fog layer. Some exam-
ples of access network paradigms include WiFi, Ethernet,
Wide Area Network (WAN), and Metropolitan Area Network
(MAN) [28], [29], [30], [31]. The computational workloads
offloaded from the IoT physical layer may be assigned to fog
nodes over Wireless Local Area Network (WLAN) [28]. If a
fog node becomes overloaded with computationally intensive
workloads, the edge orchestrator is invoked which is respon-
sible for distributing the workload among other fog nodes in
this layer by implementing MAN connection [31], [32]. After
performing the aforementioned processing of tasks, the data
may be stored locally over the fog devices or may be further
transmitted to the remote cloud servers via WAN connections
depending upon the type of application and the requirements
of the user [31].

IV. SYSTEM MODEL

We consider a Mist network (as depicted in Figure 2) to model
the proposed DeepMist framework. The network comprises
of a heterogeneous collection of IoT devices which push
their data to the Mist computing nodes to facilitate offloading
of computational workloads over resource constrained IoT
devices [32]. We represent the set of mist nodes in the network
asM = {M,M,, ..., M,}. The set of access points in the
Mist network, denoted as A, serve as the end devices to host
the tasks being offloaded from the Mist layer to its consecu-
tive Fog layer. We model the network as a collection of IoT
devices, mist nodes, and fog nodes connected through some
communication link by leveraging graph structure such that
G = (A, UM U1, L) where I provides set of IoT devices and
L can be denoted as the set of communication links between
IoT devices, mist nodes, and access points. In our proposed
framework, the mist nodes may operate using physical servers
or through virtual machines. Further, to optimize the network
cost [33], [34], [35], the mist nodes are considered to be
less than the access points i.e., |[M| < |A;|. The number of
computational tasks being offloaded from IoT device layer
to mist nodes are depicted through the relationship nes 1=
(Prasks» Stasks) Where py,sks denote the CPU cycles required for
processing the tasks and sy represent size of healthcare
tasks. Considering the number of mist nodes to be lower
than the access points therefore, the tasks incur a multihop
communication path.

A. MIST COMPUTING MODEL
The mist computing framework offers a low energy and
latency-aware solution for processing of computationally
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intensive tasks generated by IoT devices and aids in improv-
ing Quality of Experience (QoE) for IoT users. The mist
computing layer accomplishes task offloading in basically
three steps.

1) The computational tasks c;,sks generated from wearable
IoT devices I being transmitted to the mist nodes via
wireless uplink paths /,,, where [, € L.

2) The csysks can be processed by the mist nodes having
computing capacity p}“fL where the allocation of mist

nodes can be defined as ¢ = {p}f’L|VI, L e G], such
that gmax denotes the maximum computing capacity by
a mist node.

3) The offloaded tasks cy,sks processed by the mist nodes
are further transmitted to the IoT device layer through
wireless downlink paths I, Where lgo, € L.

B. DEEP REINFORCEMENT LEARNING MODEL

This study proposed the use of deep Q network (DQN) algo-
rithm which, is a popularly used algorithm for achieving rapid
convergence and high prediction accuracy [36]. The DQN
algorithm was used for training the healthcare data considered
in this study. The DQN algorithm finds its inception from
the reinforcement learning model, which can be viewed as an
interactive framework which allows a learning agent to adopt
some random action and change its state based on the reward
for the action in predominance of deterministic environment.
Hence, the reinforcement learning can be described as a
Markov Decision Process (MDP) [37], [38], [39].

1) VALUE FUNCTION ESTIMATION
We require to estimate the value function for determin-
ing the goodness of a particular action to be in a certain
state. The notion of goodness of a specific action commit-
ted by the learning agent is determined on the basis of the
number of expected future rewards and the precision in terms
of expected number of returns [38]. The value function for
actions may be described as a specific way of acting as a
consequence of the learning process based on the policies.
For some state s, considering the policy to be 7, the value
function can be denoted as v, (s) and can hence be stated as
the expectation value of return [ [6, ], operating from some
state & and under policy 7. Hence, we can obtain the formal
definition of the value function for the MDPs as,

ur (8) = E [0S, = 4] (1)

From the above Eq.(1), the state-value function is obtained,
where [E[.] represents the expected value for some random
variable under policy 7w and time frame #.

The return 6, can be obtained for successive time frames
of the learning system as,

O0p = It + Vrep2 + V2reqs -+ Virey (22)
Gt:rt+l+V(rt+2+Vl”t+3"'+)’i_1”t+j) (2b)
Op = ret1 + YOt (2¢)
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where r,; denotes the reward sequence such that r.1; € R,
j=1,2,3,...,mand yi denotes the discount parameter for
i=0,1,2,...,nsubject to the condition 0 < y < 1.

Now, by using the expression for return obtained in Eq.(4),
we can modify Eq.(1) by recursively solving for policy = and
state g, we obtain,

vy (8) = Eg [rt+l + Vet-‘rllcst = 5] (3a)
o0
vr (& = Bx [ D V' reilSe =8| (D)

The above expression in Eq.(3b) is referred to as the equation
for state value function v .

Following the above convention for the state value func-
tion, the action value function for the above problem can be
defined as the expected return or feedback from s adopting
action a for policy 7 can be stated as,

Uz (8,a) =Eg [Qtlst =8A; = a] @

Substituting the value in Eq.(2c) over the above equation we
get,

ur (8, a) = Ex [rt+1 + J/Q;H-] |5¢ = 38 At = a] (5a)

*© k

un (@) =Ex [ D Vireesilse =54 =a] (b

We further estimate the Bellman’s optimality equation to
preserve self-consistency of state values in Eq.(3b) [39].
It makes intuitive sense that corresponding to an optimal
policy, the value of a state must be equal to the average return
pertaining to the best action undertaken by the learning agent
from the state, and this can be defined as:

v* (8) = maxuj, (s, a)

acA

= max[; [6,15, = 5,4 =d]

= max E7 [rt+1 +yO01lS, =8, A, = a]

acA
- I(;ISX]E; [ret1 +yv™ (Ses1) ISe = 8. A, = d]
= I(l;g/)x( Zp (5/, r|5, a) [I” + )/'U>k (5/)] (6)
8.r

where & represents the successive states such that s € §, and
p (&, rls a) gives the probability for state & and reward r
conditioned over present state .8 and action q.

Now, the Bellman’s optimality equation pertaining to the
action value function in Eq.(4) can be obtained as [39],

u* (8,a) = Ey |:rt+1+)/ maxu* (Se+1,d) IS, =4, At=a]
a/
(72)
_ ’ % (1
= Zé,’rp (&.7ls.a) [r +y maxu (zs,a)]
(7b)
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2) ACTION SELECTION STRATEGY

The state-action value of function vy (8, @) can be enhanced
in terms of the learning modules global search capability
by adopting the e-greedy action selection method under the
policy 7 and can be given as,

argmaxuy (8,a), 0<¢<e
7(8) = a )
Va € A, e<gp<1

It can be noted from the above formulation in Eq.(8), when
¢ < e, the action a corresponding to largest value for
state-action function uy; (s, @) is selected. However, when
¢ > e, then a random action g is selected such that
a €A.

Hence, the Q-table can be updated for some temporal
difference prediction as,

U (5¢-, at) <~ Ux (43;;—, af)

+ o [Gt + y max ux (/5t+1,at+1)
At+1

i (sa) |

©)
where:
— 8441 = new state after action g, is taken over current
state g,.

— ay+1 = optimal action in state 8,1.
- 0, + ymaxuy (zst+1, at+1) =
. Ar+1
Q-function.
- Urx (5457 at) = estimated value of Q-function.

actual value of

C. DEEP Q NETWORK (DQN) ALGORITHM

In order to fit the value function u, (8, a) through the DNN
ur (8, a; w) where w is the neural network’s weight, the
DQN algorithm provides an ensemble of RL with neural
networks [36]. In the DQN algorithm, the environment is
where the agent interacts with particular challenges, while
the agent is in charge of learning. The primary goals of
the DQN algorithm are to help the agent learn the opti-
mum course of action and maximize the rewards that fol-
low. The agent’s job is to furnish selection of an action
to take and training the neural network. The environment’s
job is to finish updating the state s, and computing the
reward r,. In order to determine the real value of Q and the
estimated value of Q, respectively, the DQN algorithm will
produce two multilayer perceptron neural networks with the
same structure, known as the evaluation network and target
network.

These two neural networks are used by the agent to
decide what to do next. For training the evaluation network,
a random sample of the agent’s experience over the tuples
(S,A, R, P, A) is taken from the experience pool. The target-
parameters networks are copied from the evaluation network
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every iteration (one iteration includes action selection, reward
calculation, network structure update, and evaluation network
update), and the evaluation network’s parameters are con-
tinuously updated based on the loss function, ensuring the
convergence of the DQN algorithm [36].

The DQN algorithm calculates Q network label y,,ax as
follows,

0, terminate

Umax = .
e O+ vy wa Utarg (5t+1 ) at+1) otherwise,
t+1

(10)

Now, we can state the update function for the value function
as,

Ueval (54&7 at) <= Ueval (5ts at) +o [umux — Ueval (454.*’ at)]

Y

The update function in the above equation comprises the
evaluation network which comprises of the states and actions
of the Q network after # transitions.

The weight updating formula for the evaluation network
can be obtained as,

Wetl < Wp + [umax — Ueval (5t7 Qz; w)] dwueyal (5ta Ats CU)
(12)

The loss function for the evaluation network in terms of
mean square error function employed during training can be
obtained as,

L () = E[wnar — tevat (86> az; )| (13)

In Algorithm 1, we provide the detailed execution steps for
training the proposed DQN algorithm over the considered
heart disease dataset. We can analyze the time complexity
of the algorithm proposed in Algorithm 1 as follows: Steps
4 and 10 consider a constant time for binary value of u,ax.
For different value of £ in Step 11, the worst time complexity
may be ()(|¢]). Therefore, the worst case time-complexity for
executing the proposed algorithm is O(|£]).

D. DELAY MODEL

It is essential to determine the delay of the considered system
as most of the tasks pertaining to a healthcare system are
time critical in nature and demand on time dissemination
of the requested services. Here, we consider the system for
switching between the local computing system and mist com-
puting node as a binary variable 7;Vi € [ which can be
represented as,

0, compute locally
7= . (14)
1, offload to mist node

The time taken to execute a given task locally can be
obtained as,

riloc — pt]ﬂ(&‘k&‘ (15)
l
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Algorithm 1 Proposed DQN-Based Learning
1: Initialize: Q network parameters
2: Set: Target network g
3: Set: Agenta
4: While 1,4 not converged do

5 Set new e-greedy action

6: Select g from s based on policy 7

7: Compute updated functions

8 Ueval (54,% at)

9: Oet1
10: If 1ypqx converged then
11: For £ do
12: Umax — 945 + vy max Utarg (5t+l , at+1)

Asr+1
13: End For
14: End If
15: Compute:
2

16: L (w) = ]E[umax — Ueval (5t’ ass 60)]

17: End While
18: Return: v,y
19: Exit

where f; denotes the CPU’s computing frequency for IoT
devices i € I. On the other hand if the task is being offloaded
to the mist node, the time taken for its execution can be
stated as the ratio between the sum of transmission time rl.Tx s
propagation delay rip P queuing delay rl.q, and task execution
time 7/ to the computing frequency of the mist nodes fy
such that,

mise _ 2iet (T T 41+ 1)
" = (16)
fm

E. ENERGY MODEL
The tasks offloaded by IoT device layer to the mist nodes
consumes a substantial amount of energy and depends of
several crucial factors like the type of task being executed,
and frequency of CPU. Following [41], we can compute the
energy consumption by the local computing IoT devices to
offload the captured IoT data can be given as,

£ = p(f) prasks (17)

From the above Eq. (17), the power coefficient pertaining to
the architecture of the chip is denoted as p.

Further, when n;,; number of tasks are offloaded, the
energy consumed by the device can be given as the energy
consumed depending on the size of the task to be transmitted

Stasks
gluc _ \2 8
i = p(fi) " Stasks (18)

Hence, we finally obtain the energy consumed to offload tasks
Niasks AS,

EF = gloc x ¥ (19)
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FIGURE 3. Generated topology for proposed mist computing-based
paradigm using iFogSim.

V. PERFORMANCE EVALUATION

A. SIMULATION SETUP

We have spoken about the mapping between the elements
of various layers in the mathematical model. We incorporate
the same in the simulation using iFogSim [33], [34], [35].
We implemented iFogSim using the Netbeans IDE. Classes
for our simulation are constructed in iFogSim using the Java
programming language. The proposed paradigm’s topology is
developed. It displays the many application modules that have
been created and can be incorporated to execute on various
physical setups. Figure 3 displays the constructed topology
for Mist-Fog-Cloud layers along with the IoT devices.

The sensor nodes are positioned in layer 1, as can be
seen in Figure 3. The sensor nodes gather information about
each object’s status in the environment and provide it to
the mist computing nodes at layer 2. Sensors can be single-
dimensional, multi-dimensional, homogeneous, or heteroge-
neous. The mist layer continuously collects data from the
sensors and processes them in a low-cost energy efficient
manner. The layer 3 fog nodes receives the data gathered
from the mist layer. The grouping of several mist nodes and
resource virtualization are managed by the fog organiser.
It serves as a distributed link between the cloud and the
mist layer. It assigns the resources after receiving the request
from an application manager or user, and is also in charge
of keeping track of and sharing the available resources. The
fog layer handles the processing of sensor and healthcare
data. Our experimental setup comprises of four fog nodes
connected to the gateway node at layer 4. The simulation
environment has different sensor nodes to collect healthcare
data heterogeneously networked with the mist nodes. Further
the mist and fog computing nodes portray a heterogeneous
configuration. The cloud is located in layer 5. Multiple layer
1 sensor nodes are mapped into a single layer 2 mist node,
in a many-to-one mapping as shown in Figure 3.

We also see that a single layer 3 fog node maps several
layer 2 mist nodes and implements a many-to-one mapping.
Finally, the cloud layer in layer 5, which has several cloud
instances, is coupled to four fog nodes. The mapping is hence
many-to-many.

42492

TABLE 2. Summary of simulation parameters considered for
experimental setup.

Parameters Value
No. of SNs 16
No. of Mist nodes 8
No. of fog nodes 4
CPU frequency of SN 16-84 MHz
CPU frequency of Mist nodes 2.4 GHz
CPU frequency of Fog nodes 4.2 GHz
Transmit power of SN 60 mW
Battery capacity of SNs 1000 J
Average task size (in KB) 450

B. RESULTS

The mist computing model outlined in Section IV is respon-
sible for processing data pertaining to heart patients and gives
back prediction results by employing the intelligent DQN
algorithm that aid in determining the prevalence of heart
diseases, along with the veracity of the claim. Following the
work in reference [21], the present study uses the Cleve-
land heart disease dataset comprising of 14 attributes and
observations from 303 records. The 14 attributes account for
13 features and a target attribute which suggests prevalence
of heart diseases in the patients’ records i.e., 1 denoting heart
disease and O representing no heart disease. The 13 fea-
tures entail data carried out through non-invasive clinical
trials along with some patient information like age and gen-
der. The target attribute comprises of results from invasive
coronary angiogram accounting to 0 and 1 for determining
absence or presence of heart disease respectively. The data
was acquired by Robert Detrano, M.D., Ph.D. of Cleveland
Clinic Foundation.

In this section, different tests are carried out to assess
the effectiveness of the suggested DQN algorithm. Our first
experiment is a comparative one for heart disease detec-
tion. For network training and testing, we exploit the above
discussed dataset for heart disease detection. We categorise
the considered dataset into instances for prevalence of heart
disease and non-prevalence of heart disease in patients of
varying age group and gender. There are 4 categories of
chest pain i.e., typical angina, atypical angina, non-anginal
pain, and asymptomatic patients. Three categories of rest ecg
results were presented denoted as 0, 1, and 2 representing
normal, ST-T wave abnormality, and probable or definite
left ventricular hypertrophy respectively. The slope for peak
exercise ST segment was branched into three categories car-
rying values 1, 2, and 3 representing upsloping, flat, and
downsloping graph of the ST segment. Further, the target
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TABLE 3. Comparison of performance metrics for QRL,DRL, and DQN
algorithms.

MODELS
QRL DRL DQN
Precision 0.9112 0.9514 0.9701
Recall 0.8914 0.9381 0.9512
F-measure 0.9081 0.9498 0.9761

variable representing the prevalence of heart disease was
denoted as 0 for <50% narrowing of any major blood vessel
and 1 for >50% narrowing.

We compare our method to the existing methodologies
(viz., QRL AND DRL) using the performance metrics like
precision, recall, f-measure, and prediction accuracy for
determining the prevalence of heart disease. The precision,
recall, f-measure and accuracy can be mathematically repre-
sented as [40], [41], [42], [43], [44], [45], and [46],

Tp
Pr = (20)
T, + Fp
T,
-5t &l
P n
2x Pr xR
f—measure = “PreiR (22)
T, + T,
A= pt i x 100 (23)

(Tp +Ta) + (Fp + Fu)

where T),, T, F), F,, denote the true positive, true negative,
false positive, and false negative respectively. The notations
Pr, R, f — measure, and A denote the precision, recall,
f-measure and accuracy of the model respectively.

In Figure 4, we provide the comparative analysis for pre-
cision, recall, and f-measure for the considered heart disease
dataset. We compare the DQN approach with two well-known
existing methods QRL and DRL. It was observed from the
experimental outcomes that the proposed DQN approach out-
performed other approaches by providing a precision value of
0.9701 as compared to QRL and DRL which incurred preci-
sion values of 0.9112 and 0.9514 respectively. The recall for
the proposed approach was the highest with value 0.9512 as
compared to the other two benchmark approaches which
provided recall values of 0.8914 and 0.9381 for QRL and
DRL algorithms respectively. Further, the f-measure for the
proposed scheme was 0.9761, which outperformed that of
QRL and DRL providing f-measure values of 0.9081 and
0.9498 respectively. Table 3 provides the detailed compari-
son for QRL, DRL, and DQN algorithms corresponding to
performance metrics viz., precision, recall, and f-measure.

‘We present the outcomes for training and testing accuracy
over the considered heart disease dataset for varying number
of iterations in Figure 5. The experimentation was performed
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FIGURE 4. Comparison over performance metrics like precision, recall,
and f-measure for QRL, DRL, and proposed DQN algorithm.
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FIGURE 5. The testing and training accuracy for the proposed DQN
algorithm over the considered dataset.

over different number of iterations varying from 0 to 9000 to
assess the efficacy of the model. It was observed that the
model provided fast convergence and the highest training
accuracy of 95.6112 % was achieved along with a testing
accuracy of 97.6714 %.

Figure 6 provides the comparison of training loss and
testing loss incurred for both phases pertaining to different
iterations varying within the range 0 to 9000. We observed
that the proposed approach provides a loss value of 0.3841 for
the testing phase and loss value of 0.4175 for the training
phase.

In Figure 7, the comparison for training accuracy was
presented over the heart disease dataset with different num-
ber of mist nodes for the QRL, DRL and DQN approach.
It was observed that as the number of mist computing nodes
increases, the training accuracy improves steadily with the
addition of each consecutive node. This increase is incurred
due to the fact that each node learns over the considered
models corresponding to the heart disease data it receives
for training and with the increase in number of mist nodes
in the network, each node learns based upon the experience
of its preceding nodes. As a result, the training accuracy of
the models grow for various iterations of the training set
because the models tend to over-fit the sample training set.
It is further noteworthy to mention that the proposed DQN
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FIGURE 6. The comparison for loss values pertaining to training and
testing phases of proposed DQN algorithm.
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FIGURE 7. Comparison of training accuracy over varying number of mist
nodes.
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FIGURE 8. Comparative analysis for testing accuracy corresponding to
varying number of mist nodes.

approach outperforms the QRL and DRL approaches for all
the computing instances of the mist layer.

Figure 8 depicts how testing accuracy varies with the
increase in number of mist computing nodes. It is pertinent
to note at this point that since each node receives a smaller
fraction of training dataset and therefore, cannot approximate
to the DQN model, the accuracy of the test declined as
the number of nodes increased. Further, the proposed DQN
approach’s adaptation results in consistently higher perfor-
mance as compared to QRL and DRL.
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TABLE 4. Comparison of energy consumption (in mJ) for QRL, DRL, and
DQN algorithms over varying tasks.

No. of Tasks QRL DRL DON

50 18.4511 17.1347 162101
100 21.1261 20.8211 19.6014
150 23.1142 224142 20.1972
200 314712 30.8712 284312
250 35.1214 33.1011 32.1002

50 T T
E BQRL
€ 40 H =DRL
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S DQN
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=
é
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2 10 — — — — —
s3]

0
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FIGURE 9. The energy consumption (in mJ) for varying frequency of tasks.

We analyse the energy consumption by the mist nodes for
building the QRL, DRL, and DQN approach through our
simulations. From Figure 9, the performance for the proposed
DQN algorithm in convergence with the benchmark algo-
rithms can be observed. From the figure it can be observed
that the energy consumption entails an almost linear growth.
The performance also depends upon the learning algorithm
adopted. However, the proposed DQN algorithm outperforms
all the other approaches in terms of minimizing the energy
consumption in building the model over a mist computing
environment. The highest energy consumed by the DQN
algorithm for processing 250 tasks over the mist nodes was
observed to be 32.1002 mJ, whereas that of QRL and DRL
algorithms were at 35.1214 mJ and 33.1011 m]J respectively.
In Table 4, the comparative study for energy consumed by
QRL, DRL, and DQN algorithms for processing varying
number of tasks over the mist nodes is provided.

We also analyze the delay incurred by each mist node to
build the training model by leveraging the QRL, DRL, and
DQN approaches for varying number of tasks. Figure 10
shows the performance of the proposed DQN scheme in con-
junction with the benchmark approaches i.e., QRL and DRL.
From the figure it can be observed that the delay incurred
for each algorithm (in milliseconds) witness an increase with
the increase in number of incoming tasks. However, the
proposed DQN algorithm accounts for the lowest delay of
2.8002 ms in building the model by outperforming the QRL
and DRL approaches, which produced a delay of 4.1211 ms
and 3.8721 ms respectively. Table 5 provides the comparative
analysis between the delay incurred by QRL, DRL, and DQN
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TABLE 5. Comparison of delay (in ms) for QRL, DRL, and DQN algorithms
over varying tasks.

No. of Tasks QRL DRL DQN
50 04511 03147 0.0987
100 1.1261 1.0211 1.0014
150 2.1142 2.1242 1.8972
200 3.4712 3.0712 24312
250 4.1211 3.8721 2.8002

algorithms for processing tasks of varying length over the
mist computing nodes.

VI. CONCLUSION AND FUTURE WORK
In order to determine the prevalence of heart disease for smart
healthcare systems, this study proposed a DeepMist frame-
work. The proposed framework exploited the DQN algorithm
to facilitate prediction and was built over a low latency energy
efficient Mist computing platform. The proposed architecture
comprised of four layers namely, the IoT device/application
layer, Mist layer, Fog Layer, and Cloud layer. The proposed
DQN algorithm provides fast convergence with a prediction
accuracy of 97.6714 % and loss value of 0.3841 and out-
performs the benchmark schemes considered in this study
viz., QRL and DRL in terms of precision, recall, f-measure,
accuracy, energy consumption, and delay. Thus it is evident
from the simulations and predictive analytics performed in
this study that the proposed DeepMist algorithm addresses
most of the QoS requirements of present healthcare systems.
In future, we would give more emphasis on determining
the optimal CPU utilization of Mist computing layer to deter-
mine the task offloading frequency of mist layer to the Fog
layer. Further, we would focus on developing task offloading
strategies for secure offloading of healthcare data in the Mist-
Fog computing infrastructure.
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