IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 19 March 2023, accepted 5 April 2023, date of publication 11 April 2023, date of current version 21 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3266250

== RESEARCH ARTICLE

Day-Ahead Intelligent Energy Management
Strategy for Manufacturing Load Participating in
Demand Response

XUNYOU ZHANG “'-23 AND ZUO SUN'-3

1School of Mechanical and Electrical Engineering, Chizhou University, Chizhou 247000, China
2School of Electrical Engineering, Southeast University, Nanjing 210096, China

3 Anhui Semiconductor Industry General Technology Research Center, Chizhou 247000, China

Corresponding author: Xunyou Zhang (xyzhang @czu.edu.cn)

This work was supported in part by the Key Natural Science Research Projects of Colleges and Universities in Anhui Province under Grant
2022AHO051831, and in part by the Excellent Scientific Research and Innovation Team of Anhui Colleges under Grant 2022AH010098.

ABSTRACT Flexible resources such as adjustable load widely participate in interaction with power grid,
which can effectively promote renewable energy consumption. In previous studies, researchers generally
focused on industrial and household users, but usually ignored the manufacturing load. Therefore, in this
paper, an day-ahead intelligent energy management strategy for manufacturing load is proposed. Firstly,
we analyze the power demand behavior of manufacturing load in detail, and describe the energy flow and
material flow of manufacturing load through state task network (STN) method and mixed integer linear
programming model. Then, the conditional deep convolution generative adversarial networks (C-DCGAN)
algorithm is used to describe the uncertainty of new energy and construct a set of scheduling scenarios.
Finally, case study shows that the proposed method can effectively improve the regional renewable energy
consumption level and economic benefits of enterprises.

INDEX TERMS Manufacturing load, state task network (STN) method, conditional deep convolution

generative adversarial networks (C-DCGAN) algorithm, typical scenario screening method.

I. INTRODUCTION

Under the target of carbon peaking and carbon neutralization,
the proportion of traditional fossil energy is decreasing, and
the proportion of renewable energy such as wind power is
increasing sharply [1]. However, the uncertainty of wind
and photovoltaic power has brought great challenges to the
safe operation of power system. It is difficult to meet the
regulation demand of power system under the high proportion
of renewable energy by using only conventional power supply
for peak shaving. With the development of intelligent control
and Internet of Things technology, demand response (DR)
of load side provides an effective way for flexible regulation
of power grid and relieving peak load pressure. At present,
most relevant researches consider the DR of residential load,
commercial load or industrial load [2], [3], [4], realizing
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the power balance between resources and load, which have
achieved good results. In literature [5], an economic technical
analysis of the effect of the penetration of electric vehicles in
a microgrid is proposed. At the same time, robust stochas-
tic optimization method is used to deal with uncertainty of
renewable energy sources and loads. In [6], by guiding the
DR of electric vehicles, system operators minimize the peak
power demand and improve the safe operation level of the
power grid. In [7], researchers focused on small capacity
residential load, and develops a mathematical formulation to
support a residential-level demand response analogue.
Compared with residential load, the adjustable capacity
of industrial load is larger, and the dispatching flexibility
and potential are greater. In order to make full use of the
resources on the industrial demand side [8], [9], [10], [11]
to improve the economy and security of the power system,
researchers has studied and implemented many incentive
measures. Because the industrial production process cannot
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be interrupted in general, price based DR projects are often
used for industrial load, among which the most commonly
used is time of use (TOU) price. TOU price guides users
to conduct power management spontaneously by giving dif-
ferent electricity prices for different periods of time. Liter-
ature [12] pointed out that a reasonable peak valley price
can achieve a good effect of peak shaving and valley filling
through the analysis of large industrial users. For power
grid dispatching, TOU price, as a variable to control the
power demand at the user side, will determine the effect of
peak shifting and valley filling, thus affecting the system
operation cost [13]. The response behavior of load should
be taken into account when TOU price is formulated. Users
respond to different prices to varying degrees, that is, there
is demand elasticity. In the study of time-sharing price for
users [14], [15], the correlation between electricity prices in
different periods and users’ electricity demand is established.
Under the TOU price given by the power grid, industrial users
can reduce power demand in peak time or transfer demand
from peak time to valley time to reduce power demand cost
[16], [17]. With the construction and improvement of inte-
grated energy systems, the multi energy flow DR of integrated
energy systems has also been widely studied and achieved
good results [18], [19].

The research mentioned above mainly focuses on
residential load and industrial load, but tend to ignore the
DR of manufacturing load. Compared with residential load
and commercial load, manufacturing load has the advantages
of complete infrastructure, strong willingness to participate
in DR [20]. The automation level in the manufacturing
enterprise is high, but the adjustment capacity is relatively
small, mostly in a few megawatts, represented by automo-
bile production and assembly enterprises, mold processing
enterprises, food processing industry, and construction mate-
rials industry. In [20], researchers considered the impact of
machine tool processing on indoor temperature and humidity,
combined with TOU price information, and established a
coordinated scheduling model for the entire production line
with the goal of minimizing operating costs; [21] incorporates
the carbon emission characteristics of cement plants and
thermal power units into a low-carbon economic scheduling
framework. Literatures [22], [23] analyze the cases of food
production plants in detail and refrigerated warehouses par-
ticipating in DR. In [24], taking a ham storage enterprise in
Spain as an example, the internal cooling system includes
four types: refrigeration subsystem, storage subsystem, air
conditioning subsystem, and drying subsystem. All of the
above subsystems can use thermal inertia to control the indoor
temperature and humidity within a reasonable range. While
reducing production costs, the reduction in greenhouse gas
emissions caused by load reduction is also significant.

Therefore, adjusting manufacturing load is a feasible
idea to ensure the reliable and economic operation of the
power system. On the other hand, economic dispatch of
power systems often involves many uncertainties. In terms
of uncertainty analysis methods, [25] introduces analysis

38292

methods such as stochastic programming, robust optimiza-
tion, and interval programming. Reference [26] summarizes
data driven uncertain scheduling methods, and introduces
methods for solving stochastic decision-making problems
in power systems such as multi scenario analysis and risk
constraint methods. Currently, scenario generation, chance
constraint, and robust optimization methods are still the main
methods for solving uncertain models.

However, there are still some challenges. Firstly, the
mathematical model of manufacturing load is very complex.
Different from industrial load and residents load, the manu-
facturing load model contains many logical constraints, and
energy flow and material flow need to be considered at the
same time. Secondly, when formulating the day-ahead energy
management strategy, it is necessary to consider the uncer-
tainty of both source and load. Although the multi-scenario
stochastic optimization method can well describe the uncer-
tainty, it also brings a heavy computational burden.

In order to solve the above issues, this paper proposes a
day-ahead intelligent energy management strategy for man-
ufacturing load participating in DR. The contribution of this
paper can be summarized as follow:

(1). Firstly, the complex production process in manufactur-
ing industry involves a coupling relationship between energy
flow and material flow, and its production task schedul-
ing is essentially an NP-hard problem. Current optimization
algorithms can only handle small-scale NP-hard problems.
To solve this problem, the STN method is adapted to describe
the production process of manufacturing load. Based on STN
method, the production process is decoupled into independent
status nodes and task nodes. Then, MILP model is used to
describe the power demand behavior of manufacturing load;

(2). Secondly, this paper uses conditional deep convolution
generative adversarial networks (C-DCGAN) algorithm to
construct typical day-ahead scenario sets. A stochastic opti-
mization method based on scenario generation used in this
paper can reduce computational complexity while avoiding
conservative decisions.

The remainder of the paper is organized as follows. First,
the intelligent operation framework of manufacturing load
is given in section II. Then, in section III, the mathematical
model of manufacturing load is given by STN method, which
can well describe the relationship between materials and
energy flow in the production process. In section 1V, the
structure and working principle of the C-DCGAN model are
introduced in detail. Finally, the feasibility of the proposed
method is verified by case study.

Il. INTELLIGENT OPERATION FRAMEWORK OF
MANUFACTURING LOAD

Figure. 1 shows the intelligent operation framework of manu-
facturing load. Compared with residential and industrial load,
the power demand of manufacturing load is more complex.
Due to such factors as the type of electrical equipment,
production process, and yield requirements, there is a large
difference in power demand among different manufacturing
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load. Conditional manufacturing load can use renewable
energy generation system to realize partial self-sufficiency of
electric energy, and even can transmit excess electric energy
to the power system, which is also a DR resource for the
power system. For such manufacturing load, the intelligent
operation framework designed in this paper covers renew-
able power generation management and power utilization
optimization dispatching, taking into account relevant power
purchase and sale decisions when participating in DR.

In the intelligent operation framework, the ways to obtain
electric energy include from external power grid and on-
site renewable energy. The power demand mainly includes
the power for production equipment and basic load. Power
demand of production equipment refers to the power demand
of equipment to perform various production tasks, which is
also the main power load of manufacturing users.

The intelligent operation framework integrates renewable
energy power generation management of manufacturing load,
power dispatching of production equipment, and power pur-
chase and sale decision-making functions. According to the
price signal, yield planning, production constraint and other
information provided by the DR planning, the framework
effectively realizes the power prediction of renewable energy,
production task scheduling, and makes power purchase and
sale decisions with the goal of minimizing total costs.

In order to reduce the electricity expenditure, manufac-
turing users can optimize the power demand mode through
intelligent operation framework to participate in the DR
planning provided. DR is mainly divided into price based
DR and incentive DR. The price based DR includes time
of use price and real-time electricity price. Users are fully
willing to respond to changes in retail electricity price and
adjust electricity demand accordingly. In the incentive DR,
the user can sign a contract about interruptible load with the
power company to negotiate and determine the corresponding
compensation.

In this paper, manufacturing load participates in price
based DR. The intelligent operation framework considers the
price signal provided by power grid, and develops the power
demand strategy with the goal of saving total operation cost.
Under this scheme, the production task can be scheduled
according to the power demand and electricity price signal.
On the premise of meeting various production constraints,
the production tasks in the peak electricity price period can
be transferred to the low electricity price period. On the other
hand, users can flexibly transfer power demand according to
the price signal to increase the consumption of renewable
energy, which can also be seen as load reduction for power
system. If the output of renewable energy exceeds the power
demand of manufacturing load, users can sell electricity to
power grids and obtain economic benefits [27].

To gain a better understanding, a schematic diagram of
manufacturing load participating in DR is given as Figure. 2.
The whole process of participating in DR can be described
as follows: first, the enterprise receives the electricity price
signal from the grid side; enterprise decision-makers consider
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FIGURE 2. Schematic diagram of manufacturing load participating in
demand response.

the predicted output of renewable energy in the factory, and
use C-DCGAN method to generate some scheduling scenar-
ios; finally, with the goal of minimizing the system operation
cost under several selected scenarios, the day-ahead optimal
production plan is formulated to reduce the conservatism of
traditional method on the premise of meeting the production
tasks of the enterprise.

Ill. MATHEMATICAL MODEL OF MANUFACTURING LOAD
Establishing mathematical models of various production
equipment in the factory is the basis for realizing intelli-
gent energy management. The state task network (STN) can
be used to describe the manufacturing production process,
and the power demand model of production equipment can
be established by combining the STN with the power of
equipment for production tasks [28]. Meanwhile, the optimal
scheduling model of production equipment can be built after
the power demand of equipment for each production task is
included. In detail, STN includes two types of nodes: status
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node and task node. The status node indicates the material
stock in the production process, such as raw materials, middle
products, or final products; the task node can describe a man-
ufacturing task or a combination of several manufacturing
tasks. For example, a task node can describe a production line
or a piece of equipment on a production line. Task nodes can
be further divided into fixed tasks and flexible tasks. Fixed
tasks mean that the production rate of each period is fixed and
equipment cannot be dispatched freely. Flexible tasks mean
that the power demand behavior of equipment can be adjusted
in different periods to respond to the electricity price signal.
It should be noted that the modeling in this article is based on
certain assumptions and simplifications. In practice, it is dif-
ficult to accurately control the working status of each device,
especially when there are many devices within the enterprise.
This paper assumes that some devices are centrally scheduled
rather than distributed scheduled. In addition, another feasible
strategy is to assume that the number of products produced
by each task in a single period is an integer, which can avoid
frequent start and stop of production tasks.

Raw material 1

.—} Flexible task 1

Raw material 2

Middle product 1

Middle product 2 \ 4 Final product

Flexible task 3

FIGURE 3. STN based production process.

Figure. 3 shows an example of using STN to describe the
production process. Flexible task 3 processes middle prod-
uct 1 and middle product 2 to obtain final products. Flexible
task 1 converts raw material 1 into middle products 1. In task
1, the power demand of equipment in each period can be
adjusted according to the electricity price signal. During the
peak period of electricity price, operator reduce the power
demand of the equipment in task 1 by producing at a lower
production rate; during the period of low electricity price,
operator can increase the power demand of the equipment in
task 1, and save the total operation cost as much as possible
while meeting the production requirements and production
constraints.

The status node parameters include the initial quantity,
upper and lower storage limit of the material. The consump-
tion and production of materials should meet the material
balance constraints, and the material quantity should meet the
storage constraints.

(1) Material balance constraints

Siit1 =Sis+hQ_ giji— D ciji) ey
J€Gi JjeCi

Here, S; ; is the material stock of status node 7 at time £; g; j,;
and c¢; j, are the yield and consumption rate of status node i
in task j at time 7; G; and C; are the task sets connected with
node i to produce and consume the materials of this node.

38294

(2) Material stock constraints
S < i < S @

Here, Sl?ni“ and S;"* represent the lower and upper limit of
the material storage quantity in the status node i. In addition,
operators usually require the daily yield of products to reach

. op . .
a certain value S;", so the corresponding status node i also
needs to meet the yield constraints (3):

Sint1 —Si1 > 8 3)

There are m operating conditions for a given task node j,
where the power demand corresponding to condition k is p; x,
the number of workers required is wj x, and the consumption
rate of material i is «;j, the yield rate of material i is
Bijk- The 0-1 variable Z; ; x represents the operation state
corresponding to the working condition k of task j at time
t. State variable Z; ; ; take 1/0 to indicate that task node j
operates /does not operate at working condition k at time 7.
In this way, the consumed power of task node j at time ¢ can
be calculated as follows:

m
Pir = Z Zj k. tPj.k “)
k=1

Meanwhile, the sum of power demand of all tasks is the
power demand of production equipment:

N
Pl =>"P, )
j=1

Here, P! is the power demand of production equipment at
time ¢; N is the total number of task nodes. The number of
workers W; ,, material consumption rate ¢; j; and yield rate
gij,r in task node j at time ¢ can be calculated respectively
according to the following formula (6):

m
Wi = E Zj k,iWj k
k=1

m
Cij,t = E Zj k,14ij k
k=1

m
8ijr = ZZ;’,k,zﬂi,j,k

k=1
(6)
(3) State constraints of flexible task nodes
m
0<> Zisi <1 @)
k=1

It should be noted that constraint (7) is used to ensure
that the schedulable task j at time ¢ is only in one operating
condition.

(4) Worker quantity constraints

0=<W, <wi* ®)
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FIGURE 5. The structures of the discriminator in the C-DCGAN model.

Here, Wj‘ft’a" is the upper limit of the number of workers
that task j can engage in production at time 7.

Finally, the objective of the optimal scheduling of manu-
facturing plants is to minimize the maximum operating cost.
As shown in (9), the objective function is composed of three
parts, in which the operation cost of manufacturing enter-
prise is represented by F,),, the labor cost is represented by
Fan, and the revenue from electricity sales is represented by
Fsenr. It should be noted that this paper mainly considers the
manufacturing load (production equipment) and associated
renewable generation and operation costs.

min(Fop + Fuan — Fsetr) (9)
IV. DAY-AHEAD SCHEDULING SCENARIO GENERATION
METHOD AND TYPICAL SCENARIO SCREENING METHOD
It is difficult for traditional statistical methods to generate
scenarios to fully describe the uncertainty of new energy and
load. In this paper, the conditional deep convolution gener-
ating network (C-DCGAN) algorithm is used to describe the
uncertainty of new energy and construct a set of scheduling
scenarios.

As one of the commonly used deep learning network
structures, deep convolution neural network (DCNN) can
accurately analyze the correlation between sampling data
points and local input information, and mine the local infor-
mation characteristics of input data [29], [30]. Combined
with the time vertical similarity of renewable energy genera-
tion data, DCNN can effectively describe the mapping rela-
tionship between scenario data by mining local information
features. Therefore, this paper adopts the C-DCGAN model
with DCNN as the main network structure to realize the
migration of scenario data. The structures of the generator and
discriminator in the C-DCGAN model are shown in Figure.
4 and Figure. 5 respectively.

As shown in Figure. 4, with the real data as the condition
v, after splicing with the random noise z, the input generator
enables the convolution layer of C-DCGAN to effectively
analyze the local information characteristics of the input
data. Convolution layer, as the basic structure of C-DCGAN,
usually contains multiple convolution cores, which enables
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C-DCGAN to extract complex data features more compre-
hensively and quickly. The kernel in the convolution layer
is convolved with the input characteristics of the layer. The
function relation obtained by combining the convolution
result with the corresponding convolution kernel is the output
of the convolution kernel. The result of condition y and ran-
dom noise z through convolution kernel is shown in equation
(10)-(11).

Myp :f(w/yp;p+g_1 +b) (10)
mzp Zf(W/Zp;p+g—] + b/) (11)

Here, my, and m;, respectively represent the p-th feature
of conditional y and random noise z through convolution
calculation; f(-) is the activation function set for the con-
volution layer; w’ and b’ respectively represent the weight
and deviation corresponding to each convolution kernel; the
window size of convolution kernel is g; y;, z, are the p-th
input of the characteristics y, z, x and G(2).

Each convolution layer is provided with multiple convo-
lution kernels to perform the convolution operation on the
original data, so that different convolution kernels will be
given different weights in the adjustment. Multiple convolu-
tion kernels will extract features from the data in the same
area, and finally all features of the convolution layer will be
spliced into one feature, which is the output feature of the
convolution layer. The convolution layer output feature of the
generator is shown in equation (12).

Mg Zf(myp:l , L, Myp:n—g+1, Mzp:1, L, mzp:n—g+1) (12)

According to equation (12), after the convolution opera-
tion, the output characteristics of the convolution layer can
represent the mapping relationship between the source power
data y and the random noise z. Through multi-layer convolu-
tion calculation, the convolution layer features extracted from
the source power data y and random noise z are continuously
refined, and finally the generated sample data G(z) is output.

Similarly, as shown in Figure. 5, take the source power
data as the condition y, respectively splice with the gener-
ated sample G(z) and the historical sample x, and input the
discriminator. The results of the convolution kernel of the
historical sample x and the generated sample G(z) are shown
in formula (13)-(14) respectively.

Mg =f(mypil’ L, myp:n—g+1, Mzp:1, L, mzp:n7g+1) (13)
Mzp zf(W/Zp:p+g—l +b) (14)

Here, my, and m,, respectively represent the p-th feature
of the convolution calculation of the historical sample x and
generated sample G(2); xp, z are the p-th input of character-
istics x, G(2).

After multiple convolution kernels are calculated, the out-
put characteristics Mp; and Mp; of generated data G(z) and
history sample x through discriminator convolution layer are
shown in formula (15) and (16) respectively.

Mp Zf(mypzla L, Myp:n—g+1, MGp:1, L, mGp:n—g+l) (15)
Mp» Zf(myp:] ,L, Myp:n—g+1, Myp:1, L, mxp:nngrl) (16)
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TABLE 1. TOU price and electricity selling price.

Period TOU price Electricity selling price
0:00-5:00 0.05344 0.1
6:00-9:00 0.19946 0.1
10:00-11:00 0.08500 0.1
12:00-12:00 0.19946 0.1

Meanwhile, the output characteristics of the convolution
layer can respectively represent the mapping relationship
between the source power data y, historical data x, and the
generated power data G(z) of renewable energy. The dis-
criminator continuously refines the convolution layer features
extracted from the generated data G(z), data x and data y
through multi-layer convolution calculation, and finally out-
puts the classification results. Finally, the generator after
training can convolve the random noise according to the
mapping relationship to generate the corresponding power
data of renewable energy.

When too many scenarios are generated, the computational
burden will also increase. For the scenario set generated by
C-DCGAN, we can use the typical scenario screening method
to select representative scenarios [31], [32].

V. CASE STUDY

In this paper, an automobile seat manufacturing factory is
used for a case study to illustrate the proposed intelligent
power management method. The total scheduling period con-
sidered in this article is 12 hours, because decision makers
choose certain periods of the day to participate in demand
response scheduling. According to the current situation in
China, most enterprises only schedule work tasks at certain
times of the day, rather than all day. In additional, the schedul-
ing interval considered in this article is 1h. If a scheduling
cycle with a longer interval is adopted, it can effectively
reduce the difficulty of solving the problem. In this paper,
power grid uses TOU price to guide the manufacturing load
to participate in the demand response, and adopts the unified
price for the redundant renewable energy power generation.
Table. 1 shows the price data of TOU price and unified price.
The production process of the plant is shown in Figure. 6,
and the parameters of each status node and task node are
shown in Table. 3 to Table. 8 in appendix. Generator and
discriminator hyperparametric information is given in Table.
9 in appendix. The number of car seats to be produced during
the scheduling period is 800. The test case is carried out by
a desktop computer with MATLAB 2016a and the CPLEX
solver installed. The computer is configured with a Win-10
Pro operating system, Intel i5-7300HQ and 8G memory.

A. ANALYSIS OF THE SCHEDULING RESULTS

Figure. 7 shows the wind and solar power data generated
by the original and C-DCGAN models. Compared with the
original wind and solar power data shown in subgraphs
(a) and (c), the wind and solar power data generated by the
C-DCGAN model can well depict the volatility of renewable
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FIGURE 6. The production process of the automobile seat manufacturing
factory.
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FIGURE 7. Original and generated data set.

energy output, and the generated data set is consistent with
the original data in trend. Therefore, according to the data set
generated, operators can be well guided to specify the day-
ahead intelligent energy management strategy of manufactur-
ing load.

Figure. 8 shows the electricity buy and sell quantity of man-
ufacturing industry enterprise. In general, enterprise mainly
purchases electricity from 1:00 to 9:00, which is mainly
caused by the following two reasons: first, the solar power
is very small during this period, and it is difficult to meet
the production power demand of manufacturing load only
relying on wind power. In addition, according to the elec-
tricity price information, the electricity price in this period
is cheap. In order to reduce the operation cost, the enterprise
will increase the electricity consumption in this low elec-
tricity price period. From 9:00 to 12:00, due to good light-
ing conditions and increased solar power, the manufacturing
load cannot fully consume renewable energy, and the surplus
energy is sold to the power grid to increase the enterprise’s
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FIGURE 9. Cumulative output of car seats in manufacturing industry
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income. Figures. 9 and 10 show the cumulative output of
the enterprise and the power demand of each task node,
respectively. As shown in Figure. 9, through the intelligent
energy management strategy, the final output of car seats is
800, which meets the seat production requirements. While
completing the production task, the consumption level of
renewable energy in the region is improved to achieve a win-
win situation for the power grid and the load side. It can
be clearly seen from Figure. 10 that the power of each task
node responds to the scheduling instructions in an orderly
manner. Among them, power of welding and painting #1
remains unchanged. This is because welding and painting #1
is a fixed task, which only has two working states: operation
and stopping, so its scheduling flexibility is slightly poor.

B. CALCULATION EFFICIENCY ANALYSIS

The optimization model proposed in this paper is essentially
a multi-scenario stochastic optimization problem. Figure. 11
shows the relationship between the total calculation time and
the number of selected scenarios. It is not difficult to find
that the total solution time is approximately linear with the
number of selected scenarios. On the other hand, the scanning
time of typical scenarios is controlled within 2 s, which shows
the high efficiency of the proposed algorithm. In conclusion,
the method proposed in this paper can significantly reduce
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TABLE 2. Comparision results between different methods.

Method Computational time/s ~ Total operation cost/$
The proposed method 287.5 1324.7
Robust method used
n[33] 375 1542.8
Fuzzy chance
constraint method 42.6 1426.9
used in [34]
Stochastic
optimization method 314.5 1421.4

used in [35]

the calculation burden and meet the needs of practical engi-
neering applications.

In this paper, the stochastic optimization method based on
scenario is mainly used to deal with uncertainty. Common
methods to deal with uncertainty include fuzzy chance con-
straint method, robust method and stochastic optimization
method generated by other scenarios. This paper compares
the results obtained by different methods form the two aspects
of computational time and conservatism. The results are given
in Table. 2.

Here, robust method uses a box model to character-
ize the uncertainty of renewable energy output. The fuzzy
chance constraint method uses triangular fuzzy parame-
ters to describe the uncertainty. As shown in Table 2, the
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TABLE 3. Paramaters of various state nodes.

State nodes

Lower storage limit

Upper storage limit

Leather
Foam raw material
Steel
Seat cover
Foam part
Seat frame
Seat rail
Car seat

65
36
1
120
120
120
120
500

1000
600
50
340
420
420
1600
2000

TABLE 4. The paramaters of tasks 1.

Leather consumption rate Seat cover production

Task node Operating conditions Power/kW Number of workers . .
(piece/hour) rate (piece/hour)
1 0 0 0 0
, , 2 100 20 20 40
Cutting and sewing
3 200 40 45 90
4 300 60 65 130
TABLE 5. The paramaters of tasks 2.
Foam raw material Foam part production
Task node Operating conditions Power/kW Number of workers consumption rate partp
. rate (piece/hour)
(piece/hour)
1 0 0 0 0
Foaming and 2 200 5 12 50
maturing 3 400 24 100
4 600 36 150

method proposed in this article needs to calculate the optimal
solution under multiple scenarios, so its calculation time
is longer. However, multiple scenarios describe uncertainty
more accurately, so the total operating cost is minimal,
which can effectively reduce the conservatism of decision-
making. By comparison, robust method and fuzzy chance
constraint method essentially only need to calculate one
scenario, so their calculation time is very small, but the
results tend to be conservative, resulting in an increase in
total operating costs. Compared with the literature [36], there
are several differences: (1). The objects of scheduling are
different: this paper focuses on the load side, i.e., manu-
facturing enterprises, with the lowest production cost as the
objective function; [36] focuses on the power system side,
with the lowest generation cost as the objective function;
(2). The methods of problem solving are different: in this
paper, the scheduling model is modeled using MILP using the
STN method, which can be directly solved using commercial
solvers; mathematical model in [36] can be solved using
multi-objective and multi-stage optimization algorithms.

VI. CONCLUSION

For manufacturing industry enterprise with renewable energy
generation and demand response capabilities, this paper
designs an intelligent power demand management model.
First, the energy management architecture including differ-
ent types of power demand is constructed. Then, the power
consumed model based on STN method are respectively
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introduced, which can accurately describe the relationship
between material flow and energy flow. On this basis, an intel-
ligent power demand optimization model for manufacturing
load with the objective of minimizing the operation cost is
given. The calculation results of the case study show that the
intelligent energy management model can properly describe
the load demand in each period of the actual manufacturing
production process, flexibly adjust the power demand of vari-
ous types of equipment under the guidance of the price signal,
and optimize the system load curve profile while reducing the
total power demand cost, thus improving the economy and
security of power system operation.

Meanwhile, through the analysis of calculation examples,
the algorithm proposed in this paper has high calculation
efficiency. Compared with the traditional algorithm, it signif-
icantly reduces the calculation burden. The total calculation
time is controlled within hundreds of seconds, meeting the
needs of practical engineering applications. Finally, for large-
scale enterprises, the scale of this optimization problem can
become very large, especially with the sharp increasing of
the 0-1 variables involved, resulting in great difficulty in
solving the problem. How to design more efficient solu-
tion algorithms is also potential research direction in the
future.

APPENDIX
See Tables 3-9.
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TABLE 6. The paramaters of tasks 3.

Steel consumption Seat frame
Task node Operating conditions Power/kW Number of workers . production rate
rate (piece/hour) .
(piece/hour)
Welding and painting 1 0 0 0 0
#1 2 270 10 0.75 30
TABLE 7. The paramaters of tasks 4.
Steel consumption Seat frame
Task node Operating conditions Power/kW Number of workers . production rate
rate (piece/hour) .
(piece/hour)
. 1 0 0 0 0
p‘Zi?;gg#;“d 2 270 10 0.75 30
3 500 15 1.5 56
TABLE 8. The paramaters of tasks 5.
Seat cover Foam part  Seat frame Seat rail  Car seat
Task node Oper?Fing Power/kW Number of consumption consumption consumption consurr}ption consurr}ption
conditions workers rate (piece / rate (piece / rate (piece / rate (piece / rate (piece /
hour) hour) hour) hour) hour)
1 0 0 0 0 0 0 0
Assembling 2 140 20 40 40 40 40 40
3 280 40 80 80 80 80 80
4 420 60 120 120 120 120 120
TABLE 9. Generator and discriminator hyper parametric in formation.
Structure Layer Name Parameter
Number of input channels: 3
Layer -1 2D convolution layer Number of .convolution kemels: 32
Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 32
. Number of convolution kernels: 64
Generator Layer -2 2D convolution layer Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 64
Layer -3 2D convolution layer Number oficonvolution 1‘<ernels: 4
Convolutional kernel size: 3*3
Activation function: ReLU
Number of input channels: 3
Tnput layer 2D convolution layer Number of convolution kernels: 32
Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 32
Layer -1 2D convolution layer Number of gonvolution k_ernels: 64
Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 64
Layer -2 2D convolution layer Number of c{onvolution kc‘:rnels: 128
Discriminator Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 128
Layer -3 2D convolution layer Number of gonvolution k;mels: 256
Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Number of input channels: 256
Layer -4 2D convolution layer Number of gonvolution kemels: 16
Convolutional kernel size: 3*3
Activation function: LeakyReLU(0.2)
Output layer Full connectivity layer Output latitude: 1*1
VOLUME 11, 2023 38299
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