
Received 12 March 2023, accepted 9 April 2023, date of publication 11 April 2023, date of current version 14 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266377

A Survey of Text Representation and Embedding
Techniques in NLP
RAJVARDHAN PATIL 1, SORIO BOIT1, VENKAT GUDIVADA 2, AND JAGADEESH NANDIGAM1
1School of Computing, Grand Valley State University, Allendale, MI 49401, USA
2Department of Computer Science, East Carolina University, Greenville, NC 27858, USA

Corresponding author: Rajvardhan Patil (patilr@gvsu.edu)

ABSTRACT Natural Language Processing (NLP) is a research field where a language in consideration is
processed to understand its syntactic, semantic, and sentimental aspects. The advancement in the NLP area
has helped solve problems in the domains such as Neural Machine Translation, Name Entity Recognition,
Sentiment Analysis, and Chatbots, to name a few. The topic of NLP broadly consists of two main parts: the
representation of the input text (raw data) into numerical format (vectors or matrix) and the design of models
for processing the numerical data. This paper focuses on the former part and surveys how the NLP field has
evolved from rule-based, statistical to more context-sensitive learned representations. For each embedding
type, we list their representation, issues they addressed, limitations, and applications. This survey covers
the history of text representations from the 1970s and onwards, from regular expressions to the latest vector
representations used to encode the raw text data. It demonstrates how the NLP field progressed from where
it could comprehend just bits and pieces to all the significant aspects of the text over time.

INDEX TERMS Natural language processing, embeddings, text representation, word vectors, survey, word
embeddings, literature review, NLP, language models.

I. INTRODUCTION
The topic of NLP broadly consists of two main steps: first is
the representation of the input text (raw data) into numerical
format (vectors or matrix), and second is the design of models
for processing the numerical data to achieve a desired goal
or task. This paper focuses on the first part and shows how
because of the change in the text representation, the NLP
field progressed from just being able to comprehend bits and
pieces to all the aspects of the text. As shown in Figure 1,
we broadly classify the embedding learning techniques into
rule-based, statistical, and neural-network-based approaches.

In hand-based techniques, the rules and features are derived
by experts, such as trees, graphs, grammar rules, etc. Statis-
tical and mathematical formulas are used to derive the fea-
ture. In neural networks, the neural model learns the features
automatically, which are categorized into context-sensitive,
context-insensitive, and pre-trained embeddings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunil Karamchandani .

The NLP field began with the exact matching tech-
nique where Context Free Grammar (CFG) was used for
analysis. The search engines were mainly based on the
complex nested if-then rules represented by CFG. Further
advancements led to approximate matching, where errors
up to a certain threshold were ignored. However, because
of the ambiguous nature of natural languages, using such
techniques and designing complex rules could have been
more convenient, time-consuming, and error-prone. More
statistical approaches then followed these pattern-matching
approaches.

As the research evolved, statistical approaches were
sought, where the focus was given to the frequency of
the words. Several techniques, such as One Hot Encoding
(OHE), Bag ofWords (BoW), Term-Frequency (TF), Inverse-
Document-Frequency (IDF), etc., fall under this category.
Compared to grammar-based, these techniques were easy to
implement and improved the models’ accuracy. However,
such representations suffered from the curse of dimension-
ality, and also, because of computational power limitations,
their performance suffered on large-scale datasets. As a

36120
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6944-4692
https://orcid.org/0000-0001-6704-1657
https://orcid.org/0000-0001-6607-1440

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

FIGURE 1. Embedding taxonomy.

result, they needed to be more scalable, and their usage was
primarily limited to small-scale datasets.

Dimensionality Reduction Technique (DRT) was used to
overcome the curse of the dimensionality problem. In these
reduction techniques, the key idea is to find a new space or
coordinate system in which input data can be expressed with

fewer features, less information loss, and minimal error. Usu-
ally, two techniques are employed to reduce the dimensions.
The first approach is feature selection, and the other is feature
transformation. In feature selection, top-k terms or features
are selected based on certain criteria or threshold values, and
the rest are simply discarded. In feature transformation, linear
or non-linear transformation is applied on the dimensions
of the original dataset and mapped to a lower space with
fewer dimensions. In both approaches, care is taken not to
lose any information and that the content in the original data
is preserved or captured. Such discrete representation does
help in classification and categorization applications. How-
ever, it doesn’t perform well for tasks such as information
retrieval, chatbots, machine translation, and language gener-
ation, which require a deeper understanding of concepts such
as polysemy or identifying analogies, synonyms, antonyms,
etc. These limitations were overcome by advanced represen-
tations, called word vectors, which were derived using neural
networks.

The embeddings derived from neural networks are mapped
to continuous vector space, where each word vector is repre-
sented by an array of real numbers. In embeddings derived
from such continuous vector space, the focus is more on
computing the semantics of individual words by looking at
the context in which they appear. This technique considers
the effect that neighboring words can have on the given
word and how these relationships affect the meaning of a
word. These new word vectors are context-sensitive, can
identify synonyms and antonyms, and construct analogies
and categories of words, which was impossible in earlier
approaches. Word vectors capture words’ meanings (literal
and implied) and represent them using dense floating-point
values. They represent the semantics as well as the syntactic
aspects of the word. Their length typically ranges between
100 to 500 dimensions.

Additionally, the earlier approaches required labeling
of input data, whereas deducing the model processes
word-vectors unlabeled data in a self-supervised manner.
However, much more training data is required to improve the
accuracy of word vectors. In these word vectors, the rows are
the number of words in the corpus, and the columns are the
number of categories, concepts, qualities, etc., where each
feature represents some aspect of the word. For example,
for a word such as ‘City,’ the important aspects could be
friendliness, criminalness, socialness, economicalness, etc.
Because of their preciseness, the word-embedding vectors if
added or subtracted, result in a new word vector that means
something semantically. If such a ‘resultant’ vector is plotted
onto the continuous-vector space, it will point or be close
nearby to some word’s embedding. Such word embeddings
can therefore be used to predict the words around them and
capture the relationship between them.

As per [1], the field of NLP can be dated back to 1950s.
Although there have been surveys done in the past, for
example [41] that covered some of the Word Embeddings
approaches, to the best of our knowledge this is the first

VOLUME 11, 2023 36121

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

survey paper which exhaustively covers all the major text
representation and word embeddings techniques that are used
by the NLP models for processing the text. The outline of
this survey paper is as follows: In Section II, the paper
describes the NLP approach based on Context Free Grammar
(CFG) and patternmatching. Section III enlists seven primary
statistical methods that project the text onto the discrete
space. In Section IV, two dimensionality reduction categories
are introduced, followed by the description of techniques in
each category that help reduce the dimensions and optimize
the computational process. Section V explains conceptual
embeddings, followed by density distribution techniques in
Section VI. Finally, Section VII enumerates the popular tech-
niques where embeddings are derived using neural network
techniques, followed by the conclusion and future work in
Section VIII.

II. REGULAR EXPRESSIONS
The initial development of the NLP field was mostly
restricted to search engines and question-answering systems,
which heavily relied on pattern matching [2]. Patterns could
be a sequence of characters, words, or high-level abstract
patterns such as parts of speech. Because of the computational
resource limitations, the NLP field involves hard coding of
regular expressions and complex logical rules, such as nested
conditional if-else statements. The patterns would either be
used to search the sequence in documents and then rank those
documents in order of frequency or in the case of chatbots,
they would generate a scripted response (answer) for the
given sequence (question).

Programming languages tend to be context-free and can
therefore be parsed or analyzed using Context-Free Grammar
(CFG), where the context is unimportant or can be ignored.
However, natural languages being context-sensitive; their
meaning is subjective and is prone to change as per the
context. Therefore, attempting to capture or parse the natural
language using context-free grammar offers less flexibility in
the rules. In addition, such algorithms often need to be com-
pleted, and more clear [3]. As a result, this technique of using
regular expressions (represented by CFG) to capture natural
language came across as more rigid, tightly controlled, and
involved hard coding of the complex logical rules to match or
extract information from a given text. They were based upon
exact sequence or pattern matching and the rigid response
rules embedded in the nested conditional if statements.

To overcome the above limitations, fuzzy expressions were
introduced, performing approximate matches instead of exact
matches. Such Fuzzy-CFG helped incorporate uncertainties
and vagueness in NLP [4]. Additionally, as stated in [5],
fuzzy grammar theory also helped capture the ambiguity and
impreciseness that occur in natural language queries, as it
can be parsed in different ways. Such systems overcame the
brittleness of traditional regular expressions, where it found
the closest grammarmatches among a list of rules by ignoring
a certain number of errors. Another approach to improve
over the traditional CFG approach was to hard code the

semantics of certain words to improve the accuracy of NLP
results. For example, Keyword Search on Databases (KWS)
is one of the NLP subfields. The task is to understand and
represent the given natural language query in its equivalent
SQL format. Authors from [6] and [7] demonstrated how the
KWS systems give more accurate results by giving particular
importance to logical operators (and, or, not); similarly, [8]
focused on words such as ‘‘average, count, total’’ etc., to deal
with advanced NLP queries. However, such attempts were
limited in scope and domain, as the set of words to focus upon
was domain specific.

Overall, in regular expressions, the word ordering and
matching (exact or approximate) were considered, but the
meaning, context, and frequency of words were ignored.
These systems based on CFG can capture the breadth of
the knowledge associated with the application and, therefore,
can perform a simple keyword search, implement simple
answering systems, and task-execution assistant bots; how-
ever, because of their rigidity, they are shallow, and so their
capabilities of depth-wise understanding are limited, and
therefore do not perform well for applications requiring a
semantic understanding of language, such as text summa-
rization, machine translation, etc. To overcome some of the
limitations of regular expressions, the researchers explored
and sought statistical approaches.

III. DISCRETE VECTOR SPACE
In statistical methods, words are represented using vectors
of numbers, and the corpus is represented as a collection
of such vectors, forming a matrix. Such statistical methods
reduce documents of arbitrary length to fixed-length lists
of numbers. These vector representations were helpful since
they enabled researchers to use linear algebra operations
to manipulate the vectors and compute distances and sim-
ilarities. This helped address a much more comprehensive
range of problems that otherwise required additional hand
coding of regular expressions and nested conditional rules.
Statistical approaches can broadly be categorized into three
parts: (1) discrete vector space, (2) density vector space, and
(3) continuous vector space.

In the discrete-vector space representations described
below, the given corpus or text first goes through preprocess-
ing, where the stop-words are eliminated, and stemming is
performed to get the root or stem of each word. Stemming
and lemmatization help normalizeword endings so that words
that differ only in their last few characters get collected
under the same token. Also, the matrices in these techniques
are named based on what the rows and columns represent.
For instance, if the rows represent documents and columns
represent words or terms, the matrix is termed a document-
term matrix.

A. ONE HOT EMBEDDING (OHE)
In this technique, first, the vocabulary dictionary of the
given corpus is constructed, which is a set of unique words.
These sets of unique words are then sorted and indexed. The

36122 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 1. One hot encoding example.

vocabulary is represented by V and its size by |V|. The rows
in the resulting matrix are equal to the number of words in
the given sentence or document, and the number of columns
is equal to the vocab size, |V|. Here, the row index depicts the
position or place of a word in the corpus.

In contrast, the column index represents the dictionary
position or the index of that word in the vocabulary V. The
resulting matrix is termed a ‘‘word-term’’ or ‘‘word-word’’
matrix. To build the matrix, the given text is traversed from
left to right. The current-word position in the text acts as a
row index in the matrix, and its index in the vocabulary acts
as a column index in the matrix. The value at these row and
column indexes is then marked as ‘1’ to indicate the presence
of the current word. This representation is called a one-hot
encoding because, in a given row, only one column index has
a non-zero value of ‘1’. Consider the following example:

Sentence = ‘‘he started driving when he was 22 years old’’
Here, vocab = [’22’, ‘driving’, ‘he’, ‘old’, ‘started’, ‘was’,

‘when’, ’years’]
The one-hot matrix for the above sentence is shown in

Table 1, having dimensions (9,8).
If logical operations are performed on these one-hot vec-

tors, they can be used to do a basic keyword search, which
looks for the presence of one or more query words in a
given document or corpus. Such representation also retains
the ordering of words in the sentence, and it does not lose
any information from the original text. Given the matrix, the
original text can be reconstructed, which is impossible in
other embeddings described below.

However, such encoding ignores the context and hence
fails to capture the relationships and meanings of the words.
The dot product between such OHE vectors does not con-
vey any meaningful information, as a result, is always a
zero. Also, the distance between such word vectors does not
give any meaningful insights as they represent differences in
alphabetic ordering. That is, vectors of words with similar
meanings (‘cold’, ‘freezing’) get projected at more consid-
erable distances. In contrast, vectors of words with opposite
meanings (‘freezing’, ‘hot’) have a comparatively smaller
distance.

Furthermore, such representations come with a cost of
many dimensions and more storage space and are sparse,
making the models costlier to train. As a result, using such
a representation does not do any better than regex-pattern

TABLE 2. Bag of words example.

matching since the distance between vectors fails to mea-
sure the difference or similarity in meaning between the
sequences.

B. BAG OF WORDS (BOW)
An early reference to ‘‘bag-of-words’’ in a linguistic context
can be found in Zellig Harris’s 1954 article on Distributional
Structure [9]. As one-hot vectors were sparse, a more con-
cise representation called bag-of-words was proposed. In this
approach, the corpus is represented by a matrix, where each
row represents a sentence, and each column represents a
unique word from vocabulary. The number of rows is equal
to the number of sentences in the corpus, and the number of
columns is equal to the vocabulary size of the corpus. This
matrix is termed a ‘document-term’ with a dimension equal
to | the number of sentences| x |V|.

While processing each sentence in the corpus, the fre-
quency or the absence/presence (indicated by 0 or 1) of each
occurring word in the sentence is counted and updated in the
respective row and column of the matrix. Here, the row index
is the sentence’s position in the corpus, and the column index
is the current word’s dictionary position. If the values are
binary (0,1) then such BoW is termed binary BoW, whereas if
the count or frequency of each word is recorded, it is termed
non-binary BoW. Consider the following example:

corpus = ‘‘Sam started driving when he was 22 years old.
He was passionate about swimming, and won several com-

petitions.
He didn’t like watching television, as he preferred outdoor

activities.’’
The bag-of-words representation for the above corpus is

shown in Table 2, having dimensions(3,25).
Compared to OHE, the matrix’s row size is significantly

smaller and requires less time for model training. However,
likeOHE, thismatrix is sparse as each sentence only has a few
words from the corpus, resulting in ‘0’ entry for most of the
vocabulary words (columns). Here, as each sentence or doc-
ument within a corpus is represented using a row, it enables
finding similarity scores among sentences or between doc-
uments. A dot product, shown in 1, is typically used to
compute document similarity scores.

A.B =

n∑
i=1

AiBi (1)

where, ‘A’ and ‘B’ are documents and ‘n’ is the dimension
of the vector space. Such dot product measures the overlap
between two vectors and results in a scalar value or metric,
giving a good estimate (approximation) of how similar they
are in their words. To perform a keyword search on the corpus,

VOLUME 11, 2023 36123

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

logical operations (OR, AND) are performed between the
query and document vectors.

This representation is, however, based on exact matching.
Therefore, document similarity is correct only if the exact
words are used. Therefore, it will give an inaccurate simi-
larity score for documents conveying the same information
but using different words or synonyms. Furthermore, such
representation comes at the cost of ignoring the word order
originally preserved in OHE. Different sentences with dif-
ferent semantics can have the same BoW representation.
The ordering of words becomes important as they convey
logical relationships and dependencies between the words.
Extracting such syntactical information between the words
helps solve problems such as text generation (predicting the
next word), text summarizing, etc. Additionally, the context
and the relationship between words need to be addressed,
which makes BoW fail to comprehend the semantic infor-
mation of the words. Because of such shortcomings, its
usage is limited to spam filters and sentiment analysis
applications.

C. CATEGORY BASED EMBEDDING (CBE)
In this approach, the focus is on the types of categories that
exist across the documents. Instead of dynamically identify-
ing these categories, in this approach, they are pre-decided
and hard-coded. Information about such categories is rep-
resented using columns. Therefore, the number of columns
is equal to the number of possible categories in the corpus.
The resulting matrix is termed a ‘document-category’ matrix.
Such representation is helpful when a given document needs
to be classified into one of these categories. Here, the matrix’s
rows equal the number of sentences or documents in the
corpus.

In OHE and BoW approach, a separate column was dedi-
cated to each word in the vocabulary V. However, the dimen-
sionality in CBE is significantly reduced since the number of
categories (represented by the columns) is way lower than the
vocabulary size. For example, in the sentiment classification
task, the documents can be groupedmainly into positive, neu-
tral, and negative polarities. In this example, the number of
categories and columns is just three. While iterating through
each document, the polarity of each word is found by looking
into user-defined lexicons, and the corresponding polarity
or category count for the given document is incremented
in the matrix. This matrix representation is dense as it has
very few columns. Also, it is not sparse because most of the
rows have non-zero values. As a result, the resulting matrix
requires comparatively less storage space than its counter-
parts. Furthermore, because of fewer dimensions, the training
of models using such representation is much faster. Consider
the following example:

corpus= ‘‘I am feeling fresh and happy because I had gone
on vacation.

I did not enjoy reading his novel.
I hated the movie as the plot was missing.
The meal at this restaurant is delicious.’’

TABLE 3. A category based embedding example.

The CBE matrix having dimensions (4, 3) for the above
corpus is shown in Table 3.

To compose the lexicon, two approaches are normally
used. In the heuristic approach, polarity scores are pro-
vided by humans. Reference [10] demonstrates popular
hand-composed lexicons used for sentiment analysis. This
predominantly includes six lexicons, namely: Vader [11],
AFINN [12], Emotion Lexicon [13], Bing Liu’s Lexicon [14],
MPQA Lexicon [15], and General Inquirer [16]. However,
compiling such a lexicon is labor intensive and might only
cover some of the words from the corpus that represent or
indicate some sentiment. Also, it becomes difficult to imple-
ment this approach if the language is foreign to the user, as the
polarities of unfamiliar words are unknown.

The other approach is the non-sentiment-based approach.
Given the input data with the labels, a frequency dictionary
is generated that maps a given the word to its count of
occurrences in each class. For example, the word ‘happy’
might occur too often in text with positive labels than negative
ones. So the generated mapping would be: {happy : (15, 2)},
where 15 represents the number of times ‘happy’ appeared
in positive documents, and 2 represents the number of times
‘happy’ appeared in negative sentiment documents.

The documents are then represented with these frequency-
dictionary mapping, which are then used to train the model.
In the heuristic unsupervised approach, the lexicons were
referred to decide the polarity of the given word. In contrast,
in the non-sentiment supervised approach, labels of the input
data are used to deduce the sentiment of the word.

In this CBE representation, the vectors consist of frequency
or count values, where the categorical (semantic) informa-
tion is considered. However, the syntactic, contextual, and
word-ordering information is ignored. Such representation is
mostly used in applications that deal with short sentences.
Since in short sentences, a change in word order does not
change the meaning drastically. It also does better in appli-
cations requiring category-based counting, such as sentiment
analysis of reviews, junk-email detections, finding troll mes-
sages, measuring sentiment or niceness in chat messages, etc.

D. N-GRAMS
In the above techniques, individual words represented the
tokens that were then used for processing the documents.
As the focus was on finding the presence or counting the fre-
quency of individual tokens, the word ordering was ignored.
N-gram was the first technique proposed in [17] that made an
attempt towards imposing a window to capture the ordering
among words. Here, ‘‘n’’ represents the size of window or
context. So instead of focusing on individual words, n-gram

36124 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

looks at multiword tokens and captures the ordering present
in the window of the context. For instance, the 2-gram ‘‘not
playing’’ captures correct ordering than if they were con-
sidered separately. Here, instead of paying attention to the
occurrence of individual words, focus is on capturing group
of words. Similarly for sentence-2 of the corpus presented in
CBE subsection, as the focus was on individual words, the
‘did not enjoy’ words were treated separately. As a result,
the sentence was incorrectly classified as neutral (instead of
negative).

N-gram don’’ necessarily capture the contextual informa-
tion but is successful in capturing the word ordering among
words. These words when occurred together might mean
completely different than when they appear in isolation. For
example, ‘‘ice’’ and ‘‘cream’’ versus ‘‘ice cream’’, or ‘‘not’’
and ‘‘playing’’ versus ‘‘not playing’’. If n-gram is not used,
then ‘‘ice’’ and ‘‘cream’’ will be associated individually with
the entire sentence or document, implying that the document
is about ‘‘ice’’ and/or ‘‘cream’’, leading to wrong interpreta-
tion. That is, sometimes the semantic information is inherent
in the ordering of words. Instead of individual words, extend-
ing the concept to incorporate n-grams (multiword tokens),
enables the model to retain the meaning, which is implicit in
the ordering of words or phrases. N-grams therefore become
useful when certain group of words carry more weight or
different meaning when appeared together. Consider the fol-
lowing example:

corpus = ‘‘She can’’ stand her.
She was fed up of the assignments.
He screwed up the exam.
He did not like trekking.
He could not bear the pain of separation.’’
Here, bi-grams such as (can’’ stand, screwed up), and

tri-grams such as (did not like, could not bear) convey mean-
ing when they are considered in group. Otherwise, individ-
ually, they might convey the incorrect (opposite or neutral)
sentiment. N-grams are normally used in applications such as
document classification, clustering, and sentiment analysis,
where they capture important group of words (representing
topic or concept) that occur frequently across the documents,
and then classifying the documents based on the occurrence
of n-grams in them. Authors from [18] and [19] demonstrated
the use of n-grams in language modeling.

However, if n-grams are extremely rare in appearance,
then they don’’ carry much importance, as they cannot be
used to help identify topics or themes that can connect or
classify documents. On the other extreme, frequent n-grams
might also not represent any important meaning, or might
carry least information content. For example, n-grams such
as ‘‘of the’’, ‘‘so that’’ etc., which occur too frequently don’’
possess the ability to discriminate or classify the documents.
So filtering mechanism is applied to eliminate n-grams which
occur rarely or too frequently. Additionally, the n-gram that
was used to train the model might not be in the same sequence
in the test data. Furthermore, the possible combination of
n-grams grow exponentially with value of ‘n’. For example,

TABLE 4. Term frequency embedding example.

to model the joint distribution of 5-word sequences in a
vocabulary of 100,000 words, the possible number of com-
binations is 1000005 − 1. Due to these limitations, other
techniques such as Term-Frequency, Document Frequency,
and Inverse Document Frequency came to the forefront.

E. TERM FREQUENCY EMBEDDING
Although the non-binary BoW approach did consider the
frequency of words, it did not consider the importance of
a word relative to the other words in the document or the
corpus. To get more refined or precise results, finding out
which words are more relevant to a particular document than
others and their importance across the corpus as a whole
becomes vital. Such a value of ‘relevance’ can be used to find
more relevant documents based on the occurrence of query
keywords in the individual documents and across the corpus.

In this approach, proposed by Salton [20], Term-Frequency
(TF) counts the frequency of words in a document. However,
simply counting the frequency can give misleading results.
For instance, if the word ‘house’ appears in document A
50 times and in document B 1000 times, then just by con-
sidering the term frequency, it would be concluded that the
word ‘house’ is more relevant to document B than docu-
ment A. However, what if document A had only 150 words,
whereas document B had 1 million words? In that case, the
word ‘house’ seems more important to document A than
document B.

So instead of solely relying on term frequency, Normal-
ized Term Frequency (NTF) is often used, where the term
frequency of the word is divided by the total number of
words in that document. This normalization helps compute
the importance of a word relative to other words in that
document. Table 4 shows how document A gets a higher
ranking after normalizing the term frequency than document
B to the query word ‘house.’

The matrix is a document-term matrix, where rows repre-
sent sentences or documents and columns represent unique
words in the corpus (|V|). Unlike previous approaches, the
values in the matrix are not binary values or frequency count
integers; instead, they are normalized term-frequency floating
point values or scores. In NTF, the importance of a word for
other words in that document is taken into account.

When the NTF vectors are projected into the vector space,
it is possible to compute similarity scores between query
and document, or between documents, by looking at the
cosine angle between the respective vectors. The cosine value
between the vectors is nothing but a portion of the longer
vector covered by the shorter vector’s (perpendicular) projec-
tion onto the longer one. The cosine similarity between two

VOLUME 11, 2023 36125

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 5. TF-IDF embedding example.

vectors ‘x’ and ‘y’ is computed using the equation 2.

cos(x, y) =
x.y

∥x∥∥y∥
=

∑n
i=1 xiyi√∑n

i=1 (xi)2
√∑n

i=1 (yi)2
(2)

The closer a cosine similarity value is to 1, the closer the
two vectors are, and the smaller is the angle between them.
That is, if two vectors have a cosine similarity closer to 1,
it implies that the documents are using similar words in pro-
portion. If two documents use similar words in proportions,
the resulting vectors will have the same directions irrespective
of their length or magnitude.

The documents whose vectors are close to each other will
likely discuss the same thing. The length or magnitude of the
vector represents the size of the document. The cosine simi-
larity of 0 represents perpendicular vectors, sharing nothing
in common. That is, these vectors have a completely different
set of words. However, that does not mean they are talking
about entirely different things since they can use a different
set of words (synonyms) to discuss the same topic. It will
be discussed later on how word-embedding vectors address
or resolve this issue by successfully capturing the semantics
aspects of words.

In this NTF approach, as the importance of words con-
cerning other words in the document is taken into account,
it leads to more precise and accurate results than previ-
ous techniques. However, while computing the frequencies,
words were considered independently. Also, to cluster the
documents together, the same group of words (exact match)
needs to occur in them in a similar proportion to increase
their similarity score. So similar to previous approaches, this
approach also fails to consider the semantic aspects of words,
such as synonyms, antonyms, analogies, etc. This approach
was again count or frequency based, but a better version than
BOW and OHE since it could find the relative importance of
words to a document.

F. TF-IDF EMBEDDING
Although NTF does tell the importance of a word relative
to the other words in the document, it does not capture the
importance of a word relative to the rest of the documents
in the corpus. This might lead to erroneous results since
there might be different documents. However, just because

they are using the words prevalent across the corpus (such
as: ‘and, of, the, that,’ etc.), NTF will end up assigning
high similarity scores and hence clustering them together.
To compute similarity, we want to consider frequent words
in a document (measured by NTF) and demonstrate their
importance or uniqueness by occurring in fewer documents
across the corpus.

Inverse Document Frequency (IDF) metric, which was
proposed by Jones [21], gives importance or weightage to
such words which are unique to a certain set of documents
(representing a topic or concept), and that can therefore
help distinguish and classify documents easily. IDF indirectly
penalizes the similarity score if the words, which are not
unique to the documents, are considered while clustering
those documents. As shown in equation 3, IDF is the ratio
of the total number of documents in the corpus to the number
of documents the term appears in.

IDFi = log
N
dfi

(3)

where ‘N’ is the total number of documents in the corpus,
and dfi is the number of documents (document frequency)
containing term ti. NTF was used to increase the similar-
ity between vectors if they shared similar words in similar
proportions. In contrast, IDF reduces the similarity between
vectors if they share similar words that are not unique to
those documents and might frequently occur in the corpus.
As shown in equation 4, taking the product of TF and IDF (tf *
idf) assigns a numeric value to the importance of that word in
the given document, given its usage across the entire corpus.
In addition, several papers, such as [22] and [23], have
provided detailed explanations on the working of TF-IDF.

wi,j = tfi,jidfi = tfi,j

(
log

N
dfi

)
(4)

where, tfi,j is the term frequency of term i in document j. idfi
is the inverse document frequency of term i, and dfi is the
document frequency or the number of documents in which
the term appears. TF-IDF helps compute the importance of
a word in a document relative to the rest of the corpus.
TF-IDF, in a way, implicitly embeds and upscales the weights
of the words into the document vector that are important in
highlighting and classifying that document vector. Using such
TF-IDF metric, vectors can bring out the concepts and topics
in the document. References [24], [25], and [26], highlight the
applications of tf-idf in domains such as text classification,
information retrieval, etc. Table 5 shows an example of
TF-IDF vectors.

Consider a corpus of four documents (A, B, C, and D),
using NTF metric all these documents are termed equally
similar as they use words such as ‘‘house’’ and ‘‘apartment’’
in proportion. So this does not yield or result in any mean-
ingful insight. What if, instead of focusing on these prevalent
words, by using TF-IDF metric more focus or importance is
given to the words unique to documents A and C, such as:
‘‘repair’’, ‘‘maintenance’’, ‘‘labor cost’’, and the words that

36126 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

are unique to documents B and D such as ‘‘safety, ‘‘com-
mute’’, ‘‘schools’’, ‘‘grocery’’, ‘‘environment’’ etc. This tells
us that documents A and C discuss the cost incurred in
repairing homes or apartments, and B and D talk about neigh-
borhood communities. In short, using TF-IDF helps select or
focus on words that are important to the documents and can
therefore help distinguish the document from the rest of the
corpus.

In terms of accuracy, TF-IDF vectors outperform the pre-
viously listed approaches. However, the TF-IDF matrices are
high-dimensional and sparse. To address this issue, dimen-
sionality reduction techniques were applied to the TF-IDF
(or BoW) vectors. Furthermore, sometimes two lemmatized
TF-IDF vectors close to each other are not similar inmeaning.
Also, synonyms with different spellings produce TF-IDF
vectors that are not close to each other in the vector space.
Therefore, even a state-of-the-art TF-IDF similarity score,
such as cosine or Okapi BM25, would fail to connect the
synonyms or push apart the antonyms.

G. HYPERSPACE ANALOGUE TO LANGUAGE (HAL)
HAL was proposed in [27], where a co-occurrence matrix
is built, which provides coordinates in a high dimensional
semantic space enabling analysis of word relationships.
As stated in [28], such numeric vector representation in HAL
captures enough information to make a semantic, grammat-
ical, and abstract distinction. Before HAL, such semantic
spaces were constructed by manually defining the number of
axes and the meanings for each axis in the space. However,
such an explicit effort was judgment-based and, therefore,
error-prone, as the deduced set of axes might not represent
or capture the desired level of details in the built space.
So instead, in HAL, the lexical co-occurrence technique was
used to automatically derive these axes in semantic space.

The co-occurrencematrix inHAL is a squarematrix, where
the rows and columns are equal to the vocabulary size, |V|.
To build this matrix, a context window spans a couple of
words. For a given word (represented by a row), all the
words appearing before it in the current context window are
considered co-occurring. For such co-occurring words, the
values in the corresponding columns are incremented by 1.
It records the entries corresponding to the number of times
a word occurs in the context of another word. This context
window slides over the source corpus by one-word increment.
Each cell in such a co-occurrence matrix is the co-occurrence
count for the given word pair, represented by a row and
column. Consider an example: ‘‘He ran towards the grocery
store,’’, where window size = 4.

Table 6 showcases the co-occurrence matrix built for the
example in consideration. After the construction of matrix,
the distance metrics is applied to find the semantic similarity
between pair of words. Such similarity score is used to cate-
gorize and classify the documents. For example, the similarity
between ‘‘store’’ and ‘‘grocery’’ vectors is strong, as com-
pared to ‘‘store’’ and ‘‘ran’’ vectors. That is, the probability of
‘‘store’’ and ‘‘grocery’’ co-occurring together in a document

TABLE 6. Hyperspace analogue to language example.

is higher than ‘‘store’’ and ‘‘ran’’. Therefore, if the vectors
are plotted in n-dimensional space, the vectors closed to each
other exhibit a meaningful cluster.

In HAL, as each word vector is represented based on the
context words in which it appears, the meaning of the word
is indirectly determined by the context in which it appears.
However, the problem with HAL approach is that frequently
occurring words will end up contributing disproportionately
to the similarity measure. That is, frequent words in the con-
texts might have very little to convey about the semantic relat-
edness of the given words but will end up having large effect
on the similarity score of those words. For example, words
‘‘grocery’’ and ‘‘sports’’ are not strongly related. However,
if they end up sharing similar words in their contexts, then
their vectors will be projected closer to each other, implying
high similarity score between them.

IV. DIMENSIONALITY REDUCTION TECHNIQUES
In the discrete space techniques, the corpus was represented
numerically using either one-hot, bag-of-words, n-gram,
frequency-based, TF-IDF, or co-occurrence technique. These
approaches involved the construction of vectors andmatrixes,
which were simple to implement. However, they suffered
from the dimensionality curse and data sparsity, requiring
more time to train the models. Additionally, although tf-idf
does help in identifying words that help discriminate the
documents, it does not capture the inter or intra-document
statistical structure represented by topics. To overcome
these limitations, dimensionality reduction techniques were
applied to capture and present the same information but with
fewer dimensions. There are mainly two types of DRTs:
feature selection and feature transformation.

A. FEATURE SELECTION
In feature selection, only a subset of dimensions is selected as
features from the original set of dimensions. In feature selec-
tion, there are primarily four methods: Document Frequency
(DF), Term-Frequency Variance (TFV), Mean TF-IDF (TI),
and Information Gain (IG). In all these methods, the terms
are first sorted on some score, and then a subset of terms are
shortlisted based on specific thresholding criteria.

1) DOCUMENT FREQUENCY
Document Frequency for a term t is defined as the number
of documents in which the term t appears at least once. Once
the terms are sorted based on their DF, top k dimensions sat-
isfying certain set of threshold values are selected as features.

VOLUME 11, 2023 36127

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

The terms below the threshold are considered non-influential
or non-informative for category prediction.

2) TERM-FREQUENCY VARIANCE
In this approach, the variance of term frequency is computed
using the following formula, which captures or represents the
quality of the terms [31]. The terms are then ranked based on
their variance value, and top-k terms are selected as features.

TfVi =

n∑
j

tf 2j −
1
N

 N∑
j

tfj

2

(5)

3) MEAN TF-IDF
In this technique, once the TF-IDF values for each term are
computed, the mean value of TF-IDF (represented as TI) for
each term over all the documents is calculated as a measure
that represents the importance or quality of that term [29].
Then, the terms are ranked on the basis of their TI values, and
top-k terms are selected which meet the threshold criteria.

TIi =
1
N

N∑
j=1

tfjidfi (6)

In equation 5 and 6, tfj is the term frequency of term i in
document j, ‘idf’ is the inverse document frequency of term
i, and N is the total number of documents.

4) INFORMATION GAIN
Information Gain (IG) is a goodness-criteria for terms to
check how the presence or absence of a term affects the infor-
mation obtained for category prediction [30]. Information
gain helps determine which attribute from the given features
is most helpful in discriminating between the classes to be
learned. As stated in [30], Information Gain of term ‘t’ is
defined or calculated as:

IG(t) = −

m∑
i=1

P (ci) logP (ci)

+ P(t)
m∑
i=1

P (ci|t) logP (ci|t)

+ P(t̄)
m∑
i=1

P
(
ci|t̄

)
logP

(
ci|t̄

)
(7)

In equation 7, m is the number of classes or categories
in the target space. Based on their IG value, the features
having information gain below a certain predefined threshold
are removed. IG values help numerically compute a given
feature’s importance to the classification task.

B. FEATURE TRANSFORMATION
In feature transformation, the original high-dimensional
space is projected onto a lower dimensional space. Each
dimension from the lower space is either a linear or non-linear
combination of the dimensions from the original space. Well-
known linear transformation methods include latent semantic

FIGURE 2. Latent semantic indexing example.

indexing, latent Dirichlet allocation, random indexing or pro-
jection, and independent component analysis. Reference [29]
covers a comprehensive list of DRTmethods, especially those
used for text clustering applications.

1) LATENT SEMANTIC INDEXING (LSI)
As stated by J. R. Firth, ‘‘You shall know a word by the com-
pany it keeps.’’ The semantic similarity between two natural
language expressions (or individual words) is proportional
to the similarity between the contexts in which words or
expressions are used. The algorithmic way is to count the
co-occurrences of words and construct a topic vector using
these groups of co-occurring words. LSI proposed in 1990 by
Deerwester [32], manages to derive these topic vectors using
Singular Value Decomposition (SVD) technique. If there are
words that co-occur a lot, then it implies that they share
something in common and can therefore be clubbed together
under one topic vector. As a result, the documents frequently
sharing co-occurring terms will have similar representations
or projections in this latent semantic space.

In LSI, the task is to identify a group ofwords that represent
a particular topic and then use the weighted (TF-IDF) vectors
of those individual words to compute the vector of the topic.
The words that strongly represent that topic are given more
weight, whereas those that don’t represent or identify that
topic are assigned lesser or negative weights. Therefore, the
dimensions or features in LSI represent a weighted linear
combination of original tf-idf frequencies. Because of this
transformation, LSI manages to compress the number of col-
umn vectors initially equal to the vocab size to merely a few
columns representing topics. Furthermore, clubbing words
into topics or concepts significantly reduces the number of
features or dimensions in LSI. These topics are further used to
compare (classify, cluster) the documents in the corpus. For
example, on a corpus related to the ‘‘community’’ subject,
LSI might deduce topics such as education, shopping, trans-
portation, etc. Then, as shown in Figure 2, the documents are
more precisely clustered based on their distance from these
dimensions or topic vectors.

LSI technique involves linear transformation (rotation and
stretching) of the given TF-IDF vectors and lining up them

36128 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

FIGURE 3. Princinpal component example.

to generate the highest spread. To achieve this, LSI uses
SVD on the original matrix to identify a linear subspace that
captures most of the variance in the space of tf-idf features.
The ideal topic vectors generate the highest spread or variance
among the documents because they have a better selection
of words. Therefore, they make it easier to classify, cluster,
and find similarities among the documents. LSI sorts these
topic vectors and retains only those limited topics sufficient
to classify the documents without compromising on the error.

Using SVD, LSI seeks to reduce the dimensions of the
data by finding orthogonal or non-statistical related linear
combinations or Principal Components (PC) of the original
variables having the largest variance. For example, as shown
in Figure 3, PC1 is the first principal component and goes
in the direction with the largest variance. PC2 is the second
principal component that is orthogonal to the first and goes
in the direction with the second largest variance.

LSI works better if the input consists of smaller documents
since the cooccurrence values andwordmeaning are well rep-
resented or captured in smaller sentences compared to longer
articles. Moreover, as LSI detects high-order semantic struc-
ture between terms and documents (in the form of topics),
it can resolve one of the main challenges encountered in NLP,
synonyms or semantically related words. It, therefore, acts as
one of the best tools for automatic indexing. As demonstrated
in [33], LSI helps improves access to textual information in
information retrieval. However, at the conceptual level, the
representation obtained by LSI cannot solve the problem of
polysemy. This problem was addressed by PLSI, as PLSI
associates a latent context variable with each word occur-
rence, which explicitly accounts for polysemy.

2) PROBABILISTIC LATENT SEMANTIC INDEXING (PLSI)
Hofmann proposed PLSI in 1999 in [34] that was based on
the likelihood principle, which helped minimize the word
perplexity and solve the polysemy problem. As stated in [35],
PLSI defines a proper generative data model to perform a
probabilistic mixture decomposition, which results in a more
principled approach with a solid foundation in statistical
inference than LSI. PLSI uses a latent variable model termed
an aspect model, which associates each observation with

an unobserved class variable. The generative model can be
defined or represented using the following three steps:

1) select a document di with probability P(di)
2) pick a latent class zk with probability P(zk |di)
3) generate a word wj with probability P(wj|zk)
The aspect model is a statistical mixture model based

on two assumptions: First is similar to the bag-of-words
approach, where observation pairs(document d , word w) are
assumed to be generated independently. Secondly, the aspect
model introduces a conditional assumption, where document
d and word w are independent and conditioned on the state
of the latent-variable z. The aspect model is a latent variable
model for co-occurrence data which associates an unobserved
class variable zk ∈ {z1, . . . , zK } with each observation. Here,
observation P(d,w) is the probability of occurrence of a word
w in a particular document d .
When translated into a joint probability model, the

data generation process results in the expression shown in
equation 8.

P(di,wj) = P(di)P(wj|di), where

P(wj|di) =

K∑
k=1

P(wj|zk)P(zk |di) (8)

In equation 8,
• P(di) - represents probability of observing word occur-
rence in particular document di

• P(zk |di) - represents document specific probability dis-
tribution over the latent variable (z) space.

• P(wj|zk) - represents the conditional probability of a
word wj conditioned on the unobserved class variable zk

Based on the equation 8, PLSI models each word in a
document as a sample from a mixture model, where the
mixture components are multinomial random variables that
can be viewed as representations of ‘‘topics.’’ Thus each word
is generated from a single topic, and different words in a
document may be generated from various topics. Each docu-
ment is represented as a list of mixing proportions for these
mixture components and thereby reduced to a probability
distribution on a fixed set of topics. The factor representation
obtained by PLSI allows dealing with polysemous words
and explicitly distinguishing between different meanings and
different types of word usage.

[35] demonstrates how PLSI showcases substantial
improvement over LSI regarding perplexity results for differ-
ent types of text and linguistic data collections. Additionally,
compared to LSI, where L2-norm or Frobenius-norm is used
to determine the optimal approximation or decomposition,
PLSI instead aims at an explicit maximization of the model’s
predictive power by using the likelihood function of multino-
mial sampling. Probabilistic Latent Semantic Analysis was
thus considered a promising novel unsupervised learning
method with a wide range of applications in computational
linguistics, information retrieval, text learning, and informa-
tion filtering.

VOLUME 11, 2023 36129

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

3) LATENT DIRICHLET ALLOCATION (LDA)
LDA was proposed in [36]. It is a generative probabilistic
model of a corpus. LDA models allow documents to exhibit
multiple topics to different degrees. The basic idea is that
documents are represented as random mixtures over one or
more latent topics. Each topic is characterized by using a
distribution of words or frequency of terms. The algorithm
starts with the assumption that the weights or probabilities of
the topics in a document and the weights of words in a topic
follow the Dirichlet probability distribution. To find out the
benefits offered by LDA, let us compare it with other latent
variable models.

In a unigram, latent variable model, the words of every
document are drawn independently from a singlemultinomial
distribution, represented in equation 9.

P(w) =

N∏
n=1

P(wn) (9)

In a mixture of unigram models, each document is gen-
erated by choosing a topic z and then generating N words
independently from the conditionalmultinomial p(w|z). Here,
the word distributions can be viewed as representations of
topics, assuming each document exhibits precisely one topic.
The probability of a document in this model is shown in
equation 10.

P(w) =

∑
z

P(z)
N∏
n=1

P(wn|z) (10)

In PLSI, document d and word w are conditionally inde-
pendent given an unobserved topic z.

P(di,wj) = P(di)
K∑
k=1

P(wj|zk)P(zk |di) (11)

The PLSI model attempts to relax the simplifying assump-
tion made in the mixture of unigrams model that each doc-
ument is generated from only one topic. In a sense, it does
capture the possibility that a document may contain multiple
topics since p(z | d) serves as the mixture weights of the
topics for a particular document d . However, here the model
learns the topic mixtures p(z | d) only for those documents on
which it is trained. For this reason, PLSI is not a well-defined
generative model of documents, as there is no natural way to
use it to assign a probability to a previously unseen document.
Additionally, the number of parameters in PLSI grows lin-
early with the number of training documents. That is, a corpus
with V vocabulary size and M documents with k topics will
result in kV + kM parameters.

LDA overcomes these problems by treating the topic mix-
ture weights as a k parameter hidden random variable instead
of individual parameters associated with the training set. As a
result, it generalizes easily with new or unseen documents.
Also, the parameters don’t grow linearly with the corpus size.
Regardless of the number of documents, the k topic LDA
model parameters will always be (k + kV).

Unlike LSI, LDA uses a nonlinear statistical algorithm to
group words. As a result, it is more precise in allocating the
words to topics than the linear approach in LSI. However,
because of the nonlinearity, LDA generally takesmuch longer
to train than linear approaches like LSI. Its usage is, therefore,
limited and is helpful for some single-document problems
such as document summarization.

4) INDEPENDENT COMPONENT ANALYSIS (ICA)
ICA is very closely related to the method called blind source
separation [37]. To define ICA, the following statistical
‘‘latent variables’’ model can be used [38], where linear
mixtures of ‘n’ independent components are observed:

xj = aj1s1 + aj2s2 + . . . + ajnsn (12)

The model can also be written as:

x =

n∑
i=1

aisi (13)

The ICA model in equation 13 is generative as it describes
how the observed data x are generated by process of mix-
ing the independent components si. Here it is assumed that
each mixture variable x and the independent component s
are random variables. These independent components are
called latent variables because they are not perceived directly.
As the mixing matrix (A) is unknown, using the observed
random vectors (x), ICA estimates both A and si by making
two assumptions. First, ICA assumes that components si are
statistically independent and have nongaussian distributions.
Statistically independent means the information on the value
of one component s1 doesn’t give any information on the
value of another component s2.

ICA is a statistical technique where random data are lin-
early transformed into components that tend to be maximally
independent. Unlike LSI, Independent Component Analysis
(ICA) seeks linear combinations or projections of dimensions
that are not necessarily orthogonal to each other. Instead,
they are as statistically independent as possible, which is
a stronger condition than statistical uncorrelatedness. This
is because statistical independence involves all the higher-
order statistics, whereas LSI is limited to only to second-
order statistics. While LSI or Principal Component Analysis
(PCA) seeks uncorrelated or orthogonal variables, ICA looks
for independent variables. Therefore, in most of the ICA
applications, PCA is used as a preprocessing step, where ICA
applies additional transformations to the PCA-transformed
data matrix. In addition to feature extraction, applications
of ICA can be found in many different areas, such as audio
processing, biomedical signal processing, image processing,
telecommunications, and econometrics.

5) RANDOM INDEXING (RI)
The idea of random mapping rest on the Johnson-
Lindenstrauss lemma (Johnson & Lindenstrauss, 1984),
which states that if points are projected in a vector space

36130 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

into a randomly selected subspace of sufficiently high dimen-
sionality, the distances between the points are approximately
preserved. As computation on very high dimension space
becomes difficult, using RI, the high-dimensional model can
be projected to lower dimensionality without compromising
on the accuracy of the results. In high-dimensional space,
a much larger number of almost orthogonal than orthogonal
directions exist. Thus, the dimensionality of a given matrix
X can be reduced by multiplying it with (or projecting it
through) a random matrix R, resulting in a new matrix X ′.
In other words, if a given matrix X needs to be projected from
m dimensional to a lower p dimensional space, then as shown
in equation 14, it can be multiplied by random matrix R to
generate its equivalent lower dimensional representation

XRPpxn = RpxmXmxn (14)

In equation 14, Xmxn is the original training samples in fea-
tures space, Rpxm is a random matrix, and XRPpxn is the training
samples randomly projected into a reduced dimension feature
space. This is possible because, in high dimensional space,
randomvectorsmay be sufficiently close to orthogonal, that is
RTR ≈ I , where I is the identity matrix if the random vectors
in matrix R are orthogonal so that RTR = I , thenX = X ′.
However, if the random vectors are nearly orthogonal, then
X ≈ X ′ in terms of the similarity of their rows.

Given points x1, x2, . . . xn ∈ Rd , where d is large, Random
Indexing constructs a projection or mapping, π :

π : Rd → Rk , (15)

where, k < d such that all distances are ‘‘nearly preserved’’.
That is,

∥xi − xj∥Rd ≈ ∥π(xi) − π (xj)∥Rk (16)

where, π is a random projection.
In other words, Random indexing proves or implements the

following Johnson-Lindenstrauss theorem.
Let 0 < ϵ < 1, n ∈ N . Then, for any set of n points

x1, x2, . . . xn ∈ Rd , there exists a map π : Rd → Rk , such
that for all i ̸= j:

(1 − ϵ)∥xi − xj∥2Rd ≤∥π (xi) − π (xj)∥2Rk ≤ (1 + ϵ)∥xi − xj∥2Rd
(17)

That is, if the distance in the original dimension is repre-
sented by ∥xi − xj∥2Rd , then it should be equal to the distance
in the new lower dimensional space represented by∥π(xi) −

π (xj)∥2Rk , where (k < d) and a deviation of ϵ can be tolerated.
RI can help speed up latent semantic indexing (LSI) if

RI first reduces the dimensionality of the data and the bur-
densome LSI is only computed in the new low-dimensional
space. As discussed in [39], unlike other dimensionality
reduction techniques, RI is scalable and incremental; that
is, it doesn’’ need an initial sampling of the entire data.
Most other reduction techniques require access to the entire
data before similarity computations can be performed. For
example, in SVD, constructing co-occurrencematrix and then

transforming it has to be done from scratch every time new
data is encountered.Whereas RI is incremental, it can find the
similarity after going through just a few examples. Therefore,
the RI technique is computationally less expensive than SVD.

Additionally, once set, the dimensionality in RI doesn’’
change, whereas in other methods, it is subject to change as
new data is encountered. Unlike LSI, where first the con-
struction of co-occurrence is needed, followed by a separate
dimension reduction phase, RI is incremental and does not
require a different dimension reduction phase. Furthermore,
in RI, the new dimensions are generated randomly. They
are random linear combinations of the original terms with
no ordering of importance. These new dimensions are only
approximate orthogonal. It takes a fraction of the time that
PCA requires, and yet the results generated by RI are compa-
rable to PCA.

V. CONCEPTUAL EMBEDDING
In the traditional BoW approach, the text categorization was
based on word occurrences in the given corpus or training set.
However, humans classify documents by considering com-
mon sense, background knowledge, and experience. Explicit
Semantic Analysis (ESA) tries to incorporate this informa-
tion and enrich the document representation using concepts
readily available from Wikipedia. ESA was proposed by
Gabrilovich in 2007 [40]. Here, the text is represented as a
weighted mixture of a predetermined set of natural concepts,
for example, from Wikipedia.

It relied on the information or concepts from Wikipedia
to represent the meaning of the text in semantic space. Con-
cepts from Wikipedia helped in considering or incorporating
the domain-specific world knowledge, to make the seman-
tic representation more fine-grained. Such derived features
leverage information that cannot be deduced from the given
corpus alone. This helped ESA represent the meaning of the
text in terms of Wikipedia-based concepts and to compute
the degree of semantic relatedness between individual words
or fragments of long texts as represented in equation 18,
a semantic interpreter is used by ESA to map the given text
into a weighted sequence of Wikipedia concepts ordered by
relevance.

Texti = W1 ∗ Concept1 + · · · +Wn ∗ Conceptn (18)

As the text gets represented into weighted vectors of con-
cepts, these vectors are called interpretation vectors. The
meaning of a text can thus be interpreted or represented as
its affinity or closeness with a list of Wikipedia concepts.
To find the semantic relatedness among texts, their respective
interpretation vectors can be compared using some distance
metrics such as cosine.

The inverted index is maintained to map each word to a
list of concepts in which it appears. The semantic interpreter
then iterates over the words of the given text and retrieves
and merges their corresponding entries of concepts from the
inverted index into a weighted vector. Entries of this vector
reflect the relevance of the corresponding concepts to text T .

VOLUME 11, 2023 36131

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

FIGURE 4. Explicit semantic analysis components.

When concepts in each vector are sorted in the decreasing
order of their score, the top k concepts are the most relevant
ones for the input text.

This approach differs from the count or frequency-based
approaches because it doesn’’ rely on the frequency or pres-
ence of words; instead, the vectors in ESA rely on the con-
cepts encountered inWikipedia. It also differs from LSI since
the concepts from ESA are more grounded in human cogni-
tion rather than the ‘‘latent concepts or topics’’ in LSI that
were nothing but a linear combination of the tf-idf features.
Here, the feature generation process was accomplished by
contextual analysis of document text, where the documents
were mapped onto the Wikipedia or ontology concepts to
generate features. Because of a contextualized way of gen-
erating the features, ESA helps solve NLP problems such as
synonyms and polysemy.

VI. DENSITY DISTRIBUTION EMBEDDING
Instead of projecting words in discrete or continuous vector
space, this approach represents words using density-based
distributed embeddings, where the mean and covariance
matrix are learned from the data. Here, each word is mapped
to a Gaussian distribution over a latent embedding space, such
that the properties of the distributions and the relationships
between the distributions capture its linguistic properties.
This allowed the words to be represented as densities over
a latent space, directly representing notions of probability
mass, and uncertainty and enabled a richer geometry in the
embedded space.

This work of Gaussian Embeddings presented in [53],
is more expressive than the typical point embeddings because,
in this approach, the distribution for one word can encom-
pass the distributions of sets of related words, enabling
the representation of concepts such as entailment. However,
being unimodal, it is similar to the deterministic approach
and, therefore, cannot capture multiple meanings of a word.
As Gaussian distribution is limited to one mode, such learned
uncertainties will get diffused if the words have multiple
meanings (polysemy). In such a scenario, the mean of the
Gaussian will get pulled in many different directions, lead-
ing to a biased distribution that might center around one
semantics. In contrast, the others get excluded or not well
represented. Moreover, the mean vector for such a word can
get pulled between several clusters, where the mass of the
distribution might center on a region or space far from one
of the meanings. For example, as shown in the left side
of Figure 5, for the word ‘wing’ with multiple meanings
(branch or part), the variance of the learned representation

FIGURE 5. Gaussian embeddings example.

becomes unnecessarily large to assign some probability to all
the meanings.

To overcome this limitation, instead of using single Gaus-
sian distribution, [54] proposes an approach where each word
can be represented or expressed using multimodal distribu-
tion to capture multiple distinct meanings. That is, each word
is modeled using a mixture of Gaussians. For example, the
word ‘bank’ can have various meanings based on its context.
Capturing and learning such multiple meanings of the word
offers flexibility and is crucial for applications dealing with
predictive tasks.

The multimodal approach from [54] mixes a fixed number
of Gaussians and presents a training method to learn the
parameters of such a mixture. Here, each word is repre-
sented as a Gaussian mixture with K components, and each
Gaussian component’s mean vector of the word w represents
one of the distinct meanings of that word. Moreover, each
such component is represented by an ellipsoid, whose center
is specified by the mean vector, and the contour surface
(represented by covariance matrix) reflects subtleties in
meaning and uncertainty. For example, as shown in the right
side of Figure 5, one component of the word ‘wing’ is closer
to ‘bird’ and ‘airplane,’ whereas the other component is closer
to ‘hospital’ and ‘organization’. It also demonstrates how the
more general word ‘branch’ distribution encapsulates words
such as ‘hospital,’ ‘building,’ and ‘organization.’

VII. NEURAL NETWORK BASED EMBEDDINGS
Word embeddings are an essential concept and a popular
technique for various tasks in Natural language processing
(NLP). They are dense vector representations of words that
capture semantic and relational information [106]. In other
words, they represent words as real-valued numbers in a
high-dimensional space that machine learning methods can
easily use. The critical idea in word embedding techniques
such as Word2Vec [44] and GloVe [51] is that each word in a
language can be represented as real-valued numerical vectors.
According to Zhang et al., [107]. Usually, word embeddings
are computed at the word level from a large corpus of unla-
beled text. In real-world applications and different NLP tasks,
the success of word embeddings depends on NLP models

36132 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

trained on large-scale corpora (i.e., billions of words like
the Wikipedia dataset) that can connect the semantic and
syntactic relationship, i.e., words and phrases [106].

The embedding approaches discussed so far were more
rule-based or statistically grounded. In the neural-network-
based method, the models are used to automatically deduce
the features, which implicitly represent the syntactic and
semantic aspects of the language. So using neural models, the
problem of feature engineering is automatically alleviated.
Most of these neural networkmodels used languagemodeling
(LM) or Machine Translation (MT) tasks to generate the
embeddings. The distributed representations derived from
neural networks are real-valued vectors, which capture the
semantic aspect of the words. The computational complexity
of such a model is determined by the number of parameters
that need to be trained.

Neural network-based techniques can broadly be classi-
fied into feature-based and fine-tuning-based embeddings.
In the feature-based approach, the network is pre-trained
to provide language representations, such as word, phrase,
sentence embeddings, etc. In a fine-tuning-based approach,
the model is pre-trained on a language modeling objective
in a self-supervised manner and then finetuned on the down-
stream tasks (such as classification, NER, QA etc.) with
supervised data. Feature-based techniques can either generate
static or dynamic embeddings. Static embeddings are non-
contextual, as the embeddings remain the same or are static
regardless of the context. To learn such word embeddings,
shallow networks are used. Whereas, in dynamic embed-
dings, the embeddings of the same word changes based on the
context, hence addressing the polysemy aspect of the words.
Below we cover prominent embeddings in each category that
were generated using neural network methods.

A. STATIC WORD EMBEDDINGS
1) Word2Vec
Reference [44] proposed two methods to derive embeddings
using Feed Forward neural network. In the Continuous Bag
of Words (CBOW) approach, given the context, it predicts
the target word. In the Skip-gram approach, given the word,
it predicts the context. Both the architectures were simple,
as no hidden layers were used, and therefore the computa-
tional complexity of learning embeddings was much lower.
However, most of the complexity in neural networks (such as
Feed Forward,and Recurrent) is caused by non-linear hidden
layers. So the authors of [44] explored much simpler models
which heavily relied on the softmax normalization efficiency.

The proposed neural network model was first used to learn
word vectors, and then the N-gram NNLM was trained using
these distributed representations of words. To generate the
embeddings with 1000 dimensions, the model was trained
on the Google news dataset having 6 billion training words.
Word analogy (consisting of semantic and syntactic sub-
tasks), word similarity, and sentence completion tasks were
used to measure the accuracy and quality of word vectors.
The proposed architectures were much more straightforward

than feed-forward or recurrent networks, resulting in lower
computational complexity.

2) GloVe
Unlike Word2Vec, which only focused on local context,
GloVe proposed in [51] took into account local context win-
dow and global matrix factorization methods. In the GloVe
model, the global corpus statistics are captured directly by the
model. When GloVe was tested on the same dataset from [44]
consisting of 19,544 questions, it obtained an accuracy of
81.9% on the semantic task and 69.3% on the syntactic task.
In addition to the word analogy task, GloVewas also tested on
word-similarity and NER tasks, where it outperformed SVD
and CBOW.

3) FastText
In continuous space representation models, a distinct vector
represents each word. Such representation, however, ignores
the internal structure or morphology of words. This may not
be suitable for morphologically rich languages having large
vocabularies with manywords that occur rarely. FastText [52]
overcomes this limitation by focusing on character-level
information of words and learning representations of sub-
words. It proposes a skip-gram model in which the words
are represented as bags of character n-grams. So instead of
assigning the vectors to each word, here, the vectors are
allocated to each character n-gram. The vector of a word is
represented as the sum of the n-gram vectors of its char-
acters. In short, FastText is an extension to the continuous
skip-gram model introduced by Mikolov, which considers
subword information that was missing in the earlier skip-
gram model.

This model is comparatively faster and allows to compute
vectors for words that rarely occur or not at all in the train-
ing corpus. The model was successfully tested and evalu-
ated across nine languages exhibiting different morphologies.
The experiments were conducted on nine different languages
(Arabic, Czech, German, English, Spanish, French, Italian,
Romanian, and Russian). For the Word-analogy task, it was
observed that subword information significantly improved
the accuracy of syntactic tasks. The proposed approach could
produce good embeddings or word vectors with tiny train-
ing datasets. The experiments also demonstrated how taking
long n-grams (for generating subwords) helps in improving
semantic accuracy. Additionally, using the sub-word vectors
helped enhance the perplexity of the Language Modeling
task, especially for morphologically rich languages such as
Czech and Russian. Table 7 shows the results of these static
embeddings on word-related tasks.

B. DYNAMIC EMBEDDINGS
Instead of random initialization, transferring information
using word vectors (such as Word2Vec, and GloVe) has
improved performance on various tasks. However, such rep-
resentation of words is independent of the context. Therefore

VOLUME 11, 2023 36133

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 7. Static word embedding performance.

they must refrain from disambiguating the word senses based
on the surrounding context. As a result, an ambiguous word
can refer to multiple, potentially unrelated meanings depend-
ing on its context. The ability to derive different represen-
tations of the same word based on the context in which it
appeared would further improve transfer learning in NLP
tasks where contextual representations are essential, such
as name entity recognition, word sense disambiguation, and
co-reference resolution.

Contextualized word embeddings overcome this limitation
by computing dynamic embeddings for words that adapt
or change based on context. Advanced and more profound
models, such as CoVe, ELMo, GPT, and BERT, focus on
generating contextual embeddings. These embeddings are
context-sensitive, as they change as per the context. They
represent the word semantics depending on its context. A nor-
mally pre-trained Language Modeling (LM) task is used to
derive contextual embeddings. Pre-trained LMs learn con-
textualized text representations by predicting words based
on their context using large amounts of text data. The LM
is trained on a general-domain corpus to capture general
features of the language in different layers. Below we discuss
prominent contextual embeddings derived using different
neural network architectures.

1) Context2Vec (C2V)
Reference [48] proposed an unsupervised model that uses
bidirectional LSTM for learning generic (task-independent)
representation of wide sentential context around a target
word. It can represent variable-length contexts with a fixed-
size vector. It borrows the CBOW architecture but replaces
the simple neural model with a much more powerful para-
metric model of bidirectional LSTM. One LSTM is fed input
from left to right, and another is fed from right to left.
The parameters of both networks are independent, includ-
ing two separate sets of left-to-right and right-to-left word
embeddings. The output of both LSTMs are concatenated.
Unlike CBOW’s limited context window size, here the entire
sentence is considered to generate sentential context. This
representation helps capture the relevant information when it
is distant/remote from the target word. As a result, the target
words associated with similar sentential contexts have sim-
ilar embeddings. As demonstrated in [48], the embeddings

successfully preserve the part-of-speech and tense informa-
tion because of sentential context. The experiments were
conducted on three tasks - Sentence Completion, Lexical
Substitution Task (LST), and Word Sense Disambiguation
(WSD). The context2vec surpassed AWE (Average-of-Word-
Embeddings) across all benchmarks.

2) CoVe
CoVe computes contextualized representations using a neu-
ral machine translation encoder. Reference [47] proposed
context-Vectors (CoVe) derived from deep LSTM encoder of
an attentional seq-to-seq model trained for machine transla-
tion task. It trained an LSTM encoder one Machine Transla-
tion (MT) task and then transferred the encoder to other tasks
in NLP. It showed that attentional encoders trained on NMT
task transfer well to other NLP tasks. Furthermore, it demon-
strated how theMT data holds potential comparable to CNN’s
ImageNet as a cornerstone for reusable models. That is,
the pairing of MT-LSTM is similar to the ImageNet-CNN
pairing of computer vision. Finally, the results illustrated
how appending CoVe to the word vectors of the downstream
model improved the performance of the downstream task over
that of baseline models using pre-trained word vectors alone.

Fixed-length representations derived from the NMT
encoder do better on semantic similarity tasks than those
obtained from monolingual encoders (e.g., language mod-
eling). The experiments also revealed how the quantity of
training data used to train the MT-LSTM was positively
correlated with the performance of the downstream tasks.
GloVe embeddings of English words are fed to the attentional
seq-to-sql bidirectional LSTMmodel. After the MT-LSTM is
trained, the output of the encoder is treated as CoVe. That is,
the GloVe word vectors were used to generate context vectors
(CoVe). For tasks such as classification and question answer-
ing, the GloVe vector of a word is concatenated with its cor-
responding CoVe vector. The results indicate how (CoVe +

GloVe) together achieve higher validation performance on
all the classification and question-answering tasks than the
models that use GloVe alone. Additionally, appending char-
acter n-gram embeddings can boost performance even further.
That is, the information provided by CoVe is complementary
to both the word-level information provided by GloVe and
the character-level information provided by character n-gram
embeddings.

3) UNIVERSAL LANGUAGE MODEL FINE-TUNING (ULMFiT)
ULMFiT was proposed in [57], using Language Modeling
(LM) task for pretraining. Language modeling is the ideal
source task as it captures many aspects of a language, such as
hierarchical relations, long-term dependencies, and semantic
and syntactic facets. Additionally, unlike Machine Trans-
lation, the data for LM is available in abundance. How-
ever, ELMo and CoVe train the primary/test task model
from scratch and treat the pre-trained embeddings as fixed
parameters, limiting their usefulness. ULMFiT paper pro-
posed a fine-tuning transfer technique to avoid task-specific

36134 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

modifications and training of downstream tasks from scratch,
as training from scratch requires large datasets and days to
converge.

As stated in ULMFiT, since different layers capture differ-
ent types of information, they need to be fine-tuned to differ-
ent extents. ULMFiT proposed a novel fine-tuning approach
called discriminative fine-tuning, where each layer can be
tuned with varying learning rates to address this issue. Addi-
tionally, to adapt the parameters to task-specific features,
instead of using the same learning rate, ULMFiT proposes
Slanted Triangular Learning Rates (STLR), which first lin-
early increase the learning rate and then linearly decay it.
Furthermore, the authors also propose a gradual unfreezing
technique. Rather than fine-tuning all layers at once (which
risks catastrophic forgetting), the paper presents gradually
unfreezing the model starting from the last layer as this
contains the least general knowledge. It first unfreezes the
last layer and fine-tunes all unfrozen layers for one epoch.
It then unfreezes the next lower frozen layer and repeats
until all layers are fine-tuned and until the convergence at
the last iteration. All these techniques (discriminative fine-
tuning, slanted triangular learning rates, and gradual unfreez-
ing) complement each other and enable the ULMFiT method
to perform well across diverse datasets. Based on the results,
ULMFiT outperformed state-of-the-art methods on six classi-
fication tasks, reducing the error by 18-24% onmost datasets.

4) EMBEDDINGS FROM LANGUAGE MODELS (ELMo)
To capture deeper and context-dependent aspects of word
meanings, ELMo was proposed [49], which uses a bidirec-
tional LSTM model to derive the word embeddings. ELMo
embeddings differ from traditional word type embeddings in
that each token or word representation is a function of the
entire input sentence. ELMo embeddings were derived from
a bidirectional LSTM that was trained on a large text corpus
with a Language Model objective. They have learned func-
tions of the internal states of a deep bidirectional Language
Model (biLM) that combines representations of forward and
backward language models. As they are a function of all
internal layers of the biLM, they gave improved performance
over using the output of just the top LSTM layer.

It derived the embeddings using a bidirectional LSTM
network which was trained with a coupled Language Model
(LM) objective. They are computed on top of two-layer
biLMs with character convolutions as a linear function of the
internal network states. The ELMo learned representations
are, therefore, deeper than traditional word vectors since in
ELMo the embeddings are a function of all of the internal
layers of the bidirectional language model. In ELMo, the
higher-level LSTM states capture the semantic and context-
dependent aspects, while lower-level LSTM states focus on
syntactic aspects. In ELMo, they extract context-sensitive
features from a left-to-right and a right-to-left language
model. Therefore, the contextual representation of each token
is the concatenation of the left-to-right and right-to-left
representations.

The embeddings captured the complex characteristics of
word usage, such as syntax and semantics, and how their
usage varies across linguistic contexts. That is, it successfully
modeled polysemy. The paper demonstrated how these rep-
resentations improved state-of-the-art performance across six
challenges. While training, as bidirectional LSTM, is used,
ELMo embeddings capture the complex characteristics of
word use (e.g., syntax and semantics) and how their uses vary
across linguistic contexts (polysemy). Reference [49] demon-
strates how the ELMo embeddings significantly improve
state-of-the-art across six challenging NLP problems, includ-
ing question answering, textual entailment, and sentiment
analysis. For tasks where direct comparisons were possible,
ELMo outperformed CoVe, which computed contextualized
representations using a neural machine translation encoder.

5) GENERATIVE PRE-TRAINING (GPT)
Using unsupervised (pre-)training to boost performance on
discriminative tasks has long been an important goal of
Machine Learning research. Reference [56] proposed GPT,
where they explored a semi-supervised approach for language
understanding tasks using a combination of unsupervised
pre-training and supervised fine-tuning. GPT setup does not
require the domain of target tasks and the unlabeled corpus
(used for pre-training) to be the same. Language Model-
ing objective was used on the unlabeled data to learn the
embeddings, which were subsequently adapted to the target
tasks (using the corresponding supervised objective). The
dataset used in GPT for pre-training the model contains long
stretches of contiguous text, which allows the generative
model to learn to condition on long-range information. GPT
achieved new state-of-the-art results in 9 out of 12 datasets.

The paper also analyzed the impact of several layers trans-
ferred from the pre-trained model on the accuracy of the
downstream tasks (RACE and MultiNLI). It was observed
that each transformer [113] layer provided more benefit as
it helped increase the accuracy. This indicated that each
layer in the pre-trained model contained proper functionality
for solving target tasks. To better understand why language
model pre-training of transformers is effective, the authors
conducted a zero-short learning experiment, and it appeared
that attentional memory of the transformer [113] assisted
in (better) transfer compared to LSTMs. By pre-training
on a diverse corpus with long stretches of contiguous text,
the GPT model acquires significant world knowledge and
the ability to process long-range dependencies, which are
then successfully transferred to solving discriminative tasks
such as question answering, semantic similarity assessment,
entailment determination, and text classification, improving
state of the art on 9 of the 12 datasets.

6) BIDIRECTIONAL ENCODER REPRESENTATIONS FROM
TRANSFORMERS (BERT)
Pre-trained word embeddings offer benefits over learning the
embeddings from scratch. For the pre-training purpose, the
left-to-right LM objective has been used. However, BERT

VOLUME 11, 2023 36135

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 8. Contextual embeddings - performance on GLUE tasks.

employs a bidirectional Transformer encoder to fuse both the
left and right context to predict the masked words. Refer-
ence [55] pre-trained deep bidirectional Transformer encoder
representations from the unlabeled text by joint conditioning
on the left as well as the right context in all the layers. There
are primarily two steps in the BERT framework - pre-training
and fine-tuning. The model is trained on unlabeled data
over different pre-training tasks during pre-training. For fine-
tuning, the BERTmodel is first initializedwith the pre-trained
parameters, and all of the parameters are fine-tuned using
labeled data from the downstream tasks. Each downstream
task has separate fine-tuned models, even though they are
initialized with the same pre-trained parameters.

As pointed out by the authors in [55], if a unidirectional
approach is used for pre-training, then the representations
might be detrimental to sentence-level and token-level down-
stream tasks. For example, it is crucial to incorporate
context from both directions in the question-answering task.
Unlike GPT, which uses left-to-right architecture, where
every token can only attend to previous tokens in the self-
attention layer, in BERT context, from left and right is
taken into account.BERT uses Masked Language Model
(MLM) for pre-training and is, therefore, successful in alle-
viating the unidirectionality constraint. In MLM, some of
the tokens are randomly masked, and the objective is to
predict the vocab-id of the masked tokens based on the con-
text in which it appeared. MLM helps enable the represen-
tation to fuse the left and the right context. Additionally,
BERT also uses Next Sentence Prediction (NSP) task for
pre-training.

Compared to ELMo where the shallow concatenation of
independently learned embeddings is done, BERT usesMLM
to enable deep bidirectional representations. Many important
downstream tasks, such as Question Answering (QA) and
Natural Language Inference (NLI) are based on understand-
ing the relationship between two sentences, which is not
directly captured by language modeling. Therefore, to train
a model that understands sentence relationships, it pre-trains
for a binarized next-sentence prediction task. Table 8 results
show how BERT outperformed GPT and ELMo on all the
GLUE tasks. Also, BERT-large did significantly better than
BERT-base. Paper [55] demonstrated the importance of bidi-
rectional pre-training for representations.

7) UNIFIED PRE-TRAINED LANGUAGE MODEL (UNILM)
Although BERT significantly improves the performance of a
wide range of natural language understanding tasks, its bidi-
rectionality makes it challenging to apply to natural language
generation tasks. Reference [58] proposes UNILM that can
be applied to both natural language understanding (NLU)
and natural language generation (NLG) tasks. UNILM is a
multi-layer Transformer network, jointly pre-trained on large
amounts of text, optimized for three unsupervised language
modeling objectives. The unified LM is jointly pre-trained
by multiple language modeling objectives, sharing the same
parameters. The shared parameters (or pre-trained unified
LM) are fine-tuned and evaluated on various datasets, includ-
ing language understanding and generation tasks. Like BERT,
the pre-trained UNILM can be fine-tuned (with additional
task-specific layers if necessary) to adapt to various down-
stream tasks.

But unlike BERT, which is used mainly for NLU tasks,
UNILM can be configured to aggregate context for different
types of language models and thus can be used for both NLU
and NLG tasks. One of the advantages of UNILM is that
the parameter sharing makes the learned text representations
more general because they are jointly optimized for different
language modeling objectives where context is utilized in
different ways, mitigating overfitting to any single LM task.
Furthermore, in addition to its application to NLU tasks, the
use of UNILM as a sequence-to-sequence LM makes it a
natural choice for NLG. UNILM uses the masking technique
to control how much context the token should attend to
when computing its contextualized representation. After pre-
training (learning the contextualized representation), they are
fine-tuned using task-specific data of downstream tasks. Each
input token’s vector representation is computed by summing
the corresponding token embedding, position embedding, and
segment embedding. As the Bidirectional LM pretraining
task encodes contextual information from both directions,
it generates better contextual text representations than its uni-
directional counterpart. The results of these dynamic contex-
tual embeddings on GLUE tasks are highlighted in Table 8.

C. FINE-TUNING-BASED EMBEDDINGS
Most research on word embedding implementations usually
focuses on general-domain text generation. However, as the
authors in [108] demonstrate, such general-domain applica-
tions do not work optimally when used in the domain-specific
analysis of very large corpora, for example, in the biomedical
domain. Below, we discuss variants of word embeddings
used in the NLP domain, where the Fine-tuned embeddings
capture or adapt to the change in context and the downstream
tasks.

Unlike previous approaches where the embeddings were
not updated once fed to the system, these embeddings get fur-
ther fine-tuned when used on downstream tasks. Pre-trained
LMs learn contextualized text representations by predicting
words based on their context using large amounts of text data
and can be fine-tuned to adapt to downstream tasks. After the

36136 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

embeddings (learned representations) are transferred, they
are fine-tuned on the target task data to learn task-specific
features and improve the downstream task performance.

Although generic-domain data and tasks are used for pre-
training, the data for the target tasks will be from different
distributions. So the pre-trained (LM) model is fine-tuned on
data of the target task to adapt to the peculiarities of the target
data. Also, the fine-tuning approach converges comparatively
faster than training the model from scratch. In a fine-tuning-
based system, the embeddings generated from pretraining are
fed as input to the model, which is then refined or adjusted to
improve the downstream task performance.

Based on the type of downstream task, fine-tuning-based
embeddings can be broadly classified as:

1) Cross-Lingual Embeddings
2) Knowledge-Enriched Embeddings
3) Domain-Specific Embeddings
4) Multi-Modal Embeddings
5) Language-Specific Embeddings

1) CROSS-LINGUAL EMBEDDINGS
Much research has focused on pre-training models on large
unlabeled corpora in the English language, then fine-tuning
it on specific target tasks with smaller amounts of super-
vised data in English. This approach is monolingual, as the
language used for pre-training and fine-tuning is the same.
However, there has been a recent surge in the cross-lingual
method, where the source (pre-training) and target (fine-
tuning) languages are different. This multilingual approach
results in embeddings spanning across multiple languages.
Such encoders trained in multi-languages can encode sen-
tences from other languages into the same embedding
(shared semantic) space. These cross-lingual models can be
divided into cross-lingual understanding (XLU) models and
cross-lingual generation (XLG) models. Below we discuss
prevalent models in each of these categories.

a: M-NMT
Multilingual NMT (M-NMT) [61] proposed by Google uses
a standard NMT system. Because parameters get shared
by all the language pairs, the model generalized well
beyond language boundaries. Additionally, the quality of
the low-resource language pairs was improved significantly
because of such generalization. The paper explored many-
to-one, one-to-many, and many-to-many experiments, where
cardinality indicates several languages involved in the setup.
After pre-training on 12 language pairs, the model could
perform translation between language pairs not seen during
training, thus demonstrating zero-shot translation and true
transfer learning.

b: M-BERT
Unlike BERT, which was trained solely on English Corpus,
M-BERT is trained on the Wikipedia pages of 104
languages with a shared word-piece vocabulary. Here, neither

cross-lingual objective nor any parallel (aligned) data was
used for training. Furthermore, it never encouraged trans-
lation equivalent pairs to have similar representations. Yet,
M-BERT performed cross-lingual generalization surprisingly
well, where task-specific annotations from the source lan-
guage are used to fine-tune and evaluate the target language
model. The paper [59] highlights how the transfer is possible
even to languages in different scripts and that transfer works
best between typologically similar languages. They experi-
mented to see the effect of vocabulary overlap between source
and target language on the accuracy, and it was found out that
m-BERT demonstrated promising results on zero-shot cross-
lingual model transfer. However, the paper also showed how
these representations exhibit systematic deficiencies affect-
ing specific language pairs.

Additionally, as demonstrated in [60], the lexical overlap
between languages plays a minor role in the cross-lingual
success of M-BERT. In contrast, the depth of the network
was an integral part of it. That is, M-BERT enabled a
much deeper representational capacity than simple vocabu-
lary memorization and generalized well. It also showed how
performance improves with similarity, delivering that it is
easier for M-BERT to map linguistic structures when they are
more similar.

c: XLM
XML technique proposed in [62] introduced new Translation
Language Modeling (TLM) objective for improving cross-
lingual pre-training. TLM objective is an extension of MLM,
where parallel sentences from source and target languages
are concatenated instead of considering monolingual text
streams. It randomly masks words in both the source and tar-
get sentences. For example, for English to French translation,
the model can either attend to surrounding English words or
the French translation words to predict a word masked in
an English sentence. This encourages the model to align the
English and French representations and is helpful when the
model cannot infer the masked English words. It can leverage
the French context to predict the word. It also demonstrated
how cross-lingual language models improve the perplexity of
low-resource languages. For example, XLM trained in Nepali
can be benefited or enriched with high-resource languages,
such as Hindi, especially when they share a significant frac-
tion of vocabulary.

d: UNICODER
XLM used only a single cross-lingual task (TLM) during pre-
training. Unicoder proposed in [63] used three cross-lingual
tasks for pre-training purposes. These include - MLM, TLM,
cross-lingual word recovery, cross-lingual paraphrase clas-
sification, and cross-lingual masked language model. MLM
is monolingual, whereas the other four task were trained
using a Machine Translation dataset. The cross-lingual word
recovery task learns the underlying word alignment rela-
tion between two languages by leveraging the attention

VOLUME 11, 2023 36137

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

matrix between the bilingual sentence pairs. Cross-lingual
paraphrase classification classifies whether two sentences
from different languages have the same meaning. The
cross-lingual masked language model (CMLM) is similar
to MLM, except the documents fed as input are written
in multiple languages. These tasks help Unicoder make a
better language-independent encoder and learn the map-
pings among different languages from several perspectives.
The paper demonstrated how fine-tuning multiple languages
together could bring further improvement in the result.

e: XLM-R
Unlike NMT, where the source language is translated in
the target language, XLG, based on the documents in the
source language, has summary or response generation in the
target language. Also, different from language understand-
ing, language generation aims to generate natural language
sentences conditioned on some inputs from other languages.
XLM-RoBERTa (XLM-R) was trained using Transformer
based MLM on clean CommonCrawl data in 100 languages,
with more than two terabytes of filtered clean data. XLM-R
outperforms multilingual BERT (mBERT) on various cross-
lingual benchmarks, including XNLI,MLQA, and NER. Ref-
erence [64] demonstrated how XLM-R provides strong gains
over previous multilingual models like mBERT and XLM
on classification, sequence labeling, and question answering
and performs exceptionally well on low-resource languages.
XLM-R illustrated how pre-training multilingual language
models at a large scale could improve cross-lingual transfer
tasks performance.

f: MASS
MASS [65] uses a transformer as a sequence-to-sequence
model and pre-trains it on the WMT monolingual corpus
of four different languages. It pre-trains the encoder and
decoder jointly using masked Sequence to Sequence task,
where the decoder predicts the masked sentence fragment
when the remaining part of the sentence is given as input to
the encoder. During pre-training, as the words are masked
on the encoder side, it forces the encoder to understand the
meaning of unmasked tokens. Furthermore, in addition to
the previous tokens on the decoder side, MASS forces the
decoder to rely more on unmasked tokens from the encoder
to predict the next token.To verify its effectivness, it is fine-
tuned on three language generation tasks, including NMT,
text summarization, and conversational response generation.
For unsupervised NMT tasks, MASS achieved state-of-the-
art BLUE scores on three language pairs.

g: XNLG
XNLG [66] usesmonolingual forMLMand cross-lingual set-
ting for cross-MLM (XMLM) objectives during pre-training.
MLM aims to predict randomly masked words according
to the contextual information from the left and right sides.
In XMLM, given a parallel corpus, the pair of bilingual

TABLE 9. Cross-lingual models.

sentences are concatenated to a whole sequence and used as
the input of MLM. These pre-training objectives encourage
the model to utilize the alignment of bilingual sentences to
learn to encode cross-lingual texts into a shared embedding
space. After the pre-training step, it fine-tunes the pre-trained
model on downstream NLG tasks using monolingual data.
The sequence-to-sequence model trained in a single language
is then evaluated when it accepts multi-lingual input to pro-
duce multilingual output.

In the first pre-training stage, it initializes the encoder and
decoder parameters using the 15-language pre-trained XLM
model. In the second stage, monolingual data fromWikipedia
is used for the Denoising Auto-Encoding (DAE) objec-
tive and parallel data from MultiUN for the Cross-Lingual
Auto-Encoding (XAE) objective. Results have demonstrated
how XNLG outperforms MT-based methods on cross-lingual
question generation and abstractive summarization. Such
cross-lingual transfer especially helps improve the perfor-
mance of low-resource languages, as it successfully leverages
information from rich resource language.

The architectures and languages used during pre-training
of the above cross-lingual embeddings are given in Table 9.

2) KNOWLEDGE-ENRICHED EMBEDDINGS
Contextual word representations do not contain any infor-
mation about real-world entities and, therefore, cannot
remember or retrieve factual knowledge about those enti-
ties. Therefore, most LMs need to incorporate knowledge
information in their pre-training tasks, which can provide
rich structured knowledge facts for better language under-
standing. Knowledge-Enriched Embeddings (KEE) are word
embeddings that include additional information or knowl-
edge from external sources, such as ontologies or knowledge
graphs. Knowledge information helps enrich the embeddings
and achieve better results on knowledge-driven applications,
such as entity typing and relation classification and extrac-
tion. Knowledge information is captured structurally using a
knowledge graph in triplet (h, r, t) format, which is used to

36138 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

describe a relational fact, where h is a head entity, t is the
tail entity, and r is the relation type. Knowledge embedding
(KE), generated using knowledge graphs (KGs), effectively
embeds the entities and their relationship information. Below
we describe popular approaches (techniques) that integrate
Knowledge information during the pre-training phase.

a: ERNIE
ERNIE pre-trains a language representation model on both
large-scale textual corpora and KGs and simultaneously takes
full advantage of lexical, syntactic, and knowledge infor-
mation. ERNIE proposes a new pre-training task to inject
knowledge into language representation by informative enti-
ties. Some token-entity alignments are randomly masked,
and the system is then required to predict all corresponding
entities based on aligned tokens. This procedure was termed
a denoising entity auto-encoder (dEA).

In addition to Textual Encoder (T-Encoder) that captures
lexical and syntactic information, ERNIE also uses a Knowl-
edgeable Encoder (K-Encoder) for aggregating token and
entity embeddings. K-Encoder consists of stacked aggrega-
tors designed to encode both tokens and entities and then
fuse their heterogeneous features. ERNIE uses the knowl-
edge embeddings trained on Wikidata by TransE as the
input embeddings for entities. ERNIE effectively reduces the
noisy label challenge by injecting the information obtained
from KGs. As a such informative entity, embeddings help
ERNIE predict the labels more precisely. The experimen-
tal results demonstrated that ERNIE significantly improves
knowledge-driven tasks such as Entity Typing and Relation
Classification.

b: KnowBert
KnowBert [83] proposes a general method to embed multiple
knowledge bases (KBs) into large-scale models and thereby
enhance their representations with structured, human-curated
knowledge. It presents a mechanism to incorporate multiple
KBs into a large pre-trained model with Knowledge Atten-
tion and Recontextualization (KAR) method. In KAR, the
entity spans in the raw text are first identified. Then the
entity linker retrieves their embeddings from KB to construct
knowledge-enhanced entity span representation. These repre-
sentations are then recontextualized with word-to-entity span
attention, which allows long-range interaction between entity
spans in the context. Because of incorporating Knowledge
base information, KnowBERT shows improved perplexity
and is better at recalling entity facts. Downstream evalu-
ations demonstrate the better performance of KnowBERT
over relationship extraction, entity typing, and word sense
disambiguation tasks.

c: SentiLARE
To enhance the language understanding and benefit the down-
stream tasks in sentiment analysis task, SentiLARE [86]
incorporates word-level linguistic knowledge (such as PoS

tags and sentiment polarity) into pre-trained models. It pro-
posed a new label-aware MLM pre-training task with two
subtasks, early fusion, and late supervision, to construct and
integrate knowledge-aware language representation. Given
the sentence-level sentiment label, the early-fusion sub-
task predicts the word’s PoS tag and sentiment polar-
ity at masked positions. In the late supervision subtask,
it simultaneously predicts masked words, sentence-level
sentiment labels, and linguistic knowledge (PoS tags and
sentiment polarity). These sub-tasks establish a connection
between sentence-level representation and word-level lin-
guistic knowledge, benefiting the downstream SA tasks.
Experiments demonstrated how SentiLARE obtained new
SOTA performance over various sentiment analysis tasks.

d: K-BERT
K-BERT [84] highlights how too much knowledge incor-
poration can result in Knowledge Noise, which may divert
the sentence from its correct meaning. To overcome the
Knowledge Noise (KN) issue, K-BERT introduces a soft
position and visible matrix that limits the impact of knowl-
edge. The knowledge layer transforms the original sentence
into a knowledge-rich sentence tree for a given input sen-
tence by injecting relevant triples from the KnowledgeGraph.
The visible matrix is then used to control the visible area
of each token, which prevents the change in the original
meaning of the input text caused due to too much knowledge
injection. Results demonstrate K-BERT significantly outper-
forms BERT, especially in domain-specific tasks (finance,
law, medicine), which indicates how K-BERT can be a better
choice for solving knowledge-driven problems that require
experts.

e: KEPLER
Unlike other approaches, KEPLER [85] uses entity descrip-
tions to encode and map the text and entities to a unified
semantic space. It doesn’t use a separate KE model to gener-
ate entity embeddings, which requires an entity linker, result-
ing in additional inference overhead. Additionally, instead
of integrating fixed Entity embeddings to provide external
knowledge, it encodes the entities from their corresponding
descriptions. KEPLER uses entity descriptions to bridge the
gap between KE and PLM and align the semantic space of
the text to the symbol space of entities in KGs. KEPLER
can produce embeddings for unseen entities based on their
descriptions, while conventional KE methods can only learn
representations for the seen entities during training. KEPLER
integrates factual knowledge from external KGs into lan-
guage representations by jointly training KE and MLM
objectives while preserving the strong abilities of PLMs for
syntactic and semantic understanding. Because of the factual
knowledge and language representation alignment into the
same semantic space, KEPLER greatly improves NLP and
KE applications, such as relation extraction, entity typing.
Such informative entities in KGs have enhanced language
representation with external knowledge.

VOLUME 11, 2023 36139

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 10. Knowledge-enriched embedding models.

Additionally, the authors in [109] provide the knowledge-
enriched word embeddings (KEWE), which uses knowledge
graphs to encode the knowledge of reading difficulty into
words evaluated on both English and Chinese datasets. In the
biomedical domain, the authors in [110] empirically show
how using an external semantic knowledge base combined
with local contextual information improved the quality of
word embeddings used to generate biomedical concepts.
Finally, in [111], the authors proposed a Knowledge-enriched
answer generator (KEAG) that exploits an external symbolic
knowledge base to generate answers. The architecture, pre-
training dataset, downstream tasks, and knowledge graph
used for each discussed KEE model are listed in Table 10.
Overall, KEs can be helpful in a variety of NLP tasks (e.g.,
entity recognition, relation extraction, and semantic labeling)
by integrating both external knowledge sources with local
contextual information (semantics) to achieve a much more
accurate and robust word embeddings models thus signifi-
cantly enhancing the quality of word representations.

3) DOMAIN-SPECIFIC EMBEDDINGS
The embeddings generated using large corpora (such as
Wikipedia) are more generic and might need to be revised for
specific domain tasks. Such pre-trained generic embeddings
often yield unsatisfactory results as word distribution shifts
from the general to the biomedical domain.

Recently, in research where specialty or domain-specific
corpora is used for pre-training, the language model to gen-
erate more tailored embeddings has been conducted in a
few areas. These are word embeddings trained on very large

specific domain corpus or topics such as finance, healthcare,
reviews [122], sentiments [123], emotions [124] etc. For
example, authors in [114] and [115] empirically demonstrate
how word embeddings tailored to a particular domain, such
as biomedical, oil/gas and social media (Covid-19 Tweets)
can be leveraged to improve performance in NLP tasks.
Furthermore, in [116], the authors trained a shallow neural
network on a large corpus on Radiology. They empirically
demonstrated that domain-specific embeddings performed
significantly better on the multi-label classification task.

BioBERT [101] is initialized with the weights from the
BERT model. It is pre-trained using biomedical corpora and
is fine-tuned and evaluated on three popular biomedical text
mining tasks. The results demonstrated how BioBERT sig-
nificantly outperformed BERT on biomedical NER, RE, and
QA.SciBERT [102] is a BERT-based model pre-trained using
scientific publications, mostly from computer science and
biomedical domains. SciBERT outperforms BERT on the
downstream scientific NLP tasks, such as sequence labeling,
sequence tagging, text classification, and dependency pars-
ing, as it uses domain-specific scientific text for pre-training.

ClinicalBERT [103] is pre-trained on clinical text cor-
pora. Because of the specialty corpora, the embeddings
from ClinicalBERT demonstrated greater cohesion around
medical and clinical-operations-related words. ClinicalBERT
showed how using domain-specific corpora resulted in better
embeddings, yielding performance improvements on three
downstream clinical NLP tasks compared to nonspecific or
generic embeddings. PatentBERT [104] pre-trains the BERT
model using the United States Patent and Trademark Office
(USPTO) database, a specific domain corpus of patents. After
fine-tuning it on the patent classification task, it outperformed
DeepPatent’s performance.

To capture compositional sentiment semantics, SentiBERT
[105] incorporates contextualized representation with the
help of a recursive constituency parse tree structure. Fur-
thermore, SentiBERT demonstrates how contextualized rep-
resentation can be combined with the syntactic tree structure
to capture the semantic compositionality better. The archi-
tecture, pre-training dataset, downstream tasks, along with
pre-training data size used for these domain-specific models
are highlighted in Table 11.

4) MULTI MODAL EMBEDDINGS
The emergence ofmultimodal embeddingmodels has demon-
strated the potential to integrate different types of informa-
tion and features from audio, visual, and text modalities to
create much more robust and enhanced word embeddings via
deep neural networks. Below we cover different variants of
multimodal embedding techniques, where large neural net-
works such as [55], [112], and [113] have shown significant
improvements when used in the multimodal setting.

a: SPEECH-BASED EMBEDDINGS
Embeddings for audio words are challenging, as the same
word token can have several audio signal realizations in

36140 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 11. Domain-specific models.

different utterances. Additionally, the boundaries for audio
words in utterances are not available. Finally, the context of
the audio word is in audio form, which can sometimes be
noisy, confusing, and difficult to handle. As a result, learning
semantics from an audio context is hard. To deal with these
challenges, [68] proposes SpeechBERT, which learns audio-
and-text jointly for the end-to-end Spoken Question Answer-
ing (SQA) task. SpeechBERT is pre-trained using both text
and audio datasets on the MLM task.

It uses Text-BERT to derive the semantic information of
the word from the text data. It then uses an RNN sequence-to-
sequence autoencoder to capture and reconstruct the phonetic
structure information of the audio words. The autoencoder
model learns to retain the phonetic structure of the audio
word by reconstructing the original speech feature ‘x’ as
much as possible. At the same time, it also learns to fit into
the embedding distribution of the Text BERT, which carries
plenty of semantic information for the word tokens into the
same embedding space. This enables themodel to learn a joint
embedding space, integrating semantic and phonetic informa-
tion extracted from text and audio datasets. The SpeechBERT
model was trained on the Spoken SQuAD dataset, in which
the text for all audio paragraphs and questions is from the
original SQuADdataset. It achieved the state-of-the-art result
on the Spoken SQuAD dataset.

b: IMAGE-BASED EMBEDDINGS
In Image-based embeddings, joint contextualized represen-
tations of vision and language are derived. The goal is to
bridge vision and language by aligning input text elements
with regions in the input image. The self-attentionmechanism
learns the association between image and text.

In VisualBERT [75], two language model objectives are
used for pre-training, where the image and text inputs are

jointly processed. The joint processing enables rich interac-
tion among words and objects (regions), enabling the model
to deduce intricate or complicated associations between text
and image. The pre-training is done on image-captioned data.
In the first objective, part of the text is masked so that the
model can learn to predict it using the remaining text and the
visual context. In the second objective, the model learns to
determine if the text and image match or are associated with
each other or not. In addition, the objectives help capture the
semantics in the image using the associated text.

In ViLBERT [76], the text and visual data are fed into
separate streams for language and vision processing, which
interact and communicate using co-attentional layers. Such
structure makes the interaction between the modalities pos-
sible at varying depths of representation. In the multi-head
attention, the key-value pairs of each modality is passed as
input to the other modality. Therefore, the attention block
produces features for each modality conditioned on the other.

B2T2 [77] also considers the visual context in addition to
the textual context and demonstrates how a correct integra-
tion between them improves the visual question-answering
task. The paper evaluates two different architectures. In late
fusion architecture, the bounding boxes around objects are
ignored, whereas bounding boxes are considered in early
fusion architecture. Using bounding boxes was the critical
factor in improving the model’s accuracy.

LXMERT [78] architecture consists of three encoders -
image, text, and cross-modality encoder. The cross-modality
is responsible for learning vision-language interaction and
aligning them. Pre-training uses masked object prediction
(feature regression and label classification), masked language
modeling, cross-modality matching, and image question-
answering tasks. Unlike traditional MLM, multimodality-
based masking helps infer masked features using visual
and textual elements. This help learns the cross as well as
intra-modality relationships. For images, instead of using the
feature map output of CNN, the features of detected objects
are used as the embeddings of the image.

VL-BERT [81] has a single stream for the input where
each element or token is either a region-of-interest (RoI)
from the input image or a word from the input sentence.
MLM with visual clues and Masked RoI classification with
Linguistic clues tasks are used for pre-training. In the first
pre-training task, visual clues are incorporated to capture
the dependencies between textual and visual content. The
second pre-training task is to predict the label of the masked
RoI based on the other clues. These pre-training tasks help
aggregate and align visual-linguistic clues according to the
element’s contents, categories, and positions.

Unicoder-VL [79] uses a cross-modal pre-training frame-
work to capture relationships between visual and linguistic
contents and learn their joint representations. Three tasks are
used for pre-training - MLM, Masked Object Classification
(MOC), and Visual-linguistic Matching (VLM). The first two
tasks help in the joint learning of context-aware embeddings
that are based on visual and linguistic contents. The third

VOLUME 11, 2023 36141

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 12. Speech- and image-based MultiModal models.

task predicts whether text and image describe each other or
not. Overall, these image embedding techniques ground or
associate elements from language text to the image regions
from the image without explicit supervision. The streams,
downstream tasks, pre-training framework, and datasets used
for the speech and image multimodal models are enumerated
in Table 12.

c: VIDEO-BASED EMBEDDINGS
In Videobert [69], videos are represented using visual words
or tokens. To generate these visual words, the clips of
30-frame (1.5 seconds) are created using non-overlapping
windows over the input video. A pre-trainned video ConvNet
is used to extract the features of each clip. The video-only pre-
training task forces the model to learn and forecast videos.
The text-video objective helps the model learn the alignment
and correspondence between the two domains.

Unlike VideoBERT, CBT [70] trains each modality sepa-
rately and then uses a cross-modal transformer to maximize
the mutual information between modalities. The textual and
video sequences may not align since the person might speak
about things at time t that are not visible in the frame or
clip at time t. The mutual information between modalities is
maximized at the sequence level instead of the frame level to
address this issue.

VideoTranslate (VideoAsMT) [71] proposes an approach
to formulate video understanding as a machine translation
task. It presents a generative solution where, instead of
optimizing the model to determine whether a given pair

TABLE 13. Video-based MultiModal models.

of text and video matches, it trains a language machine
to generate spoken text associated with the given video
clip. It uses encoder-decoder architecture initialized with
T5 [121] weights to generate text from multimodal rep-
resentations. Unlike encoder-only based architectures, this
approach enables learning of autoregressive decoder, which
is trained to generate text from the encoder’s multimodal
embeddings.

UniVL [72] is a flexible model for both video language
understanding and generation tasks. Five objectives, includ-
ing video-text joint, conditioned masked language model
(CMLM), conditioned masked frame model (CMFM), video-
text alignment, and language reconstruction, are used for pre-
training. In addition to individual text and video encoders,
UniVL also employs cross encoders to allow interaction
between text and video modality features. Finally, a decoder
is used to reconstruct the input text.

HERO [79] encodes multimodal inputs in a hierarchical
structure. HERO is a hierarchical model that first absorbs
visual and textual local context at the frame level, which
is then transferred to a global video-level temporal context.
For the pre-training purpose, it uses MLM, Masked Frame
Model (MFM), Video-Subtitle Matching (VSM), and Frame
OrderModeling (FOM) tasks. In FOM, themodel predicts the
right order of the shuffled video frames. It uses a cross-modal
transformer to fuse subtitle text with video frames and a tem-
poral transformer to generate contextual embeddings of the
frame based on the surrounding frames as a global context.
The streams, downstream tasks, pre-training framework, and
datasets used for the speech and image multimodal models
are enumerated in Table 13.

5) LANGUAGE-SPECIFIC EMBEDDINGS
Language-specific embeddings are word embeddings trained
on large corpora in specific languages to capture the rela-
tionship between words and phrases in that language. These

36142 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

TABLE 14. Language-based models. language-specific models can enhance the accuracy and per-
formance of NLP tasks such as text classification, senti-
ment analysis, and named entity recognition. Typically, the
pretraining of attention-based models happens in an unsu-
pervised way on large corpora, followed by fine-tuning on
a small labeled dataset. In multilingual models, the large
corpora consist of data from multiple languages. However,
compared to multilingual models, recent studies have shown
that monolingual models perform better on NLU tasks.

Such monolingual models demonstrate that pretraining on
fewer monolingual datasets is enough to achieve equivalent
or better results with larger multilingual datasets. When eval-
uating the performance of English NLP models, GLUE and
SuperGLUE benchmark frameworks are used prominently.
Similarly, other languages are gaining momentum and have
proposed their multi-task evaluation benchmarks, equivalent
to GLUE for English. For instance, FLUE, GLUES, and
IndicGLUE are the benchmarks for French, Spanish, and
11 major Indian languages. A Chinese version of GLUE is
also developed to evaluate performance for Chinese NLP
tasks.

Table 14 list the latest monolingual models and their
datasets. These models are based on BERT and therefore use
the same tasks (MLM and NSP) for pre-training. Most of
these languages have also composed their own pre-training
and test dataset and GLEU benchmarks. It was also observed
that transfer learning from a multilingual to a monolingual
model does help with lower-resourced languages and reduces
the training time. However, [90] demonstrated that even for a
lower-resourced language such as Finnish, model FinBERT
trained from scratch outperformed multilingual BERT at a
range of tasks, advancing state-of-the-art in many NLP tasks.

The architecture, downstream tasks, pre-training datasets
and their size used for different language models are high-
lighted in Table 14.

VIII. CONCLUSION AND FUTURE WORK
Given the recent advances in computing power and the
advent of very large neural networks and pre-trained lan-
guage models, for example, GPT, Transformers, and BERT,
rapid progress have been made in downstream NLP tasks
such as text classification, sentiment analysis and machine
translation.

A growing interest in developing new language models for
NLP tasks has significantly improved the performance and
accuracy of word embeddings. Furthermore, the use of differ-
ent types of word embeddings, such as domain-specific and
Knowledge-enriched embeddings, has demonstrated its use-
fulness in capturing the semantic and syntactic relationships
between words in large corpora by utilizing local contextual
information and external knowledge sources.

While word embeddings are widely used for generating
word representations, they still have limitations such as vary-
ing performance on different tasks [108], Bias [117], [118],

VOLUME 11, 2023 36143

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

interpretability [119], and privacy issues [120]. Future
research directions in NLP may likely lead to new and
improved techniques for word embeddings, further contribut-
ing to the progress in the NLP field.

REFERENCES
[1] J. Hutchins, ‘‘The history of machine translation in a nutshell,’’ Retrieved

December, vol. 20, no. 2009, p. 1, 2005.
[2] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag, ‘‘Generalized phrase

structure grammar,’’ New Gener. Comput., vol. 4, pp. 217–219, Jun. 1986.
[3] R. A. Sharman, F. Jelinek, and R. L. Mercer, ‘‘Generating a grammar for

statistical training,’’ in Speech and Natural Language. Valley, PA, USA,
Jun. 1990.

[4] P. R. Asveld, ‘‘Fuzzy context-free languages—Part 2: Recognition and
parsing algorithms,’’ Theor. Comput. Sci., vol. 347, nos. 1–2, pp. 191–213,
2005.

[5] F. Wang, ‘‘A fuzzy grammar and possibility theory-based natural lan-
guage user interface for spatial queries,’’ Fuzzy sets Syst., vol. 113, no. 1,
pp. 147–159, 2000.

[6] R. Patil and Z. Chen, ‘‘STRUCT: Incorporating contextual information for
English query search on relational databases,’’ in Proc. 3rd Int. Workshop
Keyword Search Structured Data, 2012, pp. 11–22.

[7] R. Patil, Z. Chen, and Y. Shi, ‘‘Database keyword search: A perspective
from optimization,’’ in Proc. Int. Conf. Web Intell. Intell. Agent Technol.,
vol. 3, 2012, pp. 30–33.

[8] R. Patil, S. Boit, and N. Bowman, ‘‘SQL ChatBot—Using context
free grammar,’’ in Proc. IEEE Int. IoT, Electron. Mechatronics Conf.
(IEMTRONICS), Jun. 2012, pp. 1–7.

[9] Z. S. Harris, ‘‘Distributional structure,’’ Word, vol. 10, nos. 2–3,
pp. 146–162, 1954.

[10] R. Patil and A. Shrestha, ‘‘Feature-set for sentiment analysis,’’ in Proc.
SoutheastCon, 2019, pp. 1–5.

[11] C. Hutto and E. Gilbert, ‘‘VADER: A parsimonious rule-based model for
sentiment analysis of social media text,’’ in Proc. Int. AAAI Conf. Web
Social Media, vol. 8, no. 1, 2014, pp. 216–225.

[12] F. A. Nielsen, ‘‘A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs,’’ 2011, arXiv:1103.2903.

[13] S. Mohammad and P. Turney, ‘‘Emotions evoked by common words and
phrases: Using mechanical Turk to create an emotion lexicon,’’ in Proc.
NAACL HLT Workshop Comput. Approaches Anal. Gener. Emotion Text,
2010, pp. 26–34.

[14] M. Hu and B. Liu, ‘‘Mining and summarizing customer reviews,’’ in Proc.
10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2004,
pp. 168–177.

[15] T. Wilson, J. Wiebe, and P. Hoffmann, ‘‘Recognizing contextual polarity
in phrase-level sentiment analysis,’’ in Proc. Hum. Lang. Technol. Conf.
Conf. Empirical Methods Natural Lang. Process., pp. 347–354, 2005.

[16] P. J. Stone, D. C. Dunphy, and M. S. Smith, The General Inquirer: A Com-
puter Approach to Content Analysis. Cambridge, MA, USA: MIT Press,
1966.

[17] S. Katz, ‘‘Estimation of probabilities from sparse data for the language
model component of a speech recognizer,’’ IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-35, no. 3, pp. 400–401, Mar. 1987.

[18] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek,
J. D. Lafferty, and P. S. Roossin, ‘‘A statistical approach to machine trans-
lation,’’ Comput. Linguistics, vol. 16, no. 2, pp. 79–85, 1990.

[19] S. F. Chen and J. Goodman, ‘‘An empirical study of smoothing tech-
niques for language modeling,’’ Comput. Speech Lang., vol. 13, no. 4,
pp. 359–394, Oct. 1999.

[20] G. Salton and M. E. Lesk, ‘‘Computer evaluation of indexing and text
processing,’’ J. ACM, vol. 15, no. 1, pp. 8–36, 1968.

[21] K. S. Jones, ‘‘A statistical interpretation of term specificity and its applica-
tion in retrieval,’’ J. Document., vol. 60, no. 5, pp. 493–502, Oct. 2004.

[22] G. Salton, A. Wong, and C. S. Yang, ‘‘A vector space model for automatic
indexing,’’ Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[23] L. Havrlant and V. Kreinovich, ‘‘A simple probabilistic explanation of term
frequency-inverse document frequency (tf-idf) heuristic (and variations
motivated by this explanation),’’ Int. J. Gen. Syst., vol. 46, no. 1, pp. 27–36,
Mar. 2017.

[24] C. Boulis and M. Ostendorf, ‘‘Text classification by augmenting the bag-
of-words representation with redundancy-compensated bigrams,’’ in Proc.
Int. Workshop Feature Selection Data Mining, 2005, pp. 9–16.

[25] F. R. López, H. Jiménez-Salazar, and D. Pinto, ‘‘A competitive term
selection method for information retrieval,’’ in Proc. Int. Conf. Intell. Text
Process. Comput. Linguistics, 2007, pp. 468–475.

[26] D. Hiemstra, ‘‘A probabilistic justification for using tf-idf term weighting
in information retrieval,’’ Int. J. Digit. Libraries, vol. 3, no. 2, pp. 131–139,
Aug. 2000.

[27] K. Lund and C. Burgess, ‘‘Producing high-dimensional semantic spaces
from lexical co-occurrence,’’ Behav. Res. Methods, Instrum., Comput.,
vol. 28, no. 2, pp. 203–208, Jun. 1996.

[28] C. Burgess, K. Livesay, and K. Lund, ‘‘Explorations in context space:
Words, sentences, discourse,’’ Discourse Process., vol. 25, nos. 2–3,
pp. 211–257, Jan. 1998.

[29] B. Tang, M. Shepherd, E. Milios, and M. I. Heywood, ‘‘Comparing
and combining dimension reduction techniques for efficient text cluster-
ing,’’ in Proc. SIAM Int. Workshop Feature Selection Data Mining, 2005,
pp. 17–26.

[30] Y. Yang and J. O. Pedersen, ‘‘A comparative study on feature selection
in text categorization,’’ in Proc. 14th Int. Conf. Mach. Learn., 1997,
pp. 412–420.

[31] J. Kogan, C. Nicholas, and V. Volkovich, ‘‘Data mining–text mining
with information-theoretic clustering,’’ Comput. Sci. Eng., vol. 5, no. 6,
pp. 52–59, Nov. 2003.

[32] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, ‘‘Indexing by latent semantic analysis,’’ J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[33] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and
R. Harshman, ‘‘Using latent semantic analysis to improve access to textual
information,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI),
1988, pp. 281–285.

[34] T. Hofmann, ‘‘Probabilistic latent semantic indexing,’’ in Proc. 22nd Annu.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 1999, pp. 50–57.

[35] T. Hofmann, ‘‘Unsupervised learning by probabilistic latent semantic anal-
ysis,’’Mach. Learn., vol. 42, no. 1, pp. 177–196, 2001.

[36] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[37] C. Jutten and J. Herault, ‘‘Blind separation of sources, Part I: An adaptive
algorithm based on neuromimetic architecture,’’ Signal Process., vol. 24,
no. 1, pp. 1–10, Jul. 1991.

[38] A. Hyvärinen and E. Oja, ‘‘Independent component analysis: Algorithms
and applications,’’Neural Netw., vol. 13, nos. 4–5, pp. 411–430, Jun. 2000.

[39] M. Sahlgren, ‘‘An introduction to random indexing,’’ in Proc. Methods
Appl. Semantic Indexing Workshop 7Th Int. Conf. Terminol. Knowl. Eng.,
2005, pp. 1–9.

[40] E. Gabrilovich and S.Markovitch, ‘‘Computing semantic relatedness using
Wikipedia-based explicit semantic analysis,’’ in Proc. Int. Joint Conf. Artif.
Intell. (IJCAI), vol. 7, 2007, pp. 1606–1611.

[41] Y. Li and T. Yang, ‘‘Word embedding for understanding natural language:
A survey,’’ inGuide to Big Data Applications, vol. 26. Cham, Switzerland:
Springer, 2018, pp. 83–104.

[42] A. Paccanaro and G. E. Hinton, ‘‘Learning distributed representations of
concepts using linear relational embedding,’’ IEEE Trans. Knowl. Data
Eng., vol. 13, no. 2, pp. 232–244, Mar. 2001.

[43] Y. Bengio, R. Ducharme, and P. Vincent, ‘‘A neural probabilistic language
model,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 13, 2000, pp. 1–7.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[45] T. Mikolov, I. C. K. Sutskever, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1–9.

[46] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[47] B. McCann, J. Bradbury, C. Xiong, and R. Socher, ‘‘Learned in translation:
Contextualized word vectors,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–12.

[48] O.Melamud, J. Goldberger, and I. Dagan, ‘‘Context2vec: Learning generic
context embedding with bidirectional LSTM,’’ inProc. 20th SIGNLLConf.
Comput. Natural Lang. Learn., 2016, pp. 51–61.

[49] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, 2018, pp. 2227–2237.

36144 VOLUME 11, 2023

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

[50] E. Huang, R. Socher, C. Manning, and A. Ng, ‘‘Improving word repre-
sentations via global context and multiple word prototypes,’’ in Proc. 50th
Annu. Meeting Assoc. Comput. Linguistics, vol. 1, 2012, pp. 873–882.

[51] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[52] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2016.

[53] L. Vilnis and A. McCallum, ‘‘Word representations via Gaussian embed-
ding,’’ 2014, arXiv:1412.6623.

[54] B. Athiwaratkun and A. G. Wilson, ‘‘Multimodal word distributions,’’
2017, arXiv:1704.08424.

[55] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[56] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever. (2018).
Improving Language Understanding By Generative Pre-Training.
[Online]. Available: https://s3-us-west-2.amazonaws.com/openaiassets/
researchcovers/languageunsupervised/languageunderstandingpaper.pdf

[57] J. Howard and S. Ruder, ‘‘Universal language model fine-tuning for text
classification,’’ 2018, arXiv:1801.06146.

[58] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou,
and H.W. Hon, ‘‘Unified language model pre-training for natural language
understanding and generation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 1–13.

[59] T. Pires, E. Schlinger, and D. Garrette, ‘‘How multilingual is multilingual
BERT?’’ in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 4996–5001.

[60] K. Karthikeyan, Z. Wang, S. Mayhew, and D. Roth, ‘‘Cross-lingual ability
of multilingual BERT: An empirical study,’’ in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–9.

[61] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat,
F. Viégas, M. Wattenberg, G. Corrado, M. Hughes, and J. Dean, ‘‘Google’s
multilingual neural machine translation system: Enabling zero-shot trans-
lation,’’ Trans. Assoc. Comput. Linguistics, vol. 5, pp. 339–351, Oct. 2017.

[62] A. Conneau and G. Lample, ‘‘Cross-lingual language model pretraining,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–10.

[63] H. Huang, Y. Liang, N. Duan, M. Gong, L. Shou, D. Jiang, and M. Zhou,
‘‘Unicoder: A universal language encoder by pre-training with multiple
cross-lingual tasks,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-IJCNLP),
2019, pp. 2485–2494.

[64] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, ‘‘Unsuper-
vised cross-lingual representation learning at scale,’’ in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 8440–8451.

[65] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, ‘‘MASS:Masked sequence to
sequence pre-training for language generation,’’ 2019, arXiv:1905.02450.

[66] Z. Chi, L. Dong, F. Wei, W. Wang, X. L. Mao, and H. Huang, ‘‘Cross-
lingual natural language generation via pre-training,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 34, no. 5, 2020, pp. 7570–7577.

[67] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov,M. Ghazvininejad,M. Lewis, and
L. Zettlemoyer, ‘‘Multilingual denoising pre-training for neural machine
translation,’’ Trans. Assoc. Comput. Linguistics, vol. 8, pp. 726–742,
Dec. 2020.

[68] Y.-S. Chuang, C.-L. Liu, H.-Y. Lee, and L.-S. Lee, ‘‘SpeechBERT: An
audio-and-text jointly learned language model for end-to-end spoken ques-
tion answering,’’ 2019, arXiv:1910.11559.

[69] C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid, ‘‘VideoBERT:
A joint model for video and language representation learning,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 7464–7473.

[70] C. Sun, F. Baradel, K. Murphy, and C. Schmid, ‘‘Learning video
representations using contrastive bidirectional transformer,’’ 2019,
arXiv:1906.05743.

[71] B. Korbar, F. Petroni, R. Girdhar, and L. Torresani, ‘‘Video understanding
as machine translation,’’ 2020, arXiv:2006.07203.

[72] H. Luo, L. Ji, B. Shi, H. Huang, N. Duan, T. Li, J. Li, T. Bharti, and
M. Zhou, ‘‘UniVL: A unified video and language pre-training model for
multimodal understanding and generation,’’ 2020, arXiv:2002.06353.

[73] L. Li, Y.-C. Chen, Y. Cheng, Z. Gan, L. Yu, and J. Liu, ‘‘HERO: Hierarchi-
cal encoder for video+language omni-representation pre-training,’’ 2020,
arXiv:2005.00200.

[74] L. Zhu andY. Yang, ‘‘ActBERT: Learning global-local video-text represen-
tations,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 8746–8755.

[75] L. Harold Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, ‘‘Visual-
BERT: A simple and performant baseline for vision and language,’’ 2019,
arXiv:1908.03557.

[76] J. Lu, D. Batra, D. Parikh, and S. Lee, ‘‘ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–10.

[77] C. Alberti, J. Ling, M. Collins, and D. Reitter, ‘‘Fusion of detected objects
in text for visual question answering,’’ 2019, arXiv:1908.05054.

[78] H. Tan and M. Bansal, ‘‘LXMERT: Learning cross-modality encoder
representations from transformers,’’ 2019, arXiv:1908.07490.

[79] G. Li, N. Duan, Y. Fang, M. Gong, and D. Jiang, ‘‘Unicoder-VL: A
universal encoder for vision and language by cross-modal pre-training,’’
in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, 2020, pp. 11336–11344.

[80] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, ‘‘Unified
vision-language pre-training for image captioning and VQA,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 34, no. 7, 2020, pp. 13041–13049.

[81] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai,
‘‘VL-BERT: Pre-training of generic visual-linguistic representations,’’
2019, arXiv:1908.08530.

[82] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, ‘‘ERNIE:
Enhanced language representation with informative entities,’’ 2019,
arXiv:1905.07129.

[83] M. E. Peters, M. Neumann, R. L. Logan IV, R. Schwartz, V. Joshi, S. Singh,
and N. A. Smith, ‘‘Knowledge enhanced contextual word representations,’’
2019, arXiv:1909.04164.

[84] W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, and P. Wang,
‘‘K-BERT: Enabling language representation with knowledge graph,’’ in
Proc. AAAI Conf. Artif. Intell., vol. 34, 2020, pp. 2901–2908.

[85] X. Wang, T. Gao, Z. Zhu, Z. Liu, J. Li, and J. Tang, ‘‘KEPLER: A unified
model for knowledge embedding and pre-trained language representa-
tion,’’ Trans. Assoc. Comput. Linguistics, vol. 9, pp. 176–194, Feb. 2020.

[86] P. Ke, H. Ji, S. Liu, X. Zhu, and M. Huang, ‘‘SentiLARE: Sentiment-
aware language representation learning with linguistic knowledge,’’ 2019,
arXiv:1911.02493.

[87] D. Kakwani, A. Kunchukuttan, S. Golla, N. C. Gokul, A. Bhattacharyya,
M. M. Khapra, and P. Kumar, ‘‘IndicNLPSuite: Monolingual corpora,
evaluation benchmarks and pre-trained multilingual language models for
Indian languages,’’ in Findings of the Association for Computational Lin-
guistics: EMNLP. 2020, pp. 4948–4961.

[88] L. Martin, B. Müller, P. J. O. Suárez, Y. Dupont, L. Romary,
É. V. De La Clergerie, D. Seddah, and B. Sagot, ‘‘CamemBERT: A tasty
French language model,’’ 2019, arXiv:1911.03894.

[89] H. Le, L. Vial, J. Frej, V. Segonne,M. Coavoux, B. Lecouteux, A. Allauzen,
B. Crabbé, L. Besacier, and D. Schwab, ‘‘FlauBERT: Unsupervised lan-
guage model pre-training for French,’’ 2019, arXiv:1912.05372.

[90] A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski,
F. Ginter, and S. Pyysalo, ‘‘Multilingual is not enough: BERT for Finnish,’’
2019, arXiv:1912.07076.

[91] W. de Vries, A. van Cranenburgh, A. Bisazza, T. Caselli, G. van Noord, and
M. Nissim, ‘‘BERTje: A Dutch BERT model,’’ 2019, arXiv:1912.09582.

[92] P. Delobelle, T. Winters, and B. Berendt, ‘‘RobBERT: A Dutch RoBERTa-
based language model,’’ 2020, arXiv:2001.06286.

[93] W. Antoun, F. Baly, and H. Hajj, ‘‘AraBERT: Transformer-based model for
Arabic language understanding,’’ 2020, arXiv:2003.00104.

[94] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu,
H. Tian, and H. Wu, ‘‘ERNIE: Enhanced representation through knowl-
edge integration,’’ 2019, arXiv:1904.09223.

[95] J. Cañete, G. Chaperon, R. Fuentes, J. H. Ho, H. Kang, and J. Pérez,
‘‘Spanish pre-trained BERT model and evaluation data,’’ in Proc. ICLR,
2020, pp. 1–10.

[96] Y. Kuratov and M. Arkhipov, ‘‘Adaptation of deep bidirectional multilin-
gual transformers for Russian language,’’ 2019, arXiv:1905.07213.

[97] F. Souza, R. Nogueira, and R. Lotufo, ‘‘BERTimbau: Pretrained BERT
models for Brazilian Portuguese,’’ in Proc. 9th Brazilian Conf. Intell. Syst.,
Rio Grande, Brazil: Springer, Oct. 2020, pp. 403–417.

[98] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, ‘‘IndoLEM and IndoBERT:
A benchmark dataset and pre-trained languagemodel for IndonesianNLP,’’
2020, arXiv:2011.00677.

[99] R. Scheible, F. Thomczyk, P. Tippmann, V. Jaravine, and M. Boeker,
‘‘GottBERT: A pure German language model,’’ 2020, arXiv:2012.02110.

VOLUME 11, 2023 36145

R. Patil et al.: Survey of Text Representation and Embedding Techniques in NLP

[100] R. Joshi, ‘‘L3Cube-mahacorpus and MahaBERT: Marathi monolin-
gual corpus, Marathi BERT language models, and resources,’’ 2022,
arXiv:2202.01159.

[101] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
‘‘BioBERT: A pre-trained biomedical language representation model for
biomedical text mining,’’ Bioinformatics, vol. 36, no. 4, pp. 1234–1240,
Feb. 2020.

[102] I. Beltagy, K. Lo, and A. Cohan, ‘‘SciBERT: A pretrained languagemodel
for scientific text,’’ 2019, arXiv:1903.10676.

[103] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann,
andM. B. A.McDermott, ‘‘Publicly available clinical BERT embeddings,’’
2019, arXiv:1904.03323.

[104] J.-S. Lee and J. Hsiang, ‘‘Patent classification by fine-tuning BERT
language model,’’World Pat. Inf., vol. 61, Jun. 2020, Art. no. 101965.

[105] D. Yin, T. Meng, and K.-W. Chang, ‘‘SentiBERT: A transferable
transformer-based architecture for compositional sentiment semantics,’’
2020, arXiv:2005.04114.

[106] J. Mao, J. Xu, K. Jing, and A. L. Yuille, ‘‘Training and evaluating
multimodal word embeddings with large-scale web annotated images,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1–9.

[107] Y. Zhang, Q. Chen, Z. Yang, H. Lin, and Z. Lu, ‘‘BioWordVec, improving
biomedical word embeddings with subword information and MeSH,’’ Sci.
Data, vol. 6, no. 1, p. 52, May 2019.

[108] B. Chiu, G. Crichton, A. Korhonen, and S. Pyysalo, ‘‘How to train good
word embeddings for biomedical NLP,’’ in Proc. 15th Workshop Biomed.
Natural Lang. Process., 2016, pp. 166–174.

[109] Z. Jiang, Q. Gu, Y. Yin, and D. Chen, ‘‘Enriching word embeddings with
domain knowledge for readability assessment,’’ in Proc. 27th Int. Conf.
Comput. Linguistics, 2018, pp. 366–378.

[110] K. Jha, ‘‘Knowledge-base enriched word embeddings for biomedical
domain,’’ 2021, arXiv:2103.00479.

[111] B. Bi, C.Wu,M. Yan,W.Wang, J. Xia, and C. Li, ‘‘Incorporating external
knowledge intomachine reading for generative question answering,’’ 2019,
arXiv:1909.02745.

[112] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
and D. Amodei, ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 1877–1901.

[113] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1–11.

[114] F. Nooralahzadeh, L. Øvrelid, and J. T. Lønning, ‘‘Evaluation of domain-
specific word embeddings using knowledge resources,’’ in Proc. 11th Int.
Conf. Lang. Resour. Eval. (LREC), 2018, pp. 1–19.

[115] S. A. Aigbe and C. Eick, ‘‘Learning domain-specific word embeddings
from COVID-19 tweets,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2021, pp. 4307–4312.

[116] T. L. Chen, M. Emerling, G. R. Chaudhari, Y. R. Chillakuru, Y. Seo,
T. H. Vu, and J. H. Sohn, ‘‘Domain specific word embeddings for nat-
ural language processing in radiology,’’ J. Biomed. Informat., vol. 113,
Jan. 2021, Art. no. 103665.

[117] A. C. Kozlowski, M. Taddy, and J. A. Evans, ‘‘The geometry of culture:
Analyzing meaning through word embeddings,’’ 2018, arXiv:1803.09288.

[118] T. Bolukbasi, K.W. Chang, J. Y. Zou, V. Saligrama, andA. T. Kalai, ‘‘Man
is to computer programmer as woman is to homemaker? Debiasing word
embeddings,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1–9.

[119] L. K. Senel, I. Utlu, V. Yucesoy, A. Koc, and T. Cukur, ‘‘Semantic struc-
ture and interpretability of word embeddings,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 26, no. 10, pp. 1769–1779, Oct. 2018.

[120] C. Culnane, B. I. P. Rubinstein, and V. Teague, ‘‘Health data in an open
world,’’ 2017, arXiv:1712.05627.

[121] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,M.Matena, Y. Zhou,
W. Li, and P. J. Liu, ‘‘Exploring the limits of transfer learning with a
unified text-to-text transformer,’’ J. Mach. Learn. Res., vol. 21, no. 1,
pp. 5485–5551, 2020.

[122] M. U. Salur and I. Aydin, ‘‘A novel hybrid deep learning model for
sentiment classification,’’ IEEE Access, vol. 8, pp. 58080–58093, 2020.

[123] A. U. Rehman, A. K. Malik, B. Raza, andW. Ali, ‘‘A hybrid CNN-LSTM
model for improving accuracy of movie reviews sentiment analysis,’’
Multimedia Tools Appl., vol. 78, no. 18, pp. 26597–26613, Sep. 2019.

[124] A. Khare, S. Parthasarathy, and S. Sundaram, ‘‘Multi-modal
embeddings using multi-task learning for emotion recognition,’’ 2020,
arXiv:2009.05019.

RAJVARDHAN PATIL received theM.S. degree in
computer science and the Ph.D. degree in informa-
tion technology from the University of Nebraska
Omaha, in 2012 and 2016, respectively. He has two
years of industrial experience as a Data Engineer.
Since 2020, he has been an Assistant Professor of
CISwith Grand Valley State University, Allendale,
MI, USA. His research interests include natural
language processing, transfer learning, image pro-
cessing, and applied AI.

SORIO BOIT received the Ph.D. degree in infor-
mation systems from Dakota State University.
He is currently an Assistant Professor with the
Department of Computing, Grand Valley State
University, Allendale, MI, USA. His research
interests include transfer learning, deep learn-
ing, applied AI applications, NLP, and computer
vision.

VENKAT GUDIVADA received the Ph.D. degree in
computer science from the University of Louisiana
at Lafayette, Lafayette, LA, USA. He is currently
the Chairperson and a Professor with the Depart-
ment Computer Science, East Carolina University.
Prior to this, he was the Founding Chair and a Pro-
fessor with the Department of Computer Science
and Electrical Engineering (formerly Weisberg
Division of Computer Science), Marshall Univer-
sity. He was also the Vice President of Wall Street

companies in New York City for over six years, including the Bank of
America Merrill Lynch and GoldenSource (formerly Financial Technologies
International). His current research interests include data management, infor-
mation retrieval, applied machine learning, and personalized learning.

JAGADEESH NANDIGAM received the Ph.D.
degree in computer science from the University of
Louisiana at Lafayette, in 1995. He is currently a
Professor with the School of Computing, Grand
Valley State University, Allendale, MI, USA. His
research interests include software engineering,
programming languages, software security, and
natural language processing.

36146 VOLUME 11, 2023

